
Qwiic Ambient Light Sensor (VEML6030) Hookup Guide

Introduction
The SparkFun Ambient Light Sensor (VEML6030) is an I²C enabled ambient light sensor with high
sensitivity and high accuracy. It reads ambient light in Lux and boasts a number of nice features
including: the ability to set high and low thresholds for an optional interrupt, power saving features that
enable single digit micro-amp current draw, and a readable range from zero to 120,000 Lux. We've also
written an Arduino library that gives full access to all features and includes example code
demonstrating all its' abilities. Follow along and let's learn about all its features and how to use them!

SparkFun Ambient Light Sensor - VEML6030 (Qwiic)
 SEN-15436

Product Showcase: SparkFun Qwiic Ambient Light Sensor

Page 1 of 19

Wishlist for the Qwiic Ambient Light Sensor SparkFun Wish List

Required Materials

To follow along with the example code used in this tutorial, you will also need the following materials.
You may not need everything though depending on what you have. Add it to your cart, read through the
guide, and adjust the cart as necessary.

SparkFun Ambient Light Sensor - VEML6030 (Qwiic)
SEN-15436

SparkFun RedBoard Qwiic
DEV-15123

USB micro-B Cable - 6 Foot
CAB-10215

USB 2.0 type A to micro USB 5-pin. This is a new, smaller connector for USB devices. Micro USB con…

Qwiic Cable - 50mm
PRT-14426

If you need different size Qwiic cables we offer a kit that contains many sizes but we also carry them
individually as well:

SparkFun Qwiic Cable Kit
 KIT-15081

Qwiic Cable - 100mm
 PRT-14427

Page 2 of 19

Suggested Reading

If you aren't familiar with the Qwiic system, we recommend reading here for an overview.

We would also recommend taking a look at the following tutorials if you aren't familiar with them.

Qwiic Cable - 500mm
 PRT-14429

Qwiic Cable - Breadboard Jumper (4-pin)
 PRT-14425

I2C
An introduction to I2C, one of the main embedded
communications protocols in use today.

How to Work with Jumper Pads and PCB
Traces
Handling PCB jumper pads and traces is an
essential skill. Learn how to cut a PCB trace, add
a solder jumper between pads to reroute
connections, and repair a trace with the green
wire method if a trace is damaged.

Page 3 of 19

Hardware Overview

Power

You can provide 3.3V through the Qwiic connector on the board or through the 3V3 labeled pin on the
through hole header. When you correctly power the board, the on-board red power LED will turn on.

LED

There is one red LED on the product that will turn on when power is supplied to the board. You can
disconnect this LED by cutting the jumper on the underside of the product labeled LED , see Jumpers
below.

RedBoard Qwiic Hookup Guide
This tutorial covers the basic functionality of the
RedBoard Qwiic. This tutorial also covers how to
get started blinking an LED and using the Qwiic
system.

Page 4 of 19

Qwiic Connector or I C Pins

There are two Qwiic connectors on the board to easily connect to the sensor via I C. Another option is
to solder directly to the I C plated through holes on the side of the board. We have many Qwiic sensors
and Qwiic enabled micro-controllers. Check out our Qwiic Ecosystem page to get a glimpse of what
else we have to offer.

Interrupt Pin

A nice feature on the SparkFun Ambient Light sensor is its ability to set both LOW and HIGH thresholds
that triggers an interrupt on the product. For example, we can know when the light in a room falls below
a certain amount and conversely when the light comes back on! You don't have to settle for just the
hardware interrupt though. We also have a software solution, check out the interrupt example code
below.

2

2

2

Page 5 of 19

Jumpers

There are three jumpers on the underside of this board. Starting in the lower left is a triple jumper
labeled I2C that connects pull-up resistors to the I²C data lines. If you're daisy chaining many I²C
devices together than you may need to consider cutting these traces.

To the right of that is the address jumper labeled ADR that allows you to select the SparkFun Ambient
Light Sensor's other I²C address: 0x10. By default your SparkFun Ambient Light Sensor is shipped with
the I²C address 0x48.

Page 6 of 19

Finally the jumper in the upper right is the LED jumper which can be cut to disconnect the on board
power LED.

Gain and Integration Time Settings

What does gain and integration time mean? You can think of gain as an electronic mechanism to
amplify a weak signal. If you're in a dark room with very little light, the sensor needs a way to capitalize
on that weak light source for its' lux calculations and so we need higher gain. Likewise, Integration
time is the amount of time the sensitive photo diodes within the sensor absorb light before storing the
Lux value. So another setting necessary for a dark room. On the flip side lower settings are required for
outdoors where it's bright!

The SparkFun Ambient Light Sensor can detect ranges of light in Lux from zero to 120,796! That's a
gigantic range from dark to direct sun in the middle of the day. To accomplish this you have to set the
Gain and Integration Time settings. This is trivial with the Arduino Library we've written and we'll walk

Page 7 of 19

you through it below in Example1 Ambient Light Basics. With each setting gives you a range of light
that you can read. Check out the table below to see what's capable at each possible setting. Notice that
slower integration and higher gain gives you a smallest range of (0->236) but the highest resolution
(0.0036 lux/bit).

The datasheet recommends that you use a setting of 1/4 (.25) or 1/8 (.125) unless the Ambient
Light Sensor is going to sit behind dark glass. This will help to prevent over saturation of the
photodiodes within the sensor.

Maximum Light Detection Range: Lux

Integration Time (milliseconds) GAIN 2 GAIN 1 GAIN 1/4 GAIN 1/8

800 236 472 1887 3775

400 472 944 3775 7550

200 944 1887 7550 15099

100 1887 3775 15099 30199

50 3775 7550 30199 60398

25 7550 15099 60398 120796

Resolution: Lux/Bit

Integration Time (milliseconds) GAIN 2 GAIN 1 GAIN 1/4 GAIN 1/8

800 0.0036 0.0072 0.0288 0.0576

400 0.0072 0.0144 0.0576 0.1152

200 0.0144 0.0288 0.1152 0.2304

100 0.0288 0.0576 0.2304 0.4608

50 0.0576 0.1152 0.4608 0.9216

25 0.1152 0.2304 0.9216 1.8432

Power Save Modes

Another cool feature of the SparkFun Ambient Light Sensor is its ability to run at extremely low
currents. Power save modes should be used when you're continuously reading ambient light data. For
example, if you're going to gather ambient light data every second, why not use a power save mode

Page 8 of 19

and save battery life? There are four power save modes that can be enabled with integration times of
100ms and above. Below is a table showing the power save mode, the current draw, and it's refresh
rate. Check out Example 4 in the Arduino Library to see how to set it up and use the table below as a
reference.

Note the Refresh Time is the time needed for a new reading to be ready. Make sure there is a
delay in your code of at least this length between readings to ensure you're getting new data.

Integration
Time

Power Save
Mode

Refresh Time
(milliseconds)

Current Draw
(microamperes)

Resolution
(lx/bit)

100 1 600 8 0.0288

100 2 1100 5 0.0288

100 3 2100 3 0.0288

100 4 4100 2 0.0288

200 1 700 13 0.0144

200 2 1200 8 0.0144

200 3 2200 5 0.0144

200 4 4200 3 0.0144

400 1 900 20 0.0072

400 2 1400 13 0.0072

400 3 2400 8 0.0072

400 4 4400 5 0.0072

800 1 1300 28 0.0036

800 2 1800 20 0.0036

800 3 2800 13 0.0036

800 4 4800 8 0.0036

Rounding Errors?!

Page 9 of 19

Later on when you read back an interrupt threshold, you may notice that the interrupt lux values are off
by one in some cases. This is because of the inherent rounding error with the Ambient Light Sensor.
The final Lux value is calculated by multiplying the value of the bits that represent the ambient light by a
decimal number (0.2304 for example). This decimal number is rounded to a whole number (e.g. 19.97
becomes 19) because the sensor does not care about fractions of a Lux. I chose to read back the
rounded number because that's the interpreted value of the ambient light sensor and what is stored in
its' registers.

Hardware Hookup
This will be an easy one thanks to the Qwiic connectors. Take one end of a Qwiic cable and plug it into
your RedBoard Qwiic Board and then take the other end and plug it into the SparkFun Ambient Light
Sensor.

Arduino Library

Note: This example below assumes you are using the latest version of the Arduino IDE on your
desktop. If this is your first time using Arduino, please review our tutorial on installing the Arduino
IDE. If you have not previously installed an Arduino library, please check out our installation guide.

If you've never connected an CH340 device to your computer before, you may need to install
drivers for the USB-to-serial converter. Check out our section on How to Install CH340 Drivers for
help with the installation

We've written a library to make it even easier to get started with the SparkFun Ambient Light Sensor.
The library will give you the full functionality of the sensor and provides example code to get the most
our of your project. You can obtain these libraries through the Arduino Library Manager by searching
SparkFun Ambient Light Sensor. The second option is to download the ZIP file below from its GitHub
repository to manually install.

SPARKFUN AMBIENT LIGHT SENSOR ARDUINO LIBRARY (ZIP)

Example 1: Ambient Light Basics

Page 10 of 19

In this first example, we'll get you comfortable with gathering ambient light and setting two vital
properties of the sensor's ability to read light: the gain and the integration time. These two properties
determine the resolution (accuracy) of the reading and the available ranges of light that you can read!
For example, a gain of 1/8 and 800ms integration time cannot read anything above 3775 Lux. This
means you'll max out your sensor outdoors but would be a proper setting for dim rooms due to it's
higher resolution.

At the top of the example we have three variables gain, time, and luxval. The first two hold the value for
the gain and integration time settings mentioned above. Gain settings can be: 2 , 1 , 1/4 , and 1/8 ;
typically 1/4 gain will capture everything you need with good resolution. Possible integration times can
be 800 , 400 , 200 , 100 , 50 , 25 and by default the sensor is set to 100 ; times are in milliseconds.
Check the Gain and Integration Time table above under Hardware Overview to see maximum
illumination capabilities and resolution for every setting.

If you have any doubt with which settings to pick, just keep the example code's default settings: a gain
of 1/4 (0.125) and an integration time of 100ms. This will give you a range of up to 15,000 Lux with a
decent resolution!

#include <Wire.h>
#include "SparkFun_VEML6030_Ambient_Light_Sensor.h"

#define AL_ADDR 0x48

SparkFun_Ambient_Light light(AL_ADDR);

// Possible values: .125(1/8), .25(1/4), 1, 2
// Both .125 and .25 should be used in most cases except darker rooms.
// A gain of 2 should only be used if the sensor will be covered by a dark
// glass.
float gain = .125;

// Possible integration times in milliseconds: 800, 400, 200, 100, 50, 25
// Higher times give higher resolutions and should be used in darker light.
int time = 100
long luxVal = 0;

In the setup, we call light.begin() to check if we can communicate with the SparkFun Ambient Light
Sensor. Next, we call the light.setGain() and light.setIntegTime() functions giving them the
variables holding the gain and time values above. Next we'll read back those values to make sure that
they were set correctly. That's it! We're now set to read some light!

Page 11 of 19

void setup(){

 Wire.begin();
 Serial.begin(115200);

if(light.begin())
 Serial.println("Ready to sense some light!");

else
 Serial.println("Could not communicate with the sensor!");

// Again the gain and integration times determine the resolution of the lux
// value, and give different ranges of possible light readings. Check out
// hoookup guide for more info.

 light.setGain(gain);
 light.setIntegTime(time);

 Serial.println("Reading settings...");
 Serial.print("Gain: ");

float gainVal = light.readGain();
 Serial.print(gainVal, 3);
 Serial.print(" Integration Time: ");

int timeVal = light.readIntegTime();
 Serial.println(timeVal);

}

One thing to keep in mind is that you need to set a delay() in between readings. The Integration
Time is the amount of time that the sensor uses to fill its' sensitive components with light. If you set an
integration time of 100ms then make sure you're delay is at least that long. A longer integration time will
need a longer delay.

void loop(){

 luxVal = light.readLight();
 Serial.print("Ambient Light Reading: ");
 Serial.print(luxVal);
 Serial.println(" Lux");

delay(1000);

}

Example 2 and 3: Ambient Light Interrupt
The SparkFun Ambient Light Sensor can issue an interrupt whenever the ambient light readings cross
high or low thresholds. In this example, we'll talk about setting those thresholds and reading when
those thresholds have been crossed in two different ways:

Page 12 of 19

• the on-board hardware interrupt pin labeled INT
• through software monitoring

The code for both Example 2 and 3 only differ in the main loop() and these differences are
highlighted under Example 2 - Hardware Interrupt and Example 3 - Software Interrupt sections
below.

Again as in example one, at the top we see the gain , time and luxVal variables. The gain and
integration times are vital for setting the tolerance for light and resolution of your sensor - see the
Gain and Integration Time table under Hardware Overview above. The luxVal variable holds the
ambient light readings further down in the code. Just below we see the interrupt settings lowThresh ,
highThresh and numbValues . The first two set the low and high threshold variables that will trigger the

interrupt when the ambient light crosses the given values. The last variable is the number of times a
value must cross a threshold to trigger an interrupt. I have the variables set to 20 Lux for the lower end,
400 Lux for the upper end, and that an interrupt must be issued after the ambient light crosses one of
these thresholds once.

#include <Wire.h>
#include "SparkFun_VEML6030_Ambient_Light_Sensor.h"

// Close the address jumper on the product for addres 0x10.
#define AL_ADDR 0x48

SparkFun_Ambient_Light light(AL_ADDR);

// Possible values: .125, .25, 1, 2
// Both .125 and .25 should be used in most cases except darker rooms.
// A gain of 2 should only be used if the sensor will be covered by a dark
// glass.
float gain = .125;

// Possible integration times in milliseconds: 800, 400, 200, 100, 50, 25
// Higher times give higher resolutions and should be used in darker light.
int time = 100;
long luxVal = 0;

// Interrupt settings.
long lowThresh = 20;
long highThresh = 400;
int numbValues = 1;

// Interrupt pin
int intPin = 3;
// OR if not using interrupt pin:
int interrupt;

Page 13 of 19

Again, as in the first example, we start communication with the sensor with light.begin() , set the
gain (light.setGain()) and integration time settings (light.setIntegTime()), and read them back by
printing them out to the serial monitor with the respective read functions. But just below we see where
we set the two thresholds. First the low threshold with light.setIntLowThresh() and then the high
threshold with light.setIntHighThresh() , giving these functions the values we set in the variables
above. We then read those settings back to make sure that they're set correctly.

Now we set how many values will need to cross the threshold with the light.setProtect() function
call and read it back. This setting is optional and defaults to one. Finally, we enable the interrupt with
light.enableInt() . While the sensor knows our thresholds it does not quite know we want the

interrupt to be enabled until we tell it to.

Page 14 of 19

void setup(){

 Wire.begin();
 Serial.begin(115200);

pinMode(intPin, INPUT);

if(light.begin())
 Serial.println("Ready to sense some light!");

else
 Serial.println("Could not communicate with the sensor!");

// Again the gain and integration times determine the resolution of the lux
// value, and give different ranges of possible light readings. Check out
// hoookup guide for more info. The gain/integration time also affects
// interrupt threshold settings so ALWAYS set gain and time first.

 light.setGain(gain);
 light.setIntegTime(time);

 Serial.println("Reading settings...");
 Serial.print("Gain: ");

float gainVal = light.readGain();
 Serial.print(gainVal, 3);
 Serial.print(" Integration Time: ");

int timeVal = light.readIntegTime();
 Serial.println(timeVal);

// Set both low and high thresholds, they take values in lux.
 light.setIntLowThresh(lowThresh);
 light.setIntHighThresh(highThresh);

// Let's check that they were set correctly.
// There are some rounding issues inherently in the IC's design so your lux
// may be one off.

 Serial.print("Low Threshold: ");
long lowVal = light.readLowThresh();

 Serial.print(lowVal);
 Serial.print(" High Threshold: ");

long highVal = light.readHighThresh();
 Serial.println(highVal);

// This setting modifies the number of times a value has to fall below or
// above the threshold before the interrupt fires! Values include 1, 2, 4 and
// 8.

 light.setProtect(numbValues);
 Serial.print("Number of values that must fall below/above threshold before interrup
t occurrs: ");

int protectVal = light.readProtect();
 Serial.println(protectVal);

Page 15 of 19

// Now we enable the interrupt, now that he thresholds are set.
 light.enableInt();
 Serial.print("Is interrupt enabled: ");

int enabInt = light.readIntSetting();
if(enabInt == 1)

 Serial.println("Yes");
else

 Serial.println("No");

 Serial.println("");

// Give some time to read our settings on startup.
delay(3000);

}

Example 2: Hardware Interrupt

Now let's read some light! Since we're just using a hardware interrupt we have a pin attached to PIN 3 .
When the ambient light reading passes either threshold the pin will go LOW. When an interrupt fires we
check to see which threshold was crossed and print it out in the serial monitor.

language:c
void loop(){

 luxVal = light.readLight();
 Serial.print("Ambient Light Reading: ");
 Serial.print(luxVal);
 Serial.println(" Lux");

 if (digitalRead(intPin) == LOW){
 int intVal = light.readInterrupt();
 if (intVal == 1)
 Serial.println("High threshold crossed!");
 else if (intVal == 2){
 Serial.println("Low threshold crossed!");
 }
 }

 delay(200);

Example 3: Software Interrupt

If you're committed to keeping this Qwiic then we can look for an interrupt by monitoring the Ambient
Light Sensor directly rather than through a digital pin. In the code we'll use the light.readInterrupt()
function call directly to see if there's been an interrupt issued. That's it!

Page 16 of 19

void loop(){

 luxVal = light.readLight();
 Serial.print("Ambient Light Reading: ");
 Serial.print(luxVal);
 Serial.println(" Lux");

 interrupt = light.readInterrupt();
if (interrupt == 1)

 Serial.println("High threshold crossed!");
else if (interrupt == 2){

 Serial.println("Low threshold crossed!");

delay(200);

}

Rounding discrepancy?! You may notice that the interrupt lux values are off by one in some
cases. This is because of the inherent rounding error with the Ambient Light Sensor. The final Lux
value is calculated by multiplying the value of the bits that represent the ambient light by a decimal
number (0.2304 for example). This decimal number is rounded to a whole number (e.g. 19.97
becomes 19) because the Sensor does not care about fractions of a Lux. I chose to read back the
rounded number because that's the interpreted value of the ambient light sensor.

Example 4 - Power Save Mode
I won't break down this example code because you have all the necessary tools to get you started with
the Ambient Light Sensor. However, if you plan on continuously reading ambient light data then give
this sketch a try. It'll show you how to put the board into power save mode, which will save you battery
life while still getting ambient light data. Check the Power Save Mode section under Hardware
Overview as a reference when looking at the sketch.

Resources and Going Further
For more on the AS3935, check out the links below:

• Schematic (PDF)
• Eagle Files (ZIP)
• Datasheet (PDF)
• GitHub

◦ SparkFun Ambient Light Sensor Arduino LIbrary
◦ Product Repo - Design files and more datasheets!

• SFE Product Showcase

Need some other weather sensing parts for your project? Check out some of the ones listed below.

Page 17 of 19

Need some inspiration for your next project? Check out some of these related tutorials to sense your
environment!

Weather Meters
 SEN-08942

SparkFun Environmental Combo Breakout -
CCS811/BME280 (Qwiic)
 SEN-14348

SparkFun Pressure Sensor Breakout -
MS5803-14BA
 SEN-12909

SparkFun Weather Shield
 DEV-13956

Hazardous Gas Monitor
Build a portable gas monitor to check for
dangerous levels of hazardous gases.

Environmental Monitoring with the Tessel 2
Build an air-conditioner monitoring device to
collect environment information and store it in the
cloud.

Page 18 of 19

RHT03 (DHT22) Humidity and Temperature
Sensor Hookup Guide
Measure relative humidity and temperature or
your environment with the RHT03 (a.k.a DHT22)
low cost sensor on a single wire digital interface
connected to an Arduino!

Qwiic Kit for Raspberry Pi Hookup Guide
Get started with the CCS811, BME280,
VCNL4040, and microOLED via I2C using the
Qwiic system and Python on a Raspberry Pi!
Take sensor readings from the enviroment and
display them on the microOLED, serial terminal,
or the cloud with Cayenne!

Page 19 of 19

7/22/2019https://learn.sparkfun.com/tutorials/qwiic-ambient-light-sensor-veml6030-hookup-guide/all

