

CONSMP024-G SMP Plug PCB Cutout Edge Mount Connector

Operating from 0 GHz to 20 GHz, the CONSMP024-G provides high performance and reliability in a small package. Mounting in a cutout/notch in a printed circuit board (PCB), the CONSMP024-G is more compact than standard board edge mount connectors and is ideal for space constrained applications. Linx SMP connectors are ideal for making board-to-board connections. Additionally, all Linx connectors meet RoHS lead free standards and are tested to meet requirements for corrosion resistance, vibration, mechanical and thermal shock.

Features

- 0 to 20 GHz operation
- Gold plating
 - Superior corrosion resistance
- SMP plug (male pin) connection
 - Gold plated beryllium copper center contact
- Ideal for board-to-board connections
- Direct PCB attachment
- Reflow- or hand-solder assembly

Applications

- Cellular IoT
 - LTE-M (Cat-M1), NB-IoT
- Cellular
 - 5G/4G LTE/3G/2G
- WiFi/WLAN
 - WiFi 6/6E
- GNSS
 - GPS, Galileo, GLONASS, BeiDou, QZSS
- Radar, Satellite Communications, Experimental
- Industrial, Commercial, Enterprise

Table 1. Electrical Specifications

Impedance	50 Ω	
Frequency Range	0 to 2	0 GHz
Voltage Rating	320 V RMS	
Contact Resistance	Center: \leq 6.0 m Ω Outer: \leq 3.0 m Ω	
Select Frequencies	5 GHz to 7.125 GHz	12 GHz to 18 GHz
Insertion Loss (dB max.)	0.47	1.81
VSWR (max.)	1.2	1.4

Ordering Information

Part Number	Description	
CONSMP024-G	SMP plug (male pin) PCB cutout edge mount connector	

CONSMP024-G Datasheet

Product Dimensions

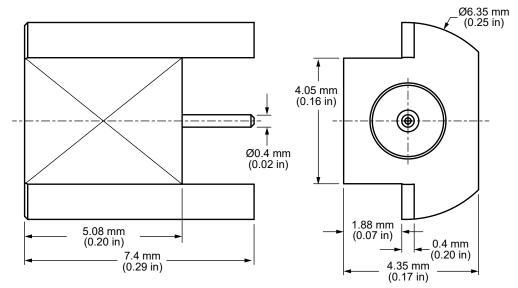


Figure 1. Product Dimensions for the CONSMP024-G Connector

Table 2. Connector Components

Connector Part	Material	Finish
Connector Body	Beryllium Copper	Gold
Center Contact (male pin)	Beryllium Copper	Gold
Insulator	PTFE	_

Recommended PCB Footprint

Figure 2 shows the connectors recommended PCB footprint.

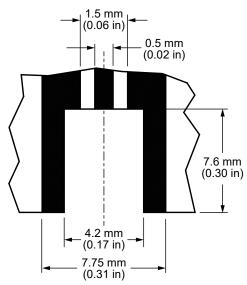


Figure 2. Recommended PCB Dimensions for the CONSMP024-G

Connector Performance

Table 3 shows insertion loss and VSWR values for the CONSMP024-G connector at commonly used frequencies.

Insertion loss is the loss of signal power (gain) resulting from the insertion of a device in a transmission line. VSWR describes how efficiently power is transmitted through the connector. A lower VSWR value indicates better performance at a given frequency.

Table 3. Insertion Loss and VSWR for the CONSMP024-G Connector

Band	Low-Band Cellular/ ISM/LPWA	GNSS, Midband Cellular, Wifi	WiFi 6E	Ku
Frequency Range	400 MHz to 960 MHz	1.1 GHz to 5 GHz	5 GHz to 7.125 GHz	12 GHz to 18 GHz
Insertion Loss (dB max.)	0.11	0.32	0.47	1.81
VSWR (max.)	1.0	1.1	1.2	1.4

Table 4. Mechanical Specifications

Model	CONSMP024-G
Mounting Type	PCB Surface Mount
Fastening Type	Snap-on Coupling
Interface in Accordance with	MIL-STD-348B
Connector Durability	100 cycles min.
Weight	0.7 g (0.02 oz)

Table 5. Environmental Specifications

MIL-STD, Method, Test Condition		
Corrosion (Salt spray)	MIL-STD-202 Method 101 test condition B	
Thermal Shock	MIL-STD-202 Method 107 test condition C	
Vibration	MIL-STD-202 Method 204 test condition B	
Mechanical Shock	MIL-STD-202 Method 213 test condition B	
Moisture Resistance	MIL-STD-202 Method 106 test condition D	
Temperature Range	-65 °C to +165 ° C	
Environmental Compliance	RoHS	

CONSMP024-G Datasheet

Packaging Information

The CONSMP024-G connector is packaged in plastic trays of 100 pcs. Distribution channels may offer alternative packaging options.

Reflow Solder Profile

Figure 5 shows the time and temperature data for reflow soldering the connector to a PCB.

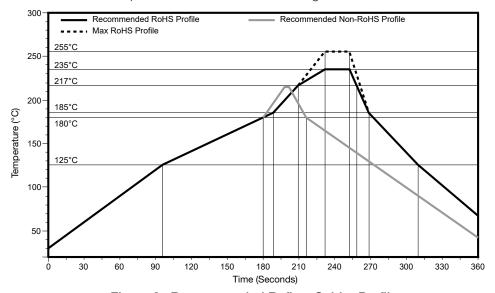


Figure 3. Recommended Reflow Solder Profile

Connector & Adapter Definitions and Useful Formulas

VSWR - Voltage Standing Wave Ratio. VSWR is a unitless ratio that describes how efficiently power is transmitted through the connector. A lower VSWR value indicates better performance at a given frequency. VSWR is easily derived from Return Loss.

$$VSWR = \frac{10^{\left[\frac{Return\ Loss}{20}\right] + 1}}{10^{\left[\frac{Return\ Loss}{20}\right] - 1}}$$

Insertion Loss - The loss of signal power (gain) resulting from the insertion of a device in a transmission line. Insertion loss can be derived from the power transmitted to the load before the insertion of the component P_{τ} and the power transmitted to the load after the insertion of the component P_{R} .

Insertion Loss (dB) =
$$10 \log_{10} \frac{P_T}{P_R}$$

CONSMP024-G Datasheet

Website: http://linxtechnologies.com

Linx Offices: 159 Ort Lane, Merlin, OR, US 97532

Phone: +1 (541) 471-6256

E-MAIL: info@linxtechnologies.com

Linx Technologies reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

Wireless Made Simple is a registered trademark of Linx Acquisitions LLC. Other product and brand names may be trademarks or registered trademarks of their respective owners.

Copyright © 2021 Linx Technologies

All Rights Reserved

