RF/Microwave Capacitors

RF/Microwave Multilayer Capacitors (MLC)

700E Series NPO Porcelain High RF Power Multilayer Capacitors

GENERAL DESCRIPTION

KYOCERA AVX, the industry leader, offers new improved ESR/ESL performance for the 700 E Series RF Capacitors. This high Q multilayer capacitor is ultra-stable under high RF current and voltage applications with NPO performance. High density porcelain construction provides a rugged, hermetic package.

KYOCERA AVX offers an encapsulation option for applications requiring extended protection against arc-over and corona.

FUNCTIONAL APPLICATIONS

- Bypass
- · Impedance Matching
- Coupling
- DC Blocking
- Tuning

CIRCUIT APPLICATIONS

- HF/RF Power Amplifiers
- Transmitters
- · Antenna Tuning
- · Plasma Chambers
- Medical (MRI coils)

ENVIRONMENTAL CHARACTERISTICS

Thermal Shock	Mil-STD-202, Method 107, Condition A
Moisture Resistance	Mil-STD-202, Method 106
Low Voltage Humidity	Mil-STD-202, Method 103, condition A, with 1.5 VDC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage applied. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC
Termination Styles	Available in various surface mount and leaded styles. See Mechanical Configurations
Terminal Strength	Terminations for chips and pellets withstand a pull of 10 lbs. min., 25 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.

FEATURES

- Case E Size (.380" x .380")
- Capacitance Range 1pF to 2200pF
- Extended WVDC up to 7200 VDC
- Low ESR/ESL
- · High Q
- · High RF Power
- · Ultra-Stable Performance
- · High RF Current/Voltage
- · Available with Encapsulation Option*
- * For leaded styles only

PACKAGING OPTIONS

Tape & Reel (96 pcs)

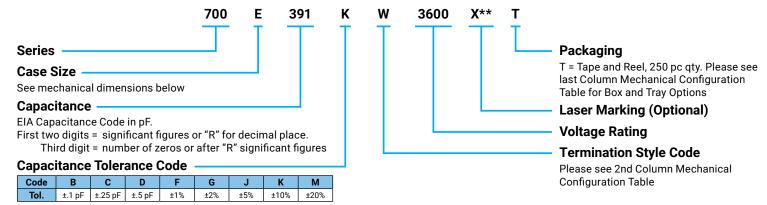
ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	0 ±30 PPM/°C (-55°C to +125°C)
Capacitance Range	1 pF to 2200 pF
Operating Temperature	-55°C to +125°C (No derating of working voltage).
Quality Factor	Greater than 10,000 (1 pF to 1000 pF) @ 1 MHz. Greater than 10,000 (1100 pF to 2200 pF) @ 1 KHz.
Insulation Resistance (IR)	1 pF to 2200 pF 10⁵ Megohms min. @ 25°C at 500 VDC 10⁴ Megohms min. @ 125°C at 500 VDC
Working Voltage (WVDC)	See Capacitance Values table
Dielectric Withstanding Voltage (DWV)	150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds. 120% of WVDC for capacitors rated above 1250 Volts DC for 5 seconds
Aging Effects	None
Piezoelectric Effects	None
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater
Retrace	Less than ±(0.02% or 0.02 pF), whichever is greater.

RF/Microwave Capacitors

RF/Microwave Multilayer Capacitors (MLC)

700E Series NPO Porcelain High RF Power Multilayer Capacitors


CAPACITANCE VALUES

Cap.	Cap.	Tol.	Rat WV		Cap.	Cap.	Tol.	Ra ¹ WV	ted 'DC	Cap.	Cap.	Tol.	Rated	Rated WVDC		ted WVDC CAI		CAP. (pF)	TOL.	RATED	WVDC	
Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	CODE	(pr)	STD.	EXT.				
1R0	1.0				5R1	5.1				390	39			ш	271	270						
1R1	1.1						E	5R6	5.6	5.6		ш	430	43			VOTAGE	301	300			
1R2	1.2			AG	6R2	6.2	D 0		AG	470	47			0,	331	330		3600				
1R3	1.3			ארב	6R8	6.8	B, C, D		17	510	51			>	361	360						
1R4	1.4) <u>(</u>	7R5	7.5			>	560	56			7200	391	390						
1R5	1.5			EXTENDED VOLTAGE	8R2	8.2			EXTENDED VOLTAGE	620	62				431	430						
1R6	1.6			ENI	9R1	9.1			EN	680	68			<u> </u>	471	470						
1R7	1.7			X	100	10			K	750	75			N	511	510						
1R8	1.8			E	110	11			Ш	820	82			EXTENDED	561	560		2500				
1R9	1.9	ВС			120	12			910	91	F, G,			621	620	F, G,						
2R0	2.0	B, C, D	3600	7200	130	13	3600	7200	101	100	J, K,	3600		681	680	J, K,	N/A					
2R1	2.1			7200	150	15			7200	111	110	М		EXT.	751	750	М					
2R2	2.2				160	16				121	120			ũ	821	820						
2R4	2.4			GE	180	18	F, G, J, K,		GE	131	130			5000	911	910						
2R7	2.7			.TA	200	20), K, M		ΙŽ	151	150				102	1000						
3R0	3.0			10/	220	22			707	161	160			VOLT	112	1100						
3R3	3.3			a:	240	24			Ö	181	180			2	122	1200		1000				
3R6	3.6			NDF	270	27			Ž	201	200				152	1500						
3R9	3.9			EXTENDED VOLTAGE	300	30			EXTENDED VOLTAGE	221	220			N/A	182	1800						
4R3	4.3			EX	330	33			Ä	241	240			IN/A	222	2200						
4R7	4.7				360	36																

VRMS = 0.707 X WVDC

OPTIONS. • DIFFERENT WORKING VOLTAGES ARE AVAILABLE • ENCAPSULATION OPTION AVAILABLE. PLEASE CONSULT FACTORY.

HOW TO ORDER

The above part number refers to a 700 E Series (case size E) 390 pF capacitor, K tolerance (±10%), 3600 WVDC, with W termination (Tin /Lead, Solder Plated over Nickel Barrier), laser marking and Tape and Reel Packaging.

[•] SPECIAL VALUES, TOLERANCES, MATCHING, AND CAPACITOR ASSEMBLIES ARE AVAILABLE. • KYOCERA AVX'S CUSTOM POWER CAPACITOR ASSEMBLY CATALOG, LISTS

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 700E Series NPO Porcelain High RF Power Multilayer Capacitors

MECHANICAL CONFIGURATION

Series	& Case Size W/T		Outline W/T is a Termination		Dimensions thes (mm)			ead and Termination nensions and Material	Dian Tama	Pkg
Size	Code	& Type	Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Pkg Type	Code
700E	w	E Solder Plate	$\begin{array}{c c} Y \rightarrow & \longleftarrow & \longleftarrow & \longleftarrow \\ \hline & W & & \longrightarrow \\ \rightarrow & \vdash & \longleftarrow & \uparrow & \rightarrow \\ \end{array}$.380+.015010 (9.65+0.38-0.25)				Tin/Lead, Solder Plated over Nickel Barrier Termination	T&R, 250 pcs Tray, 24 or 96 pcs	T J24 J96
700E	Р	E Pellet	Y→ ←	.380+.040010 (9.65+1.02-0.25)	.380 ±.010 (9.65 ±0.25)	170 (4.32) max.	.040 (1.02) max.	Heavy Tin/Lead Coated, over Nickel Barrier Termination	T&R, 250 pcs Tray, 24 or 96 pcs	T J24 J96
700E	Т	E Solderable Nickel Barrier	Y→ ←	.380+.015010 (9.65+0.38-0.25)				RoHS Compliant Tin Plated over Nickel Barrier Termination	T&R, 250 pcs Tray, 24 or 96 pcs	T J24 J96
700E	MS	E Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.380+.035010 (9.65+0.89-0.25)				$High \ Purity \\ Silver \ Leads \\ L_{\tiny L} = .750 \ (19.05) \ min \\ W_{\tiny L} = .350 \pm .010 \ (8.89 \pm 0.25) \\ T_{\tiny L} = .010 \pm .005 \ (0.25 \pm 0.13) \\ Leads \ are \ Attached \ with \\ High \ Temperature \ Solder.$	Tray, 16 or 32 pcs	J16 J32
700E	AR	E Axial Ribbon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						Tray, 16 or 32 pcs	J16 J32
700E	AW	E Axial Wire	→ LT ← W •					Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 2.25 (57.2) min.	Box, 20 pcs	B20
700E	RW	E Radial Wire	→ LT ← W T→ ←					Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 1.0 (25.4) min.	Tray, 16 or 64 pcs	J16 J64

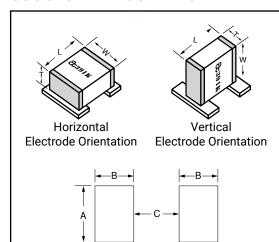
Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 700E Series NPO Porcelain High RF Power Multilayer Capacitors

MECHANICAL CONFIGURATION

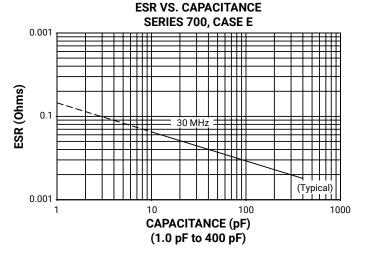
Series Term. Case Size		Case Size	Outline W/T is a Termination	Body Dimensions inches (mm)				ead and Termination nensions and Material	Disa Tura	Pkg
Size	Code	& Type	Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Pkg Type	Code
700E	WN	E Non-Mag Solder Plate	$\begin{array}{c c} & \downarrow \\ & \underline{\qquad} \\ & \underline{\qquad} \\ & \downarrow \\ & \underline{\qquad} \\ & \downarrow \\ & \underline{\qquad} \\ & \underline{\qquad} \\ & \downarrow \\ & \underline{\qquad} \\$.380+.015010 (9.65+0.38-0.25)				Tin/Lead, Solder Plated over Non-Magnetic Barrier Termination	T&R, 250 pcs Tray, 24 or 96 pcs	T J24 J96
700E	PN	E Non-Mag Pellet	$\begin{array}{c c} & \downarrow \\ & \downarrow \\ & w \\ & \downarrow \\ $.380+.040010 (9.65+1.02-0.25)	.380 ±.010 (9.65 ±0.25)		.040 (1.02) max.	Heavy Tin/Lead Coated, over Non-Magnetic Barrier Termination	T&R, 250 pcs Tray, 24 or 96 pcs	T J24 J96
700E	TN	E Non-Mag Solderable Barrier	$\begin{array}{c c} & \downarrow \\ & \underline{\qquad} \\ & \underline{\qquad} \\ & \downarrow \\ & \underline{\qquad} \\ & \downarrow \\ & \underline{\qquad} \\ & \downarrow \\ & \underline{\qquad} \\ & \underline{\qquad} \\ & \downarrow \\ & \underline{\qquad} \\ &$.380+.015010 (9.65+0.38-0.25)				RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	T&R, 250 pcs Tray, 24 or 96 pcs	T J24 J96
700E	MN	E Non-Mag Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.170 (4.32) max.		High Purity Silver Leads L _L = .750 (19.05) min W ₁ = .350 ±.010 (8.89 ±0.25)	Tray, 16 or 32 pcs	J16 J32
700E	AN	E Non-Mag Axial Ribbon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.380+.035010			N/A	T _L = .010 ±.005 (0.25 ±0.13) Leads are Attached with High Temperature Solder.	Tray, 16 or 32 pcs	J16 J32
700E	BN	E Non-Mag Axial Wire	→ L	(9.65+0.89-0.25)			N/A	Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 2.25 (57.2) min.	Box, 20 pcs	B20
700E	RN	E Non-Mag Radial Wire	→ L ← → W ←					Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 1.0 (25.4) min.	Tray, 16 or 64 pcs	J16 J64

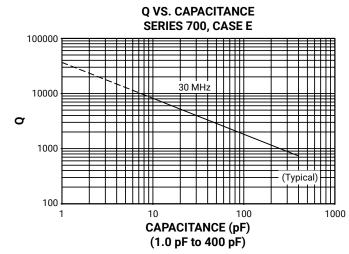
Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

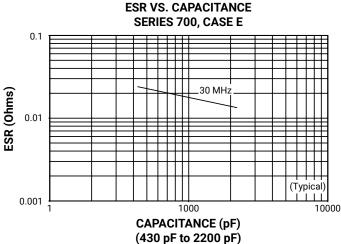

RF/Microwave Capacitors

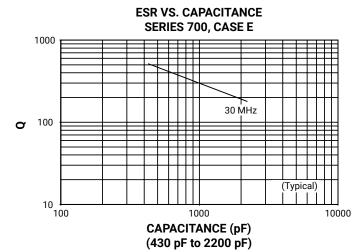
RF/Microwave Multilayer Capacitors (MLC)

700E Series NPO Porcelain High RF Power Multilayer Capacitors

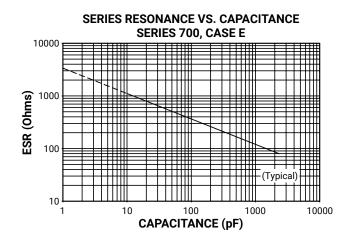

SUGGESTED MOUNTING PAD DIMENSIONS

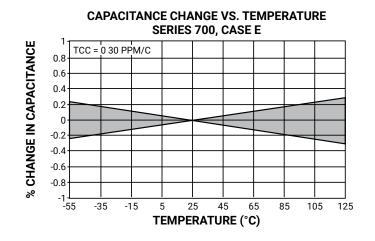



Mount Type	Case E									
Mount Type	Pad Size	A Min.	B Min.	C Min.	D Min.					
Vertical Mount	Normal	.185	.050	.325	.425					
vertical Mount	High Density	.165	.030	.325	.385					
Horizontal Mount	Normal	.405	.050	.325	.425					
HOITZOIILAI MOUIIL	High Density	.383	.030	.325	.385					

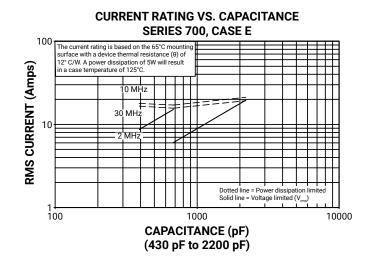

Dimensions are in inches.

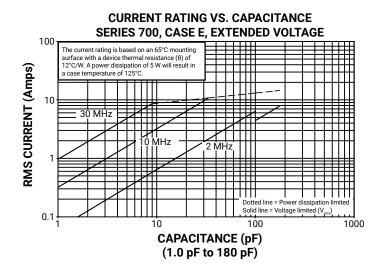
PERFORMANCE DATA




KYDEER3 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 700E Series NPO Porcelain High RF Power Multilayer Capacitors




PERFORMANCE DATA

CURRENT RATING VS. CAPACITANCE SERIES 700, CASE E 100 The current rating is based on an 65°C mounting surface with a device thermal resistance (θ) of 12°C/W. A power dissipation of 5 W will result in a case temperature of 125°C. RMS CURRENT (Amps) 2 MHz 10 MHz Dotted line = Power dissipation limited Solid line = Voltage limited (V **CAPACITANCE (pF)** (1.0 pF to 400 pF)

