

Figure 1.1. PCB Mount without Heat Sink

Figure 1.2. PCB Mount with Heat Sink

Figure 1.3. Terminal Block Mount without Heat Sink

Figure 1.4. Terminal Block with Heat Sink

Figure 1.5. Terminal Block DIN-Rail without Heat Sink

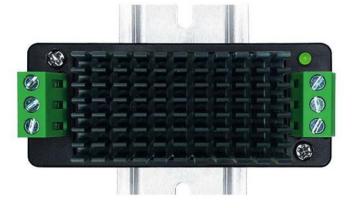


Figure 1.6. Terminal Block DIN-Rail with Heat Sink

FEATURES

Wide Input Range: 18V ~ 36V

Output Voltage: 5V

Max. Output Current: 10A

• High Efficiency: 90% $@V_{IN} = 18V \& I_{OUT} = 10A$

Switching Frequency: 350kHzIsolation Voltage: 1500VDC

Low Standby Power Consumption ≤ 0.3W

Output Start time ≤ 20ms

• Fully Protected: OCP, SCP, OVLO & UVLO

• Full Aluminum Housing for Complete Shielding

Operating Temperature Range: −40°C ~ +85°C

APPLICATIONS

This power module, ATDC24V5V10APH, is designed for achieving DC-DC conversion from an unregulated voltage, 18V to 36V, to a regulated 5V up to 10A output current as a power supply source. It is widely used in industrial applications where high voltage isolation is needed. As shown in Figure 1's, it comes with a variety of packaging for different mounting and power consumption.

DESCRIPTION AND SPECIFICATIONS

This power module can work under a wide operating temperature range of -40° C to 85° C, with built-in OCP(Over Current Protection), SCP(Short Current Protection), OVLO(Over Voltage Lock-out) and UVLO(Under Voltage Lock-out). The MTBF(Mean Time Between Failure) is 2×10^{5} Hours, that's equivalent to 23 years continues usage. It has 3 different mounting packages: PCB, terminal block, and DIN-Rail, with or without heat sinks. The heat sink is needed for >6A output current applications, and can do without the heat sink if IOUT is <6A.

Table 1. Pin Names AND Functions.

No.	Name	Туре	Description
1	SDN	Digital Input	Shutdown Control
2	VIN-	Power Input	Negative Input Voltage
3	VIN+	Power Input	Positive Input Voltage
4	VOUT+	Power Output	Positive Output Voltage
5	VOUT-	Power Output	Negative Output Voltage
6	Trim	Analog Input	Trimming Input

Table 2. Specifications

INPUT								
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit/Note		
Input Voltage	V _{IN}		18	24	36	V		
Input Current	$ m I_{IN}$	Full Load		2315		mA		
Input Current		No Load		50		mA		
Surge Voltage (1sec. max.)					50	VDC		

Under Voltage Lockout	UVLO			16		V
	V_{SDNH}	ON	3.5		12	V
Shutdown	V_{SDNL}	OFF	0		1.2	V
	\mathbf{I}_{SDN}			150		mA
Start-up time	t _s			20		ms
Filter				Pi Filter		

OUTPUT

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit/Note
Output Voltage	V _{OUT}			5		V
Output Current	I _{OUT}				10	Α
Output Voltage Accuracy					±2	%
Line Regulation	$\Delta V_{OUT}/\Delta V_{VPS}$				±1	%
Load Regulation	$\Delta V_{OUT}/\Delta I_{OUT}$	Load change from 10% to 100%			±2	%
Ripple & Noise					100	mV _{p-p}
Output Over Voltage Lockout	OVLO		1.1V _{OUT}		2V _{OUT}	
Output Over Current Protection			1.1I _{OUT}	1.5I _{OUT}	2I _{OUT}	
Capacitive Load					8000	μF
Efficiency	η			90		%
Output Voltage Drift	ΔV _{OUT} /Δt		≤±8%/500us			

GENERAL CHARACTERISTIC

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit/Note
Isolation Voltage	$V_{\rm IS}$			1500		VDC
Isolation Capacitance				2000		pF
Isolation Resistance			100			ΜΩ
Switching Frequency	f_{SW}			350		kHz
Operating Temperature Range	T_{opr}		-40		85	°C
Storage Temperature Range	T_{stg}		-55		125	°C
Maximum Case Temperature	T_{cs}	T _A = 25°C			105	°C
Storage Relative Humidity Range	RH		5		95	%
Mean Time Between Failure	MTBF	MIL-HDBK-217F@25°C		2×10 ⁵		Hrs

Sales: sales@analogti.com Help Improve Datasheet: datasheet@analogti.com Tel.: (408) 748-9100 www.analogtechnologies.com

	Case Material		Aluminum					
Weight				28		g		
				0.062		lbs		
				0.988		Oz		
ЕМС	CHARACTERISTIC							
БМТ	Conducted Emissions	CISPR32/EN55032 CLASS B (see Fig.2 for recommended circu						
EMI	Radiated Emissions	CISPR32/EN55032 CLASS B (see Fig.2 for recommended circuit)						
	ESD	IEC/EN61000-4-2 Contact ±4KV	perf.Criteria B					
	Radiated Immunity	IEC/EN61000-4-3 10V/m		perf.0	Criteria A			
EMS	EFT/Burst	IEC/EN61000-4-4 ±2KV(see Fig.2 for recommended circuit)	perf.Criteria B					
	Surge	IEC/EN61000-4-5 ±2KV	perf.Criteria B(see Fig.2 for recomme circuit)			commended		
	Conducted Immunity	IEC/EN61000-4-6 3Vr.m.s	perf.Criteria A					

TYPICAL PERFORMANCE CHARACTERISTICS

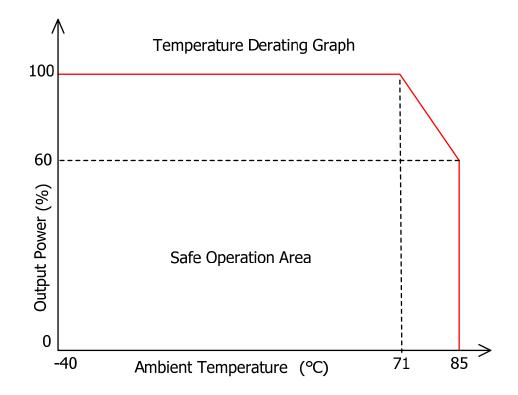
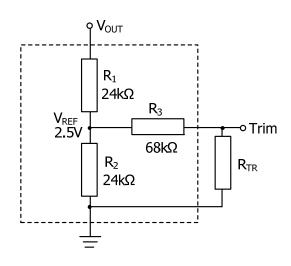
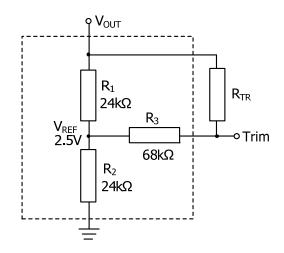


Figure 2. Derating Curve

TRIM APPLICATIONS CIRCUITS

The output voltage can be trimmed in 3 ways: up, down and both.




Figure 3. Trimming Up Output Voltage

$$V_{REF} = \frac{R_2 / / (R_3 + R_{TR})}{R_1 + R_2 / / (R_3 + R_{TR})} \times V_{OUT}$$

$$V_{OUT} = \left[1 + \frac{R_1}{R_2//(R_3 + R_{TR})}\right] \times V_{REF}$$

$$V_{OUT} = 5 + \frac{60}{R_{\rm TR} + 68}$$

$$R_{TR} = \frac{110}{V_{OUT} - 5} - 68$$

$$V_{REF} = \frac{R_1//(R_3 + R_{TR})}{R_2 + R_1//(R_3 + R_{TR})} \times V_{OUT}$$

$$V_{OUT} = \left[1 + \frac{R_2}{R_1/(R_3 + R_{TR})}\right] \times V_{REF}$$

$$V_{OUT} = 5 + \frac{60}{R_{\rm TR} + 68}$$

$$R_{TR} = \frac{110}{V_{OUT} - 5} - 68$$

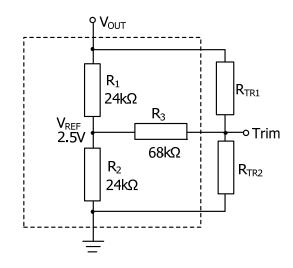


Figure 5. Trimming Up and Down Output Voltage

$$V_{REF} = \frac{R_2//(R_3 + R_{TR1}//R_{TR2})}{R_1 + R_2//(R_3 + R_{TR1}//R_{TR2})} \times V_{OUT}$$
$$+ \frac{R_{TR2}//(R_3 + R_1//R_2)}{R_{TR1} + R_{TR2}//(R_2 + R_1//R_2)} \times V_{OUT}$$

$$V_{OUT} =$$

$$\frac{14985 R_{\text{TR1}} R_{\text{TR2}} + 2000 R_{\text{TR2}}^2 + 25600 R_{\text{TR1}}}{5492 R_{\text{TR1}} R_{\text{TR2}} + 69 R_{\text{TR1}} {R_{\text{TR2}}}^2 + 5460 {R_{\text{TR2}}}^2 + 2176 R_{\text{TR1}} + 2176 R_{\text{TR2}}}$$

Figure 4. Trimming Down Output Voltage

TYPICAL APPLICATIONS

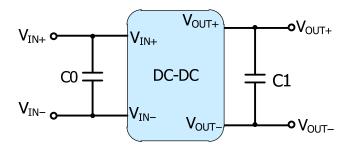


Figure 6. DC-DC Test Circuit

Recommended Values:

C0: $47\mu F \sim 100\mu F$, C1: $10\mu F \sim 22\mu F$

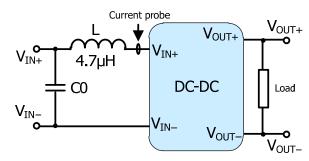


Figure 7. Input ripple Test Current Circuit

Select a low ESR capacitor and ensure that the voltage tolerance value is greater than the maximum input voltage.

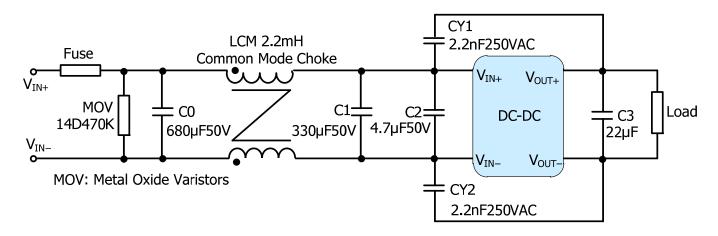
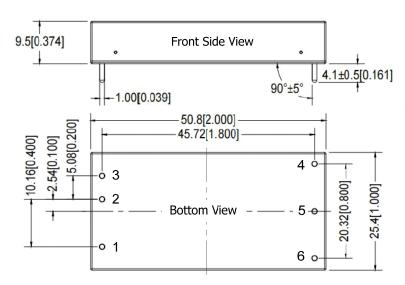
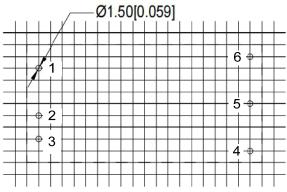
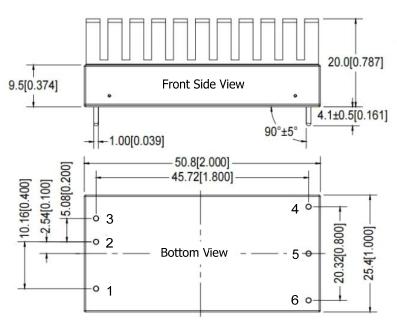




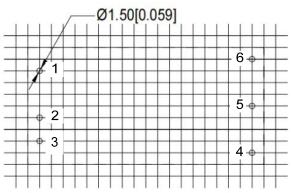
Figure 8. EMC Recommended Circuit

OUTLINE DIMENSIONS

PCB Mount without Heat Sink(P)

NOTE:


Unit: mm[inch]

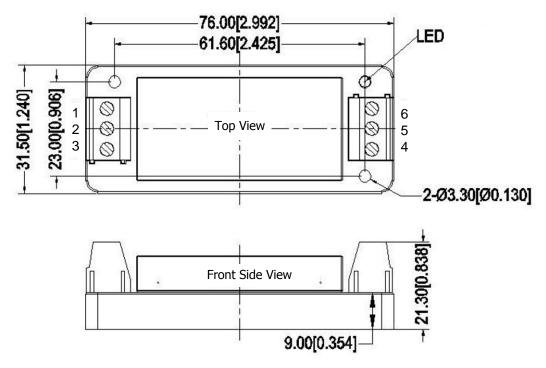

Grid: 2.54mm×2.54mm

Diameter Tolerance of Terminal Block: $\pm 0.10[\pm 0.004]$

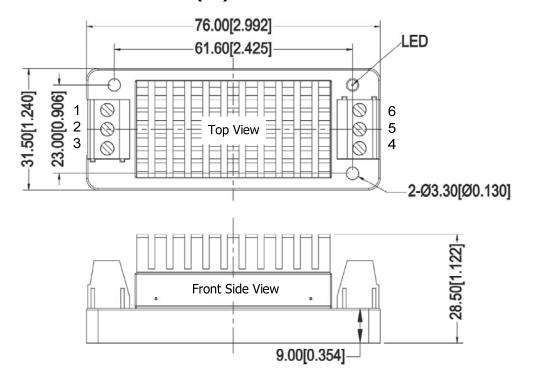
Unmarked Tolerance: $\pm 0.50[\pm 0.020]$

PCB Mount with Heat Sink (PH)

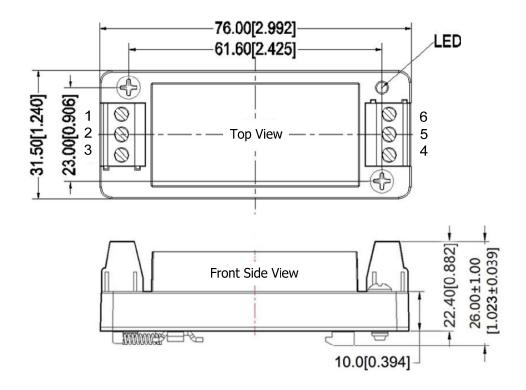
NOTE:

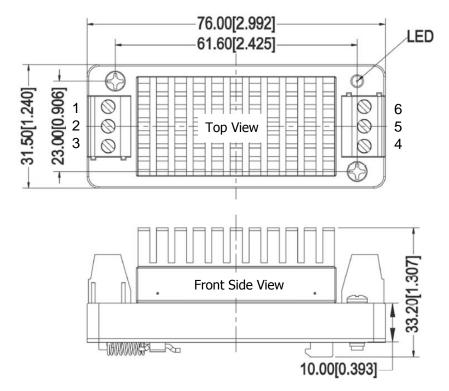

Unit: mm[inch]

Grid: 2.54mm×2.54mm


Diameter Tolerance of Terminal Block: ±0.10[±0.004]

Unmarked Tolerance: ±0.50[±0.020]


Terminal Block Mount without Heat Sink(T)


Terminal Block Mount with Heat Sink (TH)

Terminal Block DIN Rail without Heat Sink(TD)

Terminal Block DIN Rail with Heat Sink (TDH)

ORDING INFORMATION

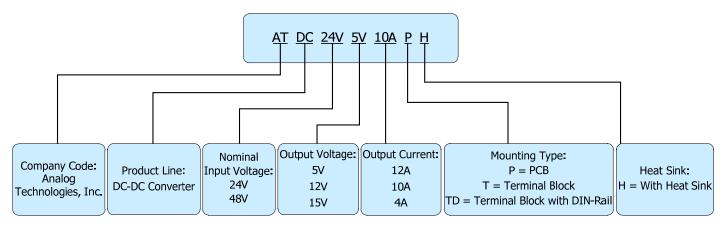


Figure 9. Naming Principle of ATDC24V5V10APH

Table 4. ATDC24V5V10AXXX and Its Families.

Product Model	Input Voltage			Output Current	(mA)		MAX. Capacitive Load	Ripple & Noise 20MHz(Max)	Efficiency (%)			
	Тур.	Range	V	A	Full Load	No Load	μF	mV _{p-p}	Min.	Тур.		
ATDC24V3V312AXXX*	24		3.3	12	1885	50	10000	100	84	87		
ATDC24V5V10AXXX*			5	10	2315	50	8000	100	87	90		
ATDC24V12V4AXXX*		24	24	18~36	12	4.16	2350	2	2000	100	86	89
ATDC24V15V3R3AXXX*			15	3.33	2315	2	1000	100	87	90		
ATDC24V24V2AXXX*			24	2.08	2315	2	500	100	87	90		
ATDC48V3V310AXXX*	48	48 3		3.3	10	790	50	10000	100	84	87	
ATDC48V5V10AXXX*			48 36		5	10	1158	50	8000	100	85	87
ATDC48V12V4AXXX*				48 36~75	36~75	12	4.16	1158	2	2000	100	87
ATDC48V15V3R3AXXX*			15	3.33	1158	2	1000	100	87	90		
ATDC48V24V2AXXX*			24	2.08	1158	2	500	100	87	90		

*Note: See Figure 9.

ISOLATED 50W DC-DC Converter

ATDC24V5V10APH

NOTICE

- 1. ATI warrants performance of its products for one year to the specifications applicable at the time of sale, except for those being damaged by excessive abuse. Products found not meeting the specifications within one year from the date of sale can be exchanged free of charge.
- 2. ATI reserves the right to make changes to its products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current and complete.
- 3. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. Testing and other quality control techniques are utilized to the extent ATI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
- 4. Customers are responsible for their applications using ATI products. In order to minimize risks associated with the customers' applications, adequate design and operating safeguards must be provided by the customers to minimize inherent or procedural hazards. ATI assumes no liability for applications assistance or customer product design.
- 5. ATI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of ATI covering or relating to any combination, machine, or process in which such products or services might be or are used. ATI's publication of information regarding any third party's products or services does not constitute ATI's approval, warranty or endorsement thereof.
- 6. IP (Intellectual Property) Ownership: ATI retains the ownership of full rights for special technologies and/or techniques embedded in its products, the designs for mechanics, optics, plus all modifications, improvements, and inventions made by ATI for its products and/or projects.