Datasheet

CONSMP001-1 SMP Plug PCB Through-Hole Connector

The CONSMP001-1 is an SMP plug PCB throughhole connector designed for reflow-solder mounting directly to a printed circuit board. Operating from 0 GHz to 20 GHz, the CONSMP001-1 combines superior performance, compact size, and a convenient snap-on mating interface to provide a reliable, easy-to-use connector. Linx SMP connectors are ideal for making board-to-board connections. Additionally, all Linx connectors meet RoHS lead free standards and are tested to meet requirements for corrosion resistance, vibration, mechanical and thermal shock.

Features

- 0 to 20 GHz operation
- SMP plug (male pin) connection
 - Gold plated beryllium copper center contact
- Ideal for board-to-board connections
- Direct PCB attachment
- Reflow- or hand-solder assembly

Applications

- Cellular IoT
 - LTE-M (Cat-M1), NB-IoT
- Cellular
 - 5G/4G LTE/3G/2G
- WiFi/WLAN
- WiFi 6/6E
- GNSS
 - GPS, Galileo, GLONASS, BeiDou, QZSS
- Radar, Satellite Communications, Experimental
- Industrial, Commercial, Enterprise

Table 1. Electrical Specifications

Impedance	50 Ω	
Frequency Range	0 to 2	0 GHz
Voltage Rating	335 V	'RMS
Contact Resistance	Center: $\leq 6.0 \text{ m}\Omega$ Outer: $\leq 3.0 \text{ m}\Omega$	
Select Frequencies	400 MHz to 960 MHz	12 GHz to 18 GHz
Insertion Loss (dB max.)	0.12	1.53
VSWR (max.)	1.0	1.3

Ordering Information

Part Number	Description	
CONSMP001-1	SMP plug (male pin) PCB through-hole connector	

Available from Linx Technologies and select distributors and representatives.

CONSMP001-1

Product Dimensions

Figure 1. Product Dimensions for the CONSMP001-1 Connector

Connector Part	Material	Finish
Connector Body	Stainless Steel	Passivated
Base	Brass	Gold
Center Contact (male pin)	Beryllium Copper	Gold
Insulator	PTFE	_

Table 2. Connector Components

Recommended PCB Footprint

Figure 2 shows the connectors recommended PCB footprint and through-hole sizes.

Figure 2. Recommended PCB Dimensions for the CONSMP001-1

Connector Performance

Table 3 shows insertion loss and VSWR values for the CONSMP001-1 connector at commonly used frequencies.

Insertion loss is the loss of signal power (gain) resulting from the insertion of a device in a transmission line. VSWR describes how efficiently power is transmitted through the connector. A lower VSWR value indicates better performance at a given frequency.

Band	Low-Band Cellular/ ISM/LPWA	GNSS, Midband Cellular, Wifi	WiFi 6E	Ku
Frequency Range	400 MHz to 960 MHz	1.1 GHz to 5 GHz	5 GHz to 7.125 GHz	12 GHz to 18 GHz
Insertion Loss (dB max.)	0.12	0.43	0.74	1.53
VSWR (max.)	1.0	1.2	1.4	1.3

Table 3. Insertion Loss and VSWR for the CONSMP001-1 Connector

Table 4.	Mechanical	Specifications
----------	------------	----------------

Model	CONSMP001-1
Mounting Type	PCB Through-Hole
Fastening Type	Snap-on Coupling
Interface in Accordance with	MIL-STD-348B
Connector Durability	100 cycles min.
Weight	0.6 g (0.02 oz)

Table 5. Environmental Specifications

MIL-STD, Method, Test Condition		
Corrosion (Salt spray)	MIL-STD-202 Method 101 test condition B	
Thermal Shock	MIL-STD-202 Method 107 test condition C	
Vibration	MIL-STD-202 Method 204 test condition B	
Mechanical Shock	MIL-STD-202 Method 213 test condition B	
Moisture Resistance	MIL-STD-202 Method 106 test condition D	
Temperature Range	-65 °C to +165 ° C	
Environmental Compliance	RoHS	

Reflow Solder Profile

Figure 3 shows the time and temperature data for reflow soldering the connector to a PCB.

Packaging Information

The CONSMP001-1 connector is packaged in plastic trays of 100 pcs. Distribution channels may offer alternative packaging options.

Datasheet

Connector & Adapter Definitions and Useful Formulas

VSWR - Voltage Standing Wave Ratio. VSWR is a unitless ratio that describes how efficiently power is transmitted through the connector. A lower VSWR value indicates better performance at a given frequency. VSWR is easily derived from Return Loss.

$$VSWR = \frac{10\left[\frac{Return \ Loss}{20}\right] + 1}{10\left[\frac{Return \ Loss}{20}\right] - 1}$$

Insertion Loss - The loss of signal power (gain) resulting from the insertion of a device in a transmission line. Insertion loss can be derived from the power transmitted to the load before the insertion of the component P_{T} and the power transmitted to the load after the insertion of the component P_{R} .

Insertion Loss (dB) =
$$10 \log_{10} \frac{P_T}{P_R}$$

Website:http://linxtechnologies.comLinx Offices:159 Ort Lane, Merlin, OR, US 97532Phone:+1 (541) 471-6256E-MAIL:info@linxtechnologies.com

Linx Technologies reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

Wireless Made Simple is a registered trademark of Linx Acquisitions LLC. Other product and brand names may be trademarks or registered trademarks of their respective owners.

Copyright © 2021 Linx Technologies All Rights Reserved

