

25 W, 20 MHz - 6.0 GHz, GaN MMIC, Power Amplifier

Description

Wolfspeed's CMPA0060025D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC enables very wide bandwidths.

PN: CMPA0060025D

Typical Performance Over 1.0-6.0 GHz ($T_c = 25^{\circ}$ C)

Parameter	1.0 GHz	2.0 GHz	3.0 GHz	4.0 GHz	5.0 GHz	6.0 GHz	Units
Gain	18.0	18.0	18.5	18.0	17.0	17.0	dB
Output Power @ P _{IN} 32 dBm	34	38	42	29	30	31	W
Associated Gain @ P _{IN} 32 dBm	13.3	13.9	14.2	12.6	13.1	12.9	dB
PAE @ P _{IN} 32 dBm	54	45	46	33	34	33	%

Note: $V_{DD} = 50 \text{ V}$, $I_{D} = 500 \text{ mA}$

Features

- 18 dB Small Signal Gain
- 30 W Typical P_{SAT}
- Operation up to 50 V
- High Breakdown Voltage
- High Temperature Operation
- Size 0.157 x 0.094 x 0.004 inches

Applications

- Ultra Broadband Amplifiers
- Test Instrumentation
- EMC Amplifier Drivers

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	84	V	
Gate-source Voltage	V _{GS}	-10, +2	V_{DC}	
Storage Temperature	T _{STG}	-65, +150	- °C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	I _{GMAX}	12	mA	
Thermal Resistance, Junction to Case (packaged) ¹		2.32	06/11	85°C
Thermal Resistance (die only) ¹	R _{θJC}	1.40	- °C/W	
Input Power ²	P _{IN}	36	dBm	

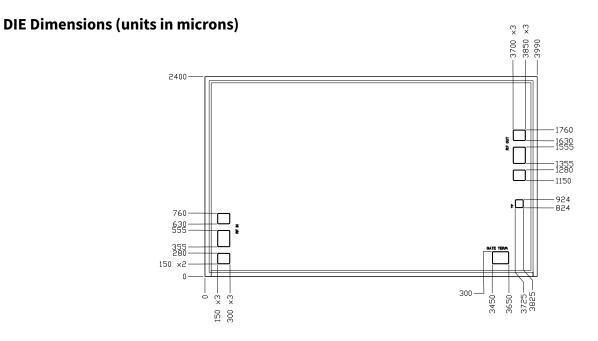
Notes:

Electrical Characteristics (Frequency = 20 MHz to 6.0 GHz unless otherwise stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics					•		
Gate Threshold Voltage ¹	$V_{GS(th)}$	-3.8	-3.0	-2.3	V	$V_{DS} = 20 \text{ V}, \Delta I_D = 6 \text{ mA}$	
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	_	V _{DC}	V _{DD} = 50 V, I _{DQ} = 500 mA	
Saturated Drain Current ²	I _{DS}	_	12	_	А	V _{DS} = 12.0 V, V _{GS} = 2.0 V	
RF Characteristics ^{3,4}							
Small Signal Gain	S21	-	18	_			
Input Return Loss	S11	_	9	_	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}$	
Output Return Loss	S22	_	7	_]		
Power Output at 4.0 GHz		17	29	_			
Power Output at 5.0 GHz	Роит	22	30	_	w		
Power Output at 6.0 GHz		23	31	_]		
Power Added Efficiency at 4.0 GHz		18	33	_		$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 32 \text{ dBm}$	
Power Added Efficiency at 5.0 GHz	PAE	23	34	_	%		
Power Added Efficiency at 6.0 GHz	1	22	33	_			
Power Gain	G₽	_	13	_	dB	-	
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, $V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 32 \text{ dBm}$	

Notes:

¹ Eutectic die attach using 80/20 AuSn solder mounted to a 10 mil thick CuMo carrier


 $^{^{\}rm 2}$ Limit for internal resistor only. Thermal dissipation may be exceeded at this level

¹ The device will draw approximately 55-70 mA at pinch off due to the internal circuit structure

² Scaled from PCM data

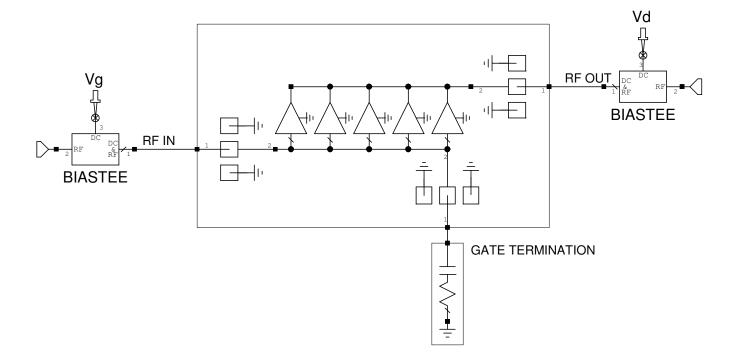
 $^{^{\}scriptscriptstyle 3}$ All data pulsed with Pulse Width at 10 μ s, 1% Duty Cycle

⁴ Data measured into a 15 dB output load with a maximum return loss

Overall die size $3990 \times 2400 \ (+0/-50)$ microns, die thickness $100 \ (+/-10)$ micron. All Gate and Drain pads must be wire bonded for electrical connection.

Pad Number	Function	Description	Pad Size (in)
1	RF IN ¹	RF-Input pad. Matched to 50 ohm. Requires gate control from an external bias –T from -2.3 V to -3.8 V.	150 x 200
2	Gate Termination	Off Chip termination for the Gate. It needs to be DC-blocked	200 x 150
3	Test Pad	Pad specific for probe	100 x 100
4	RF OUT ¹	RF-Output pad. Matched to 50 ohm. Requires Drain supply from an external bias –T up to 50 V, 2.0 A	150 x 200

Note:


Die Assembly Notes

- Recommended solder is AuSn (80/20) solder. Refer to Wolfspeed's website for the Eutectic Die Bond Procedure application note at www.wolfspeed.com/rf/document-library
- Vacuum collet is the preferred method of pick-up
- The backside of the die is the Source (ground) contact
- Die back side gold plating is 5 microns thick minimum
- Thermosonic ball or wedge bonding are the preferred connection methods
- Gold wire must be used for connections
- Test pad must be bonded to Ground
- Use the die label (XX-YY) for correct orientation

¹ The RF In and Out pads have a ground-signal-ground configuration with a pitch of 75 microns.

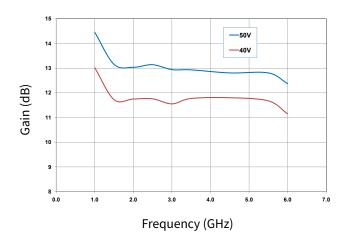
Functional Block Diagram

This device employs a wideband amplifier topology. It has an internal termination for the Gate, which works well over 1.0-6.0 GHz. For operation below 1.0 GHz an external termination is required. This termination needs to be DC-blocked and suitable to withstand up to 2 W of RF power. (Refer to the reference design section for the LF-termination in this data sheet for more details). The circuits also require external wideband Bias –T's to supply voltage to the Gate and Drain. The Bias-T at the Drain needs to be designed to handle 50 V and up to 2.0 A.

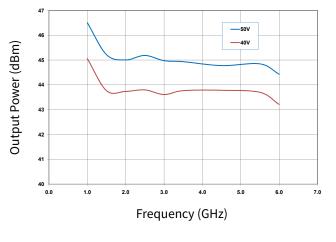
External Termination Reference Design

The following is a plot of the gain of the die with and without an RC reference circuit.

Notes:


RC Reference Circuit

The reference circuit is a series capacitor and resistor as shown below. The resistor needs to handle 2.0 W.


¹ An off chip termination is needed to reduce the high gain peak at low frequencies

² The off chip termination should be designed to minimize the impact on the MMIC's performance at higher frequencies

Typical Performance

Figure 1. Power Gain vs Frequency $P_{IN} = 32 \text{ dBm}$

Figure 2. Power Output vs Frequency $P_{IN} = 32 \text{ dBm}$

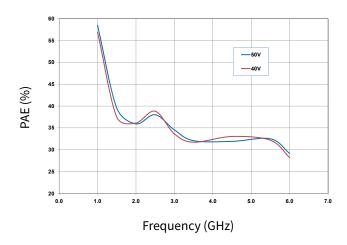
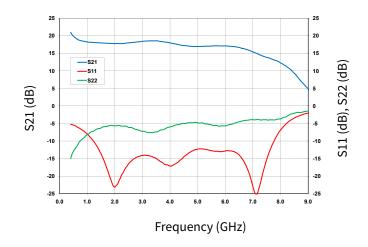



Figure 3. Power Added Efficiency vs Frequency $P_{IN} = 32 \text{ dBm}$

Figure 4. Gain and Return Losses vs Frequency $V_{DD} = 50 \text{ V}, I_{DO} = 500 \text{ mA}$

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA0060025D	GaN MMIC Power Amplifier Bare Die	Each	

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

©2009-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.