

Built-in Programmable Scale Factor No Input required to calibrate

General Features

- External transmitters or signal conditioners can be eliminated by direct connection of the sensor or DCmV shunt output to :
- DCA

ID02 : DC mV $\pm 20 \mathrm{mV}, \pm 50 \mathrm{mV}, \pm 100 \mathrm{mV}, \pm 200 \mathrm{mV}$ w/24V Exc. - DCV

ID01 : DC-Volts 2V/20V/200V w/24V Exc.
ID05 : DC-Volts 2V/20V/200V w/24V Exc. and Zero offset adjustable pot

- Optional isolated 16 bit analog output. User or factory scalable to 4 to $20 \mathrm{~mA}, 0$ to 20 mA or 0 to 10 V across any desired digital span from \pm one count to the full scale range of -1999 to 9999.
- Auto-sensing AC/DC power supply. For voltages between 85-265 V AC / 95-300 V DC (PS1) or 15-48 V AC / 10-72 V DC (PS2).
- Standard 0.56 " red or optional green or super bright red 4-digit LED with display range -1999 to 9999.
- Red or green 0.8" LED large display option.
- Four annunciator LEDs provide front panel alarm status indication for up to four setpoints.
- Two 9 Amp Form C and two 4 Amp Form A relays, or optionally four 4 Amp Form A relays are available.
- Automatic intelligent averaging smooths noisy signals, while providing a fast display response to real input signal changes.

Software Features

- Three-button programming from the front panel (UP, DOWN and PROGRAM buttons).
- Front panel selectable four-level brightness control.
- Four programmable setpoints.
- Relay activation can be selected to occur above (HI) or below (LO) each setpoint.
- Hysteresis setting for all three setpoints. Delay on make and delay on break for SP1 and SP2.
- Peak and Valley. View and Reset.

Specifications

Input Specs:..............Single-ended, however isolated power supply enables differential measurements up to a maximum common mode of 50 V .
A/D Converter: 14 bit single slope
Accuracy: $\pm(0.05 \%$ of reading +2 counts)
Temp. Coeff.:............. $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (Typical)
Warm up time:........... 2 minutes
Conversion Rate:...... 5 conversions per second (Typical)
Display:..................... 4 digit 0.56" Red LED display (std), 0.56 " Green, 0.8" Red/Green, or 0.56 " Super Bright Red are optional. Range -1999 to 9999 counts.
Polarity:Assumed positive. Displays - negative
Decimal Selection:....Front panel button selectable, $X \cdot X \cdot X \cdot X \cdot$
Positive Overrange:..Top segments of digital display flash
Negative Overrange: Bottom segments of digital display flash
Relay Output:Two 4 Amp Form A relays and two 9 Amp Form C, or 4 Amp form A relays.
Analog Output:Isolated 16 bit user scalable mA or V OIC (mA out)...........4-20 mA @ 0 to 500Ω max loop resistance
OIV (volts out).......... 0-10 V DC @ 500Ω or higher resistance
Power Supply:...........AC/DC Auto sensing wide range supply PS1 (std)85-265 VAC 50-400Hz / 95-300 VDC @ 3W
PS215-48 VAC 50-400HZ / 10-72 VDC @ 2.5W
Operating Temp.:...... 0 to $50^{\circ} \mathrm{C}$
Storage Temp:........... $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
Relative Humidity:95\% (non condensing)
Case Dimensions:1/8 DIN, Bezel: $96 \times 48 \mathrm{~mm}$ (3.78"x1.89") Depth behind bezel: 117 mm (4.61") Plus 11.8 mm (0.47 ") for Right-angled connectors, or plus 20 mm (0.79 ") for Straight-thru connector.
Weight:......................6.5 oz., 8.5 oz when packed

Index		
4	Input Module Compatibility. 1	Setpoint Setting \& Relay Configuration
4	Input Module Component Glossary . . 9	Mode . 6
	Installation Guideline 7	Software Features 1
5	Ordering Information 10	Software Logic Tree 3
1	Pin Descriptions 7	Specifications 1
2		Two Point Analog Output Rance Settina \& Calibration

Front Panel Buttons

Program Button

The button is used to move from one program step to the next. When pressed at the same time as the $\boldsymbol{\rightarrow}$ button, it initiates the calibration mode. When pressed at the same time as the \square button, it initiates the setpoint setting mode.

Up Button

When in the operational display, pressing the $\boldsymbol{\square}$ button alone, allows you to view and reset the Peak and Valley (Highest and Lowest Readings.)
When in the calibration mode or the setpoint setting mode the $\boldsymbol{\square}$ button is used to increase the value of the displayed parameter.

Down Button

When in the operational display, pressing the \ddagger button alone, allows you to view, but not change, the setting of setpoint 1,2 and 3 .
When in the calibration mode or the setpoint setting mode the \square button is used to decrease the value of the displayed parameter.

Glossary of Programming Symbols

To explain software programming procedures, logic diagrams are used to visually assist in following the programming steps. The fol-lowing symbols are used throughout the logic diagrams to represent the buttons and indicators on the meter:

Symbol

This is the PROGRAM button.
This is the UP button.
This is the DOWN button.

If the display is shown with XXXX it means the value displayed will be the previously set value. When a number is shown it indicates the initial factory default setting or a specific "example number".
This symbol represents the
OPERATIONAL DISPLAY.

When a button is shown, press and release it to go onto the next step in the direction indicated by the arrow. When two or more buttons are shown, each with an arrow, this indicates that there is a number of programming choices.

When two buttons are shown side by side and enclosed by a dotted line, they must be pressed at the same time then released to go onto the next programming step.

When two displays are shown together with bursts, this indicates that the display is toggling (flashing) between the name of the function and the value.

Text or numbers shown between square
[Span]
[10000]
 brackets in a procedure indicate the programming code name of the function or the value displayed on the meter display.

When the $\boldsymbol{\square}$ and \ddagger buttons are shown together, the display value can be increased by pressing and releasing the $\boldsymbol{\rightarrow}$ button or decreased by pressing and releasing the ■ button.

When the $\boldsymbol{\square}$ and \ddagger buttons are shown with two displays, either display can be selected by pressing and releasing the $\boldsymbol{\square}$ or - buttons.

When there are more than two display selections they are shown in brackets below the first display and are also selectable by pressing and releasing the $\boldsymbol{\square}$ or buttons.

A dotted box indicates these functions are omitted or bypassed when the related hardware is not present

Software Logic Tree

The DL-40PSF-DCA and DL-40PSF-DCV are intelligent meters with a hierarchical software structure designed for easy programming and operation, as shown below in the software logic tree.

After the meter has been powered up, the four digits light up for three seconds and then settle to the operational display indicating the input signal.

Digital Rescaling

The DL-40PSF-DCA and DL-40PSF-DCV meter may be rescaled without applying an external signal by changing the Offset and Scale factor.
Offset is the reading that the meter will display for a zero input. The Offset may be set to any value from -1999 to +9999 . The default value of the Offset is 000

Scale factor is the gain of the meter. The displayed reading is directly proportional to the Scale factor. The default value of the scale factor is 2000, but it may be set to any value between -1999 and +9999 .

For an input of 2 V a calibrated meter will read 2000 with the default Scale factor of 2000, 3000 with a Scale factor of 3000 and 500 with a Scale factor of 500

If a linear scale is represented by $m x+b$, then the Scale Factor corresponds to the slope ' m ' and the Offset corresponds to the intercept 'b'

The internal Signal Span is limited to 3 V DC between -1 V DC to +2 V DC. Outputs from an Input Signal Conditioning module that exceed these limits will cause the meter to indicate overrange.
Note: Most input signal conditioners have provisions for analog calibration and scaling. If the meter's digital Scale Factor is set to 2000 and Offset set to 0000 then, any pre-calibrated signal conditioner with an output that does not exceed -1 V to +2 V , will read correctly in the meter without any further calibration.

Digital Rescaling Procedure

STEP A Enter the Calibration Mode

1) Press the $\mathbb{\square}$ and $\boldsymbol{\Psi}$ buttons at the same time. Display toggles between [cAL] and [oFF].
2) Press the $\boldsymbol{\square}$ or \downarrow button. Display changes from [oFF] to [on].
3) Press the button. Display toggles between [cAL] and [out].

STEP B Select Between Calibration of Input or Output

Note: If the analog output option is not present, Step B is skipped and the program goes directly from Step A to Step C.

1) Press the \dagger or \dagger button to select the display toggling from [cAL] to [iP].
2) Press the \ddagger button. Display toggles between [oFFS] and the previous offset setting.

STEP C Set the Offset on the Digital Display

1) Using the \uparrow and \ddagger buttons, adjust the digital display to the desired offset. This is the reading that the meter will display for a zero input
2) Press the button. Display toggles between [ScAL] and the previous Scale factor.

STEP A Enter the Calibration Mode

1) Press the $\mathbb{\square}$ and \square buttons at the same time. Display toggles between [cAL] and [oFF].
2) Press the $\boldsymbol{\square}$ or button. Display changes from [oFF] to [on].
3) Press the button. Display toggles between [cAL] and [out] input calibration.

Note: If at this point the display skips directly to toggle between [SPAn] and the previous [SPAn], the software is detecting that the optional analog output hardware is NOT installed.

STEP B Enter the Analog [oUT] Output Mode

1) Press the button. Display toggles between [cLo] and an internal scale factor.

STEP C Set or Calibrate the [cLo] Low Analog Output Range

1) Select the voltage or current loop output header position on the output module. (See Component Layout on page 9).
2) Connect a multimeter to pins 8 and 9 on the output module. (See Rear Panel Pinouts on page 8). Using the \dagger and \downarrow buttons, adjust the analog output to the desired low value as shown on the multimeter display. CLo may be adjusted to any value from -0.3 mA to 17 mA (mA output selected) or from -0.6 V to 8 V (volt output selected)
3) Press the \square button. Display toggles between [Chi] and an internal scale factor.

STEP D Set or Calibrate the [chi] High Analog Output Range

1) Using the \uparrow and $₫$ buttons, adjust the analog output to the desired high value as shown on the multimeter display. chi may be adjusted to any value
from 17 mA to 21 mA (mA output selected) or from 8 V to 10.3 V (volt output selected)
2) Press the button. The display exits the calibration mode and returns to the operational display.

Note: Having established the Low and High range of the analog output, the digital span can now be selected which will set the two digital points between which the analog output will occur. (See Digital Span Selection below).

Decimal Point and Brightness Selection

STEP A Enter the Decimal Point and Brightness Mode Through the Sub Menu [cAL] [oFF]

1) Press the $\boldsymbol{\square}$ and $\boldsymbol{\square}$ buttons at the same time.

Display toggles between [cAL] and [oFF].
2) Press the button. Display shows previous [dp] selection.

STEP E Set the Decimal Point

1) Using the $\boldsymbol{\square}$ and \ddagger, adjust the display to the desired decimal point setting.
2) Press the button. Display toggles between $[\mathrm{Br}]$ and the previous $[\mathrm{Br}]$ setting.

STEP F Set the Display Brightness

1) Using the $\boldsymbol{\square}$ and $\boldsymbol{\text { buttons, adjust the display to the desired brightness }}$ setting (4 is the brightest setting).
2) Press the button. Display brightness changes to new setting and display toggles between [AnHi] and the previous [AnHi] setting.

Digital Span Selection for Analog Range Output

STEP G Setting the Digital Span Point for Analog High Output

1) Using the \dagger and \ddagger buttons, adjust the display to the desired digital value which sets the point at which the selected analog high output range will occur.
2) Press the button. Display toggles between [AnLo] and previous [AnLo] setting.

STEP H Setting the Digital Span Point for Analog Low Output

1) Using the \dagger and buttons, adjust the display to the desired digital value which sets the point at which the selected analog low output range will occur.
2) Press the button. The display exits the calibration mode and returns to the operational display.

Note: Any two digital scale points from -1999 to 9999 can be selected. The digital scale points for analog high and analog low can be reversed for reversed $20-4 \mathrm{~mA}$ output. The span of the digital scale can be as small as two counts however small spans cause the 16 bit D to A to increment in stair case steps.

The following programming steps are required to enter the setpoint values and configure the relay functions in a meter with four relays using four setpoints. Generally if less than four relays are installed the software auto detects missing relays and deletes reference to them from the menu. In some cases setpoints without relays are operational for display only purposes.

STEP A Enter the Setpoint Mode

1) Press the \square and buttons at the same time.

Display toggles between [SP1] and the previous [SP1] setting.
STEP B Set Setpoint 1 (SP1)

1) Using the \dagger and \ddagger buttons, adjust the display to the desired SP1 value.
2) Press the button. Display toggles between [doM] and the previous [doM] setting.

STEP C Set the SP1 Delay-on-Make (doM) Delay Time Setting

1) Using the \square and \square buttons, adjust the display to the desired [doM] value (0 to 9999 seconds). The reading must continuously remain in an alarm condition until this delay time has elapsed before the relay will make contact (energize).
2) Press the button. Display toggles between [dob] and the previous [dob] setting.

STEP D Set the SP1 Delay-on-Break (dob) Delay Time Setting

1) Using the $\boldsymbol{\square}$ and buttons, adjust the display to the desired [dob] value (0 to 9999 seconds). The reading must continuously remain in an non-alarm condition until this delay time has elapsed before the relay will break contact (de-energize).
2) Press the button. Display toggles between [hYSt] and the previous [hYSt] setting.

STEP E Set the Hysteresis Setting for Setpoint 1

1) Using the \ddagger and \ddagger buttons, adjust the display to the desired hysteresis [hYSt] value.
2) Press the button. Display toggles between [SP2] and the previous [SP2] setting. NOTE: Half of the Hysteresis value selected is applied above and below the setpoint.
NOTE: Steps F, G, H and J have functionally the same procedure as steps B, C, D, and E shown above.
STEP F Set Setpoint 2 (SP2)
STEP G Set the SP2 Delay-on-Make (doM) Delay Time Setting
STEP H Set the SP2 Delay-on-Break (dob) Delay Time Setting
STEP I Set the Hysteresis Setting for Setpoint 2
3) Using the \uparrow and \boxplus buttons, adjust the display to the desired hysteresis [hYSt] value.
4) Press the button. Display toggles between [SP3] and the previous [SP4] setting.

STEP J Set Setpoint 3 (SP3) (No [doM] or [dob])

1) Using the $\boldsymbol{\square}$ and \dagger buttons, adjust the display to the desired SP3 value.
2) Press the button. Display toggles between [hYSt] and the previous [hYSt] setting.

STEP K Set the Hysteresis Setting for Setpoint 3

1) Using the \square and \ddagger buttons, adjust the display to the desired hysteresis [hYSt] value.
2) Press the button. Display toggles between [SP4] and the previous [SP4] setting.

STEP L Set Setpoint 4 (SP4) (No [doM] or [dob])

1) Using the \dagger and \ddagger buttons, adjust the display to the desired SP4 value.
2) Press the button. Display toggles between [hYSt] and 0 .

STEP M Set the Hysteresis Setting for Setpoint 4

1) Using the $\boldsymbol{\square}$ and \boxplus buttons, adjust the display to the desired hysteresis [hYSt] value.
2) Press the button. Display toggles between [rLYS] and the previous relay setting.

STEP N Set Relay Activation mode [rLYS]
(h) High the relay energizes when the setpoint is exceeded. (L) Low the relay energizes below the setpoint. The setpoint is indicated from left to right SP1, SP2, SP3, SP4.

1) Using the \square and \square buttons, adjust the reading on the display to the desired
relay settings: [LLLL], [LhLh], [hLhL], [hhhh].
If only 2 relays installed [Lh--], [hL--], [hh--], [LL--].
2) Press the button.

The meter exits the setpoint mode and returns to the operational display.

The Setpoint Relay programming mode is now complete.

Connector Pinouts

Pinout Diagram

The Rear View of the Meter diagram shows the meter with the relay configuration: dual 9 Amp Form C and dual 4 Amp Form A relays. An analog output module is also shown as installed.
The DL-40-ACA/DL-40-ACV use plug-in type screw terminal connectors for all input and output connections. The power supply connections (pins 14 and 15) have a unique plug and socket outline to prevent cross connection. The main board and input signal conditioner use right-angled connectors as standard. The output module uses straight-thru connectors as standard.

WARNING: AC and DC input signals and power supply voltages can be hazardous. Do Not connect live wires to screw terminal plugs, and do not insert, remove or handle screw terminal plugs with live wires connected.

Auto-sensing AC/DC power supply. For voltages between 85-265 V AC / 95-300 V DC (PS1) or 18-48 V AC / 10-72 V DC (PS2).

Pin Descriptions

Pins 1 to 3 - Input Signal
Pin 1 to 3 Input signal

Pins 8 to 12 - Relay Output Pins

Note: If relays for setpoints $1 \& 2$ are installed on the main board, and a relay output module is used that also has relays in the setpoints $1 \& 2$ positions, the duplicate relays will operate in unison.

Pin 8 SP1 NO.
Pin 9 SP1 NO. Normally Open 4 Amp Form A.
Pin 10 SP2 NO.
Pin 11 SP2 NO. Normally Open 4 Amp Form A.
Pin 12 NO CONNECTION.

Pins 14 and 15 - AC/DC Power Input

Auto-sensing AC/DC power supply. For voltages between 85-265 V AC/95-300 V DC (PS1) or 18-48 V AC/10-72 V DC (PS2).
Pin 14 AC/DC Neutral. Neutral power supply line.
Pin 15 AC/DC line. Live power supply line.

Optional Carrier Board Output Pins

Pins 16 and 17 - Analog Output

Pins 16 and 17 are the analog output pins on the optional output module. Their pin definitions are:
Pin 16 Positive (+) analog output.
Pin 17 Negative (-) analog output.

Pins 18 to 21 - Rear Panel Function Pins

Pins 18 to 21 provide functions that can be implemented with an external switch. Their pin definitions are:
Pin 18 DIM. By connecting the display dim (DIM) pin to the COMMON pin, the display brightness setting is halved.
Pin 19 COMMON. To activate the LOCK or DIM functions from the rear of the meter, the respective pins have to be connected to the COMMON pin. This pin is connected to the internal power supply ground.

Pin Descriptions (continued)

Pin 20 HOLD. By connecting the HOLD pin to the COMMON pin, the displayed reading is frozen, however, A/D conversions continue. When the HOLD pin is disconnected from the COMMON pin, the correct reading is displayed.
Pin 21 LOCK. By connecting the LOCK pin to the COMMON pin, the meter's programmed parameters can be viewed but not changed.

Pins 22 to 29 - Output Module Pins

Relay Modules with 4 Independent 300V (210mA DC only)

Relay Modules with 2 Non-Isolated 4A Form A Relays, and 2 Non-Isolated 9A Form C Relays

Relay Modules with 4 Isolated 5A Form A Relays

MAIN BOARD

MAIN BOARD LOW BOLTAGE

ID01: DC Volts, 2/20/200V/Custom w/24V DC Exc

ID05: DC Volts 2/20/200/Custom V DC with Offset and 24 V Exc.

DC AMPS INPUT MODULE : to be used with $50 \mathrm{mV} / 60 \mathrm{mV} / 100 \mathrm{mV} / 120 \mathrm{mV}$ Shunts

ID02: DC Millivolts, 20/50/100/200mV DC w/24V DC Exc

Input and Output Pins

On most modules Pin 1 is the Signal High input and Pin 3 is the Signal Low input. Typically Pin 2 is used for Excitation Voltage output.

SPAN Potentiometer (Pot)

If provided, the 15 turn SPAN pot is always on the right side (as viewed from the rear of the meter). Typical adjustment is 20% of the input signal range.

SPAN ADJUST Header

This unique five-position header expands the adjustment range of the SPAN pot into five equal 20% steps, across 100% of the input Signal Span. Any input Signal Span can then be precisely scaled down to provide any required Digital Display span from 1999 counts to 001 (one count).

SPAN RANGE Header

When this header is provided it works in conjunction with the SPAN ADJUST Header by splitting its adjustment range into a Hi and a Lo range. This has the effect of dividing the adjustment range of the SPAN pot into ten equal 10% steps across 100% of the input Signal Span.

Add to the basic model number the order code suffix for each standard option required. The last suffix is to indicate how many different special options and or accessories that you may require to be included with this product.

Ordering Example: DL-40PSF-DCA-DR-PS1-ID01-OIC-R1-OA2, the 2 OA's are, ZR and a OP-MTL96X8

-BASIC MODEL NUMBER

DL-4OPSF-DCA $96 \times 48 \mathrm{~mm}$, Leopard, 4 Digit, DC Amps
DL-4OPSF-DCV 96x48mm, Leopard, 4 Digit, DC Volts.
Standard Options for this Model Number
Order Code Suffix Lescription List

DISPLAY

DR. Red LED, 0.56 inch high
DB. . . . Super-bright Red LED, 0.56 inch high.
DG . . . Green LED, 0.56 inch high.
LG. . . . Large Green LED, 0.8 inch high.
LR. . . . Large Red LED, 0.8 inch high

-POWER SUPPLY

PS1 85-265VAC / 95-300VDC
PS2... 18-48VAC / 10-72VDC

- INPUT MODULES (Partial List. See www.texmate.com)

Unless otherwise specified Texmate will ship all modules precalibrated with factory preselected ranges and/or scalings as shown in BOLD type. For DL-4OPSF-DCA
ID02 . . DC mV $\pm 20 \mathrm{mV}$, $\pm 50 \mathrm{mV}$, $\pm 100 \mathrm{mV}$, $\pm 200 \mathrm{mV} \mathrm{w} / 24 \mathrm{~V}$ Exc.
For DL-4OPSF-DCV
ID01 . . DC Volts, 2V/20V/200V w/24V Exc.
ID05 . . DC Volts, 2V/20V/200V w/24V Exc. w/zero offset adjustable pot

-ANALOG OUTPUT

AIC ... Isolated 16 Bit Current Output, 0-20mA and 4-20mA, pls. specify
AIV ... Isolated 16 Bit Voltage Output, 0-10VDC
-RELAY OUTPUT
Note: R1 and R2 are located on the main board, and are generally used when only two Form A Relays or less are required and an Analogy Output is not required.
R1.... Single 4A Form A Relay
R2. . . . Dual 4A Form A Relays

- RELAY OUTPUT MODULES

Note: If a meter is ordered with a Relay Output Module, but without Analog
Output, an Output Module Carrier Board should be automatically added to the order.
OR11 . . One 9 Amp Form C Relay, Isolated .
OR15 .. One 9 Amp Form C and Two 4 Amps Form A Relays
OR16 . . One 9 Amp Form C and One 4 Amp Form A Relays.
OR12 . .Two 9 Amp Form C Relays, Isolated.
OR14 . .Two 9 Amp Form C and Two 4 Amps Form A Relays
OR23 . .Two 9 Amp Form C and One 4 Amp Form A Relay, Isolated
OR31 . .One 4 Amp Form A Relay, Isolated
OR32 . .Two 4 Amp Form A Relays, Isolated
OR33 . . Three 4 Amp Form A Relays, Isolated
OR34 . .Four 4 Amp Form A Relays, Isolated.
Solid State Relay (SSR) Output Modules DC Only
OR54 . . Four 400V DC Solid State Relays (SSR) 210mA

WARRANTY

Texmate warrants that its products are free from defects in material and workmanship under normal use and service for a period of one year from date of shipment. Texmate's obligations under this warranty are limited to replacement or repair, at its option, at its factory, of any of facility, transportation charges pre-paid, and which are, after examination, disclosed to the satisfaction of Texmate to be thus defective. The warranty shall not apply to any equipment which shall have been repaired or altered, except by Texmate, or which shall have been subjected to misuse, negligence, or accident. In no case shall Texmate's liability exceed the original purchase price. The aforementioned provisions do not extend the original warranty period of any product which has been either repaired or replaced by Texmate.

Special Options and Accessories (OA's)

Part Number
 Description

-SPECIAL OPTIONS (Specify Inputs or Outputs \& Req. Reading)
Output Module Carrier Board
*One carrier board must be ordered with any meter that includes any one or more of the following options: Analog Output and/or Relay Output Modules.
SA-DL/OM-CB . . . Output Module Carrier Board, DL series
ZR Range Change from Standard Range shown in BOLD type ZS Custom display scaling within standard ranges

ACCESSORIES

75-DBBZ9648F. . . .Black Bezel for $96 \times 48 \mathrm{~mm}$ Case.

75-DMTCLIPF Side Slide Brackets (2 pc) - extra set, extra strength 75-DTP2X9624.
76-DL40G-N4 .
76-DL40LG-N4 76-DL40LR-N4 76-DL40R-N4
ART-FS-S/D
ART-FS-001
OP-MTLCLIP
OP-MTL96X48
OP-N4X/96X48 OP-PMA/SWBD

Side Slide Brackets (2 pc) - extra set, extra strength
"Touch" Green LED Faceplate, NEMA 4, Factory install "Touch" Large Green LED Faceplate, NEMA 4, Factory install "Touch" Large Red LED Faceplate, NEMA 4, Factory install "Touch" Red LED Faceplate, NEMA 4, Factory install. . "Touch" Red LED Faceplate, NEMA 4, Factory install. NRC for artwork \& set-up Faceplate/Desc. Install Custom Faceplate per meter - 1 color.
Screw Mounting Clips (2 pc) - to screw tighten slide brackets

Prices subject to change without notice.

Many other options and accessories are available. See full price list for more details.
Prices subject to change without notice.

USER'S RESPONSIBILITY

We are pleased to offer suggestions on the use of our various products either by way of printed matter or through direct contact with our sales/application engineering staff. However, since we have no control over the use of our products once they are shipped, NO WARRANTY beyond the repair, replacement, or refund of purchase price at the sole discretion of Texmate Users shall determine the suitability of the proDXct for the intended application before using and the users assume all risk and liability whatsoever in connection therewith, regardless of any of our suggestions or statements as to application or construction. In no event shal Texmate's liability, in law or otherwise, be in excess of the purchase price of the product.
Texmate cannot assume responsibility for any circuitry described. No circuit patent or software licenses are implied. Texmate reserves the right to change circuitry, operating software, specifications, and prices without notice at any time.

7/EXMATE
 Since 1976
 Smart Measuring Smart Control $\overline{\overline{\text { U.s.A.A. }}}$

1934 Kellogg Ave., Carlsbad, CA 92008
Tel: 1-760-598-9899 • 1-800-TEXMATE
Fax: 1-760-598-9828 • Email: orders@texmate.com

DL-40PSF-DCA_DL-40PSF-DCV Technical Manual Copyright © 2019 Texmate Inc. All rights reserved. Published by: Texmate Inc. USA. Information in this Technical Manual is subject to change without notice due to correction or enhancement. The information described in this manual is proprietary to Texmate, Inc. and may not be copied, reproduced or transmitted, in whole or in part, in connection with the design, manufacture, or sale of apparatus, device or private label product without the express written consent of Texmate, Inc.

