
Adafruit SCD-30 - NDIR CO2 Temperature and Humidity Sensor
Created by Kattni Rembor

Last updated on 2021-08-13 03:14:54 PM EDT



2
3
6
6
6
6
7
7
7
8
9

11
12
12
12
13
14
14
15
18
19
19
19
20
21
21
21
21

Guide Contents

Guide Contents
Overview
Pinouts

Power Pins
I2C Logic Pins
Other Pins

Arduino
I2C Wiring
Library Installation
Load Example
Example Code

Arduino Docs
Python & CircuitPython

CircuitPython Microcontroller Wiring
Python Computer Wiring
CircuitPython Installation of SCD30 Library
Python Installation of SCD30 Library
CircuitPython & Python Usage

Full Example Code
Python Docs
Field Calibration

Forced Re-Calibration
Automatic Self-Calibration
FRC vs. ASC

Downloads
Files:

Schematic
Fab Print

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 2 of 23



Overview

Take a deep breath in...now slowly breathe out. Mmm isn't it wonderful? All that air around us, which we

bring into our lungs, extract oxygen from and then breathe out carbon dioxide. CO2 is essential for life on

this planet we call Earth - us and plants take turns using and emitting CO2 in an elegant symbiosis. But it's

important to keep that CO2 balanced - you don't want too much around, not good for humans and not

good for our planet.

The SCD-30 is an NDIR sensor (https://adafru.it/CQ6), which is a 'true' CO2 sensor, that will tell you the

CO2 PPM (parts-per-million) composition of ambient air. Unlike the SGP30, this sensor isn't approximating

it from VOC gas concentration (https://adafru.it/PF7) - it really is measuring the CO2 concentration ! That

means its a lot bigger and more expensive, but it is the real thing. Perfect for environmental sensing,

scientific experiments, air quality and ventilation studies and more.

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 3 of 23

https://en.wikipedia.org/wiki/Nondispersive_infrared_sensor
https://www.adafruit.com/product/3709


Data is read over I2C, so it works very nicely with just about any microcontroller or microcomputer. We've

written both Arduino and Python/CircuitPython code so you can get started in a jiffy. Another nice element

to this sensor is it comes with an SHT31 temperature and humidity sensor already built

in (https://adafru.it/y7f). The sensor is used to compensate the NDIR CO2 sensor, but its also readable so

you get full environmental data.

Nice sensor right? So we made it easy for you to get right into your next project. The sensor is hand-

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 4 of 23

https://www.adafruit.com/product/2857


soldered onto a custom made PCB in the STEMMA QT form factor (https://adafru.it/LBQ), making them

easy to interface with. The STEMMA QT connectors (https://adafru.it/JqB) on either side are compatible

with the SparkFun Qwiic (https://adafru.it/Fpw) I2C connectors. This allows you to make solderless

connections between your development board and the SCD-30 or to chain it with a wide range of other

sensors and accessories using a compatible cable (https://adafru.it/JnB).

We’ve of course broken out all the pins to standard headers and added a 3.3V voltage regulator and level

shifting so allow you to use it with either 3.3V or 5V systems such as the Raspberry Pi, or Metro M4 or

Arduino Uno.

 

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 5 of 23

https://www.adafruit.com/?q=stemma%20qt%20sensor
https://learn.adafruit.com/introducing-adafruit-stemma-qt/what-is-stemma-qt
https://www.sparkfun.com/qwiic
https://www.adafruit.com/?q=stemma%20qt%20cable


Pinouts

Power Pins

VIN - this is the power pin. Since the sensor chip uses 3 VDC, we have included a voltage regulator

on board that will take 3-5VDC and safely convert it down. To power the board, give it the same

power as the logic level of your microcontroller - e.g. for a 5V microcontroller like Arduino, use 5V

3Vo - this is the 3.3V output from the voltage regulator, you can grab up to 100mA from this if you

like

GND - common ground for power and logic

I2C Logic Pins

SCL - I2C clock pin, connect to your microcontroller I2C clock line. This pin is level shifted so you can

use 3-5V logic, and there's a 10K pullup on this pin.

SDA - I2C data pin, connect to your microcontroller I2C data line. This pin is level shifted so you can

use 3-5V logic, and there's a 10K pullup on this pin.

STEMMA QT (https://adafru.it/Ft4) - These connectors allow you to connect to dev boards with

STEMMA QT connectors or to other things with various associated accessories (https://adafru.it/Ft6)

Other Pins

RDY - Data Ready Pin. High when data is ready for read-out, it helps if you want to avoid polling the

I2C port to verify data is ready.

 

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 6 of 23

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204


Arduino

Using the SCD30 with Arduino is a simple matter of wiring up the sensor to your Arduino-compatible

microcontroller, installing the Adafruit SCD30 (https://adafru.it/PF1) library we've written, and running the

provided example code.

I2C Wiring

Here is how to wire up the sensor using one of the STEMMA QT (https://adafru.it/Ft4) connectors. The

examples show a Metro but wiring will work the same for an Arduino or other compatible board.

Connect board VIN (red wire) to Arduino 5V if you

are running a 5V board Arduino (Uno, etc.). If your

board is 3V, connect to that instead.

Connect board GND (black wire) to Arduino GND

Connect board SCL (yellow wire) to Arduino SCL

Connect board SDA (blue wire) to Arduino SDA

Here is how to wire the sensor to a board using a solderless breadboard:

Connect board VIN (red wire) to Arduino 5V if you

are running a 5V board Arduino (Uno, etc.). If your

board is 3V, connect to that instead.

Connect board GND (black wire) to Arduino GND

Connect board SCL (yellow wire) to Arduino SCL

Connect board SDA (blue wire) to Arduino SDA

Library Installation

You can install the Adafruit SCD30 library for Arduino using the Library Manager in the Arduino IDE.

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 7 of 23

https://github.com/adafruit/Adafruit_SCD30
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com//assets/98479
https://learn.adafruit.com//assets/98480


Click the Manage Libraries ... menu item, search for Adafruit SCD30 , and select the Adafruit SCD30

library:

Finally, search for Adafruit Unified Sensor and install that too (you may have to scroll a bit)

Load Example

Open up File -> Examples -> Adafruit SCD30 -> adafruit_scd30_test

After opening the demo file, upload to your Arduino wired up to the sensor. Once you upload the code,

you will see the temperature, humidity and eCO2 data values being printed when you open the Serial

Monitor (Tools->Serial Monitor) at 115200 baud, similar to this:

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 8 of 23



The sensor has a lot going on, there's temperature and humidity reading thanks to an SHT31 sensor on

board. These values are used internally to normalize the NDIR CO2 readings as well. You can only get

data every 2 seconds, which is pretty fast for this kind of sensor! If you want to slow down the readings to

reduce power usage, uncomment this section:

// if (!scd30.setMeasurementInterval(10)){
//   Serial.println("Failed to set measurement interval");
//   while(1){ delay(10);}
// }

The valid range is 2 seconds per reading up to 1800 seconds per reading.

Example Code

Its normal for the first CO2 reading to be 0, simply ignore the first reading when logging data.�

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 9 of 23



// Basic demo for readings from Adafruit SCD30
#include <Adafruit_SCD30.h>

Adafruit_SCD30  scd30;

void setup(void) {
  Serial.begin(115200);
  while (!Serial) delay(10);     // will pause Zero, Leonardo, etc until serial console opens

  Serial.println("Adafruit SCD30 test!");

  // Try to initialize!
  if (!scd30.begin()) {
    Serial.println("Failed to find SCD30 chip");
    while (1) { delay(10); }
  }
  Serial.println("SCD30 Found!");

  // if (!scd30.setMeasurementInterval(10)){
  //   Serial.println("Failed to set measurement interval");
  //   while(1){ delay(10);}
  // }
  Serial.print("Measurement Interval: "); 
  Serial.print(scd30.getMeasurementInterval()); 
  Serial.println(" seconds");
}

void loop() {
  if (scd30.dataReady()){
    Serial.println("Data available!");

    if (!scd30.read()){ Serial.println("Error reading sensor data"); return; }

    Serial.print("Temperature: ");
    Serial.print(scd30.temperature);
    Serial.println(" degrees C");
    
    Serial.print("Relative Humidity: ");
    Serial.print(scd30.relative_humidity);
    Serial.println(" %");
    
    Serial.print("CO2: ");
    Serial.print(scd30.CO2, 3);
    Serial.println(" ppm");
    Serial.println("");
  } else {
    //Serial.println("No data");
  }

  delay(100);
}

 

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 10 of 23



Arduino Docs
Arduino Docs (https://adafru.it/PEX)

 

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 11 of 23

https://adafruit.github.io/Adafruit_SCD30/html/index.html


Python & CircuitPython

It's easy to use the SCD-30 with Python or CircuitPython, and the Adafruit CircuitPython

SCD30 (https://adafru.it/PF2) module. This module allows you to easily write Python code that reads CO2,

temperature, and humidity from the SCD30 sensor.

You can use this sensor with any CircuitPython microcontroller board or with a computer that has GPIO

and Python thanks to Adafruit_Blinka, our CircuitPython-for-Python compatibility

library (https://adafru.it/BSN).

CircuitPython Microcontroller Wiring

First wire up a SCD-30 to your board exactly as shown below. Here's an example of wiring a Feather M4

to the sensor with I2C using one of the handy STEMMA QT (https://adafru.it/Ft4) connectors:

Board 3V to sensor VIN (red wire)

Board GND to sensor GND (black wire)

Board SCL to sensor SCL (yellow wire)

Board SDA to sensor SDA (blue wire)

You can also use the standard 0.100" pitch headers to wire it up on a breadboard:

Board 3V to sensor VIN (red wire)

Board GND to sensor GND (black wire)

Board SCL to sensor SCL (yellow wire)

Board SDA to sensor SDA (blue wire)

Python Computer Wiring

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 12 of 23

https://github.com/adafruit/Adafruit_CircuitPython_SCD30
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com//assets/98474
https://learn.adafruit.com//assets/98475


Since there's dozens of Linux computers/boards you can use, we will show wiring for Raspberry Pi. For

other platforms, please visit the guide for CircuitPython on Linux to see whether your platform is

supported (https://adafru.it/BSN). 

Here's the Raspberry Pi wired to the sensor using I2C and a STEMMA QT (https://adafru.it/Ft4) connector:

Pi 3V to sensor VIN (red wire)

Pi GND to sensor GND (black wire)

Pi SCL to sensor SCL (yellow wire)

Pi SDA to sensor SDA (blue wire)

Finally here is an example of how to wire up a Raspberry Pi to the sensor using a solderless breadboard

Pi 3V to sensor VIN (red wire)

Pi GND to sensor GND (black wire)

Pi SCL to sensor SCL (yellow wire)

Pi SDA to sensor SDA (blue wire)

CircuitPython Installation of SCD30 Library

You'll need to install the Adafruit CircuitPython SCD30 (https://adafru.it/PF2) library on your CircuitPython

board.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find

and install these libraries from Adafruit's CircuitPython library bundle  (https://adafru.it/ENC).  Our

CircuitPython starter guide has a great page on how to install the library bundle  (https://adafru.it/ABU).

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 13 of 23

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com//assets/100960
https://learn.adafruit.com//assets/98478
https://github.com/adafruit/Adafruit_CircuitPython_SCD30
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries


Required libraries:

adafruit_scd30.mpy

adafruit_bus_device/

adafruit_register/

Your CIRCUITPY drive should look like the image.

Before continuing make sure your board's lib folder or

root filesystem has the adafruit_scd30.mpy file, and the

adafruit_bus_device and adafruit_register folders copied

over.

Python Installation of SCD30 Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython support in Python. This

may also require enabling I2C on your platform and verifying you are running Python 3. Since each

platform is a little different, and Linux changes often, please visit the CircuitPython on Linux guide to get

your computer ready (https://adafru.it/BSN)!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-scd30

If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to

use CircuitPython on Python 2.x, it isn't supported!

Next connect to the board's serial REPL  (https://adafru.it/Awz)so you are at the CircuitPython >>> prompt.

CircuitPython & Python Usage

To demonstrate the usage of the sensor we'll initialize it and read the CO2, temperature and humidity

data from the board's Python REPL.

Run the following code to import the necessary modules and initialize the I2C connection with the sensor:

import board
import adafruit_scd30

scd = adafruit_scd30.SCD30(board.I2C())

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 14 of 23

https://learn.adafruit.com//assets/98486
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/welcome-to-circuitpython/the-repl


Now you're ready to read values from the sensor using these properties:

data_available - Check the sensor to see if new data is available .

eCO2 - The CO2 concentration in PPM (parts per million).

temperature - The current temperature in degrees Celsius.

relative_humidity - The current relative humidity in %rH.

print("Data available?", scd.data_available)
print("CO2:", scd.CO2, "PPM")
print("Temperature:", scd.temperature, "degrees C")
print("Humidity:", scd.relative_humidity, "%%rH")

Full Example Code

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 15 of 23



# SPDX-FileCopyrightText: 2020 by Bryan Siepert, written for Adafruit Industries
#
# SPDX-License-Identifier: Unlicense
import time
import board
import busio
import adafruit_scd30

# SCD-30 has tempremental I2C with clock stretching, datasheet recommends
# starting at 50KHz
i2c = busio.I2C(board.SCL, board.SDA, frequency=50000)
scd = adafruit_scd30.SCD30(i2c)

while True:
    # since the measurement interval is long (2+ seconds) we check for new data before reading
    # the values, to ensure current readings.
    if scd.data_available:
        print("Data Available!")
        print("CO2: %d PPM" % scd.CO2)
        print("Temperature: %0.2f degrees C" % scd.temperature)
        print("Humidity: %0.2f %% rH" % scd.relative_humidity)
        print("")
        print("Waiting for new data...")
        print("")

    time.sleep(0.5)

You'll be able to get a new reading every 2 seconds, that's as fast as data comes out of the sensor.

It's normal for the first reading to be 0, as the sensor 'warms up'. Simply skip that reading when logging

data.

To change things like the interval delay (how often data is calculated)  check out this example which

shows how you can tweak the sensor to change the interval, or tune the sensor with things like the known

altitude/barometric pressure. Check the datasheet for the SCD-30 for more details on tuning the sensor.

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 16 of 23



# SPDX-FileCopyrightText: 2020 by Bryan Siepert, written for Adafruit Industries
#
# SPDX-License-Identifier: Unlicense
import time
import board
import busio
import adafruit_scd30

# SCD-30 has tempremental I2C with clock stretching, datasheet recommends
# starting at 50KHz
i2c = busio.I2C(board.SCL, board.SDA, frequency=50000)
scd = adafruit_scd30.SCD30(i2c)
# scd.temperature_offset = 10
print("Temperature offset:", scd.temperature_offset)

# scd.measurement_interval = 4
print("Measurement interval:", scd.measurement_interval)

# scd.self_calibration_enabled = True
print("Self-calibration enabled:", scd.self_calibration_enabled)

# scd.ambient_pressure = 1100
print("Ambient Pressure:", scd.ambient_pressure)

# scd.altitude = 100
print("Altitude:", scd.altitude, "meters above sea level")

# scd.forced_recalibration_reference = 409
print("Forced recalibration reference:", scd.forced_recalibration_reference)
print("")

while True:
    data = scd.data_available
    if data:
        print("Data Available!")
        print("CO2:", scd.CO2, "PPM")
        print("Temperature:", scd.temperature, "degrees C")
        print("Humidity::", scd.relative_humidity, "%%rH")
        print("")
        print("Waiting for new data...")
        print("")

    time.sleep(0.5)

 

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 17 of 23



Python Docs
Python Docs (https://adafru.it/PEY)

 

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 18 of 23

https://circuitpython.readthedocs.io/projects/scd30/en/latest/


Field Calibration

Performing a re-calibration of the SCD-30 can help maintain accurate CO2 readings over time. Various

factors can cause the SCD-30 sensor reading to drift and there are two available re-calibration options:

Forced Re-Calibration (FRC) and Automatic Self-Calibration (ASC).

This Application Note from Sensirion (https://adafru.it/QDU) goes into lots of detail and is worth reading:

https://adafru.it/QDV

Here we summarizes the two approaches.

Forced Re-Calibration

This is the easiest approach. The SCD-30 is placed in an environment with a known CO2 concentration.

Then the FRC routine is called and this known concentration value (in ppm) is supplied. But how do you

come up with that known value? That is a caveat of this approach and Sensirion (see PDF linked above)

suggests three approaches:

1. Using a separate secondary calibrated CO2 sensor to provide the value.

2. Exposing the SCD-30 to a controlled environment with a known value.

3. Exposing the SCD-30 to fresh outside air and using a value of 400 ppm.

However, once you have your reference value, performing a FRC is super easy. Assuming a reference

CO2 concentration of 800 ppm has been determined, then with the CircuitPython library use:

scd30.forced_recalibration_reference = 800

or with the Arduino library use:

scd30.forceRecalibrationWithReference(800);

Automatic Self-Calibration

Hey, automatic! That sounds great! Set and forget, right? Well, not so fast. The ASC feature has some

requirements which should be considered to determine if it is suitable for any given end use application. If

the conditions can not be met, then the FRC mentioned above should be used.

1. The SCD-30 should regularly be exposed to fresh air with CO2 concentration of 400 ppm.

2. The SCD-30 needs to operate in continuous mode, i.e. do not power it down.

https://adafru.it/QDV

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 19 of 23

https://www.sensirion.com
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/9.5_CO2/Sensirion_CO2_Sensors_SCD30_Field_Calibration.pdf


3. The ASC needs 7 good readings separated by at least 18 hours (that's ~5 days).

See the PDF linked above for many more details. If you want to use ASC, enabling it is very simple. In

CircuitPython use:

scd30.self_calibration_enabled = True

or with the Arduino library use:

scd30.selfCalibrationEnabled(true);

With either, simply use False / false  to disable ASC.

FRC vs. ASC

Both the Forced Re-Calibration (FRC) and Automatic Self-Calibration (ASC) are ways of arriving at the

same "Reference Value" which is then used in determining the CO2 ppm reading reported by the SCD-30.

With the FRC approach, the Reference Value is specified. With the ASC approach, the Reference Value is

determined algorithmically. Either one will overwrite the Reference Value from the other one. For

example, running a FRC will immediately change to the new Reference Value. However, if ASC is enabled,

then it may replace the Reference Value at a later time.

 

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 20 of 23



Downloads

Files:

SCD-30 Datasheet (https://adafru.it/PF3)

SCD-30 Design-in Guidelines (https://adafru.it/PFf)

SCD-30 Interface Description (https://adafru.it/PFg)

Fritzing object in the Adafruit Fritzing Library  (https://adafru.it/PF4)

EagleCAD PCB files on GitHub (https://adafru.it/PF5)

3D models on GitHub (https://adafru.it/QBs)

Schematic

Fab Print

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 21 of 23

https://cdn-learn.adafruit.com/assets/assets/000/098/461/original/Sensirion_CO2_Sensors_SCD30_Datasheet.pdf?1609871944
https://cdn-learn.adafruit.com/assets/assets/000/098/502/original/Sensirion_SCD30_Design-In_Guidelines_D1.pdf?1609963143
https://cdn-learn.adafruit.com/assets/assets/000/098/501/original/Sensirion_CO2_Sensors_SCD30_Interface_Description.pdf?1609963135
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20SCD30.fzpz
https://github.com/adafruit/Adafruit-SCD-30-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4867%20SCD-30%20C02%20Sensor


 

© Adafruit Industries https://learn.adafruit.com/adafruit-scd30 Page 22 of 23



© Adafruit Industries Last Updated: 2021-08-13 03:14:54 PM EDT Page 23 of 23


	Guide Contents
	Overview
	Pinouts
	Power Pins
	I2C Logic Pins
	Other Pins

	Arduino
	I2C Wiring
	Library Installation
	Load Example
	Example Code

	Arduino Docs
	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	CircuitPython Installation of SCD30 Library
	Python Installation of SCD30 Library
	CircuitPython & Python Usage

	Full Example Code
	Python Docs
	Field Calibration
	Forced Re-Calibration
	Automatic Self-Calibration
	FRC vs. ASC

	Downloads
	Files:

	Schematic
	Fab Print

