
GPS-RTK Hookup Guide

Introduction
The NEO-M8P-2 module is the top-of-the-line module for high accuracy GNSS and GPS location solutions
including RTK. The NEO-M8P-2 is unique in that it is capable of both rover and base station operations. The ‘-2’
designation means this module has survey-in mode allowing the module to become a base station and produce
RTCM 3.x correction data. From here on we will refer to the module as NEO-M8P but it should not be confused
with the NEO-M8P-0 module (which is not able to produce RTCM data).

SparkFun GPS-RTK Board - NEO-M8P-2 (Qwiic)
 GPS-15005

Product Showcase: SparkFun GPS-RTK Board

https://www.sparkfun.com/
https://www.sparkfun.com/products/15005
https://www.sparkfun.com/products/15005
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15005
https://www.youtube.com/watch?v=PKTDkGRHY0Q
https://www.youtube.com/channel/UCKPLvnWhN1Qo51IDDZsmq1g
https://www.sparkfun.com/account/login?redirect=%2Flearn%2Ftutorials%2Fgps-rtk-hookup-guide
https://www.sparkfun.com/account/make

Suggested Reading

Before getting started, be sure to checkout our What is GPS RTK? tutorial and if you want to pre-read a bit have a
look at our Getting Started with U-Center.

Hardware Overview

Communication Ports

The NEO-M8P-2 in unique in that it has four communication ports which are all active simultaneously. You can
read NMEA data over I2C while you send configuration commands over the UART and vice/versa. The only limit is
that the SPI pins are mapped onto the I2C and UART pins so it’s either SPI or I2C+UART. The USB port is
available at all times.

I2C
An introduction to I2C, one of the main embedded
communications protocols in use today.

Serial Basic Hookup Guide
Get connected quickly with this Serial to USB adapter.

What is GPS RTK?
Learn about the latest generation of GPS and GNSS
receivers to get 2.5cm positional accuracy!

Getting Started with U-Center
Learn the tips and tricks to use the u-blox software tool
to configure your GPS receiver.

https://learn.sparkfun.com/tutorials/what-is-gps-rtk
https://learn.sparkfun.com/tutorials/getting-started-with-u-center
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/serial-basic-hookup-guide
https://learn.sparkfun.com/tutorials/what-is-gps-rtk
https://learn.sparkfun.com/tutorials/getting-started-with-u-center

USB

The micro-B connector makes it easy to connect the NEO-M8P to u-center for configuration and quick viewing of
NMEA sentences. It is also possible to connect a Raspberry Pi or other SBC over USB. The NEO-M8P
enumerates as a serial COM port and it is a seperate serial port from the UART interface. See Getting Started with
U-Center for more information about getting the USB port to be a serial COM port.

A 3.3V regulator is provided to regulate the 5V USB down to 3.3V the module requires. External 5V can be applied
or a direct feed of 3.3V can be provided. Note that if you’re provide the board with 3.3V directly it should be a clean
supply with minimal noise (less than 50mV VPP ripple is ideal for precision locating).

I C (a.k.a DDC)2

https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/SparkFun_GPS_GNSS-RTK_Evaluation_Board.jpg
https://learn.sparkfun.com/tutorials/getting-started-with-u-center
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/SparkFun_GPS_GNSS-RTK_Evaluation_Board-USB.jpg

The u-blox NEO-M8P has a “DDC” port which is really just an I2C port (without all the fuss of trademark issues).
All features are accessible over the I2C ports including reading NMEA sentences, sending UBX configuration
strings, piping RTCM data into the module, etc. We’ve written a handful of sketches and an Arduino library to aid in
using the NEO-M8P over I2C in a snap. You can get the library through the Arduino library manager by searching
‘SparkFun Ublox’. Checkout the GPS-RTK Arduino Library section for more information.

UART/Serial

The classic serial pins are available on the NEO-M8P but are shared with the SPI pins. Because USB covers most
serial needs we didn’t label the UART pins explicitly. By default the UART pins are enabled. Be sure the DSEL
jumper on the rear of the board is open.

MISO = TX out from NEO-M8P
MOSI = RX into NEO-M8P

https://learn.sparkfun.com/tutorials/gps-rtk-hookup-guide#gps-rtk-arduino-library
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/SparkFun_GPS_GNSS-RTK_Evaluation_Board-I2C.jpg

SPI

The NEO-M8P can also be configured for SPI communication. By default the SPI port is disable. To enable SPI
close the DSEL jumper on the rear of the board. Closing this jumper will disable the UART and I2C interfaces.

Control Pins

The control pins are highlighted below.

https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/SparkFun_GPS_GNSS-RTK_Evaluation_Board-UART.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/SparkFun_GPS_GNSS-RTK_Evaluation_Board-SPI.jpg

These pins are used for various extra control of the NEO-M8P:

FENCE: Geofence output pin. Configured with U-Center. Will go high or low when a geofence is setup.
Useful for triggering alarms and actions when the module exits a programmed perimeter.
RTK: RTK output pin. Remains high when module is normal GPS mode. Begins blinking when RTCM
corrections are received and module enters RTK float mode. Goes low when module enters RTK fixed
mode and begins outputting cm-level accurate locations.
PPS: Pulse-per-second output pin. Begins blinking at 1Hz when module gets basic GPS/GNSS position
lock.
RST: Reset input pin. Pull this line low to reset the module.
SAFE: Safeboot input pin. This is required for firmware updates to the module and generally should not be
used or connected.
INT: Interrupt input/output pin. Can be configured using U-Center to bring the module out of deep sleep or to
output an interrupt for various module states.

Antenna

The NEO-M8P requires a good quality GPS or GNSS (preferred) antenna. A U.FL connector is provided. Note:
U.FL connectors are rated for only a few mating cycles (about 30) so we recommend you set it and forget it. A
U.FL to SMA cable threaded through the mounting hole provides a robust connection that is also easy to
disconnect at the SMA connection if needed. Low-cost magnetic GPS/GNSS antennas can be used (checkout the
ublox white paper) but a 4” / 10cm metal disc is required to be placed under the antenna as a ground plane.

https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/SparkFun_GPS_GNSS-RTK_Evaluation_Board-GPIO.jpg
https://www.sparkfun.com/products/9145
https://cdn.sparkfun.com/r/600-600/assets/learn_tutorials/8/1/4/UFL_cable_through_standoff_hole.jpg
https://www.sparkfun.com/categories/18
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/AntennasForRTK_WhitePaper__UBX-16010559_.pdf

LEDs

The board includes four status LEDs as indicated in the image below.

The power (PWR) LED will illuminate when 3.3V is activated either over USB or via the Qwiic bus.

The pulse per second (PPS) LED will illuminate with each successful update once a position lock has been
achieved.

The RTK LED will be illuminated constantly upon power up. Once RTCM data has been successfully received it
will begin to blink. This is a good way to see if the NEO-M8P is getting RTCM from various sources.

The FENCE LED can be configured to turn on/off for geofencing applications.

https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/SparkFun_GPS_GNSS-RTK_Evaluation_Board-Antenna.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/SparkFun_GPS_GNSS-RTK_Evaluation_Board-LEDs.jpg

Jumpers

There are four jumpers located on the back of the board to configure the GPS-RTK.

Closing DSEL enables the SPI interface and disables the UART and I2C interfaces. USB will still function.

Cutting the I2C jumper will remove the 2.2k Ohm jumpers from the I2C bus. If you have many devices on your I2C
bus you may want to remove these jumpers. Not sure how to cut a jumper? Read here!

Jumpers JP1, JP2, JP3, are provided on the rear of the board to allow isolation of the various status LEDs.

Backup Battery

The MS621FE rechargeable battery maintains the battery backed RAM (BBR) on the NEO-M8P. This allows for
much faster position locks. The BBR is also used for module configuration retention. The battery is automatically
trickle charged when power is applied and should maintain settings and GNSS orbit data for up to two weeks
without power.

Connecting an Antenna
U.FL connectors are very good but they are a designed to be implemented inside a small embedded application
like a laptop. Exposing a U.FL connector to the wild risks it getting damaged. To prevent damaging the U.FL
connection we recommend threading the U.FL cable through the stand-off hole, then attach the U.FL connectors.

https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/SparkFun_GPS_GNSS-RTK_Evaluation_Board-Jumpers.jpg
https://learn.sparkfun.com/tutorials/how-to-work-w-jumper-pads-and-pcb-traces/cutting-a-trace-between-jumper-pads
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/SparkFun_GPS_GNSS-RTK_Evaluation_Board-RTC.jpg

This will provide a great stress relief for the antenna connection. Now attach your SMA antenna of choice.

 Be Careful! U.FL connectors are easily damaged. Make sure the connectors are aligned, flush face to
face (not at an angle), then press down using a rigid blunt edge such as the edge of a PCB or point of a small
flat head screwdriver.

If you’re indoors you must run a SMA extension cable long enough to locate the antenna where it has a clear view
of the sky. That means no trees, buildings, walls, vehicles, or concrete metally things between the antenna and the
sky. Be sure to mount the antenna on a 4”/10cm metal ground plate to increase reception.

Connecting the GPS-RTK to a Correction Source
Before you go out into the field it’s good to understand how to get RTCM data and how to pipe it to the GPS-RTK.
For this example we will show how to get correction data from the UNAVCO network, pull that data in using
RTKLIB, and pipe it down over serial to the GPS-RTK.

Required Materials

1x GPS-RTK
1x GPS or GNSS Antenna

https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/SparkFun_GPS-RTK_Antenna_Through_Hole.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/GPS_RTK_Antenna_with_clear_view_of_sky.jpg
https://www.sparkfun.com/products/14980

Metal Plate of 4” or larger
1x SMA extension cable (if needed to get a clear view of the sky)
2x micro-B USB cable
1x Serial Basic
A few jumper wires

Required Software

Credentials with a free RTCM provider such as UNAVCO
U-Center
Download and unzip RTKLIB. We will be using 2.4.2.

UNAVCO has fairly good coverage in the USA. Using their interactive map find a station that is near your location.
It’s ok if it is more than 10km (6 miles) away, we’re just practicing.

Site P041 is pretty close to SparkFun HQ. We’ll be using it. To access UNAVCO data feeds you will need to send
an email to rtgps@unavco.org to request credentials. Let UNAVCO know if you are affiliated with any business,
school, or organization and if you are using the account for personal use. Access to UNAVCO is free; I believe
they need this information for reporting on their grant funding.

Once you have your UNAVCO credentials open RTKLIB (in Windows run rtklaunch.exe). This small window allows
you to launch the various RTK programs. For this tutorial we’ll be using RTKNAVI, the second button from the
right.

RTKNAVI allows you to connect to RTCM feeds from various providers, including UNAVCO. Click on the small “I”
button.

https://www.sparkfun.com/products/14742
https://www.sparkfun.com/products/14050
https://www.sparkfun.com/products/12795
https://www.u-blox.com/en/product/u-center
http://www.rtklib.com/
http://www.unavco.org/instrumentation/networks/status/all/realtime
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/UNAVCO_site.jpg
mailto:rtgps@unavco.org
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/RTKLaunch.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/RTKnavi.jpg

From the input stream window click the check box next to ‘Base Station’, select NTRIP Client from the dropdown,
and the RTCM 3 format. Next click on the small three dots under Opt - this will open the NTRIP client configuration
options.

Enter the UNAVCO domain, port, and credentials that you were issued. Next click on the Ntrip… button. This will
launch the Ntrip browser so that we can locate the P041 station.

Ntrip browser allows you to connect to different providers and view what streams are available. I wish it was as
simple as being able to search for ALL the RTCM streams near a given location but no option currently exists.
Instead, we must connect to each provider and see what locations they provide, and what type of correction
streams are produced by a given location. Remember, the NEO-M8P only works with RTCM 3.x.

This list is quite large and we’re looking for P041. Cclick on the Mountpoint column header to sort the list
alphabetically.

https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/RTKnavi-input_streams.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/RTKnavi-input_streams-client_options.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/RTKnavi-input_streams-client_options-ntrip_browser.jpg

Once we have P041 located, we want the RTCM feed. Copy and paste that mountpoint back into RTKNAVI into
the ‘Mountpoint’ box. Once you’ve entered all your credentials and mountpoint, click OK to close the NTRIP
Client Options window. You can also close the Ntrip browser.

The input stream should be configured so click OK in the Input Stream window to complete configuration. Click
‘Start’ from the RTKNAVI window to test the connection to the UNAVCO server.

Success! We are receiving a stream. Now we need to output this data. Click the L button for ‘Logging’.

We want to log the Base Station stream to the serial port so now is a good time to connect your Serial Basic or
FTDI board. Once the board enumerates, you should have a new serial port. If you run into problems or need
drivers checkout the Serial Basic Hookup Guide.

https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/RTKnavi-input_streams-client_options-ntrip_browser-mountpoint.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/RTKnavi-streaming.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/RTKnavi-streaming-log_stream.jpg
https://www.sparkfun.com/products/14050
https://learn.sparkfun.com/tutorials/serial-basic-hookup-guide

Click the ‘…’ button to configure your serial port. Note that you’ll need to select the same baud rate as your GPS-
RTK module is configured for. By default, the NEO-M8P communicates at 9600bps 8-N-1, so use this setting.
Once you have things configured properly the TX LED on the Serial basic should blink once per second indicating
the UNAVCO server is pushing data all the way down to the TX pin on the Serial Basic.

The RTCM pipe is complete. Now we need to connect the “last inch” to the NEO-M8P.

Time to power up up the GPS-RTK board. Attach a micro-B cable to the GPS-RTK board. The power LED should
illuminate. Open the U-Center software from U-blox. Be sure to read Getting Started with U-Center if you haven’t
already. Thankfully, the NEO-M8P’s default configuration allows it to receive RTCM correction data without any
further changes. All you need to do is feed the NEO-M8P with serial data and it will begin calculating the high
precision location solution.

Select the correct COM port and begin viewing the NMEA data. You should have a position lock very quickly. Once
the PPS LED begins to blin0,k you are ready to start piping RTCM data to the GPS-RTK board.

https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/RTCM_on_Serial_Basic.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/SparkFun_GPS-RTK_USB_and_antenna_connected.jpg
https://learn.sparkfun.com/tutorials/getting-started-with-u-center
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/SparkFun_GPS-RTK_RTCM_connected_over_Serial_Basic.jpg

The Serial Basic board should still be blinking once a second with RTCM data from the UNAVCO server. Using two
jumper wires connect GND on the Serial Basic to GND on the GPS-RTK. Next, connect TXO to the MOSI pin on
the GPS-RTK. The MOSI pin is the RX UART pin by default (when DSEL jumper is open). Jumper wires without
solder are obviously a precarious setup but we’re just testing things out. Arrange things so the connection is semi-
permanent. Within a few seconds you should see the RTK LED begin to blink.

Congratulations! Your GPS module has entered RTK float mode. When the RTK LED turns off completely then the
module has solved the carrier ambiguities and entered RTK fixed mode and is outputting centimeter level
positions!

Once you have the GPS-RTK receiving RTCM correction data successfully, you can begin plan how to obtain and
deliver the RTCM data to the GPS-RTK. The options are vast and varied:

It is possible to pull get Ntrip data on an Android app and pipe it over a Bluetooth serial device like the
Bluetooth Mate Silver. It’s trivial to connect a Bluetooth serial device to the GPS-RTK serial pins.
If you need maximum portability a radio link can be the lowest power, smallest footprint. SparkFun offers a
variety of LoRa radios and antennas. With the help of a microcontroller these radios can pipe data from the
LoRa backhaul over an Qwiic I2C port, serial, even SPI.
If your end application already requires an internet connection such as GSM or LTE-CAT, then a
microcontroller could feasibly connect to an Ntrip server over the internet and pipe the RTCM data over a
serial or an I2C connection on the GPS-RTK.

GPS-RTK Arduino Library

Note: This example assumes you are using the latest version of the Arduino IDE on your desktop. If this is
your first time using Arduino, please review our tutorial on installing the Arduino IDE. If you have not
previously installed an Arduino library, please check out our installation guide.

The GPS-RTK Arduino library enables the reading of NMEA data over I2C as well as sending binary UBX
configuration commands over I2C. This is helpful for configuring advanced modules like the NEO-M8P-2.

The SparkFun U-blox Arduino library can be downloaded with the Arduino library manager by searching
‘SparkFun Ublox’ or you can grab the zip here from the GitHub repository:

SPARKFUN U-BLOX ARDUINO LIBRARY (ZIP)

Once you have the library installed checkout the various examples.

Example1: Read NMEA sentences over I2C using Ublox module SAM-M8Q, NEO-M8P, etc
Example2: Parse NMEA sentences using MicroNMEA library. This example also demonstrates how to
overwrite the processNMEA function so that you can direct the incoming NMEA characters from the Ublox
module to any library, display, radio, etc that you prefer.
Example3: Send UBX binary commands to enable RTCM sentences on U-blox NEO-M8P-2 module. This
example is one of the steps required to setup the NEO-M8P as a base station. For more information have a
look at the Ublox manual for setting up an RTK link.
Example4: This example extends example 3 sending all the commands to the NEO-M8P-2 to have it
operate as a base. Additionally the processRTCM function is exposed. This allows the user to overwrite the
function to direct the RTCM bytes to whatever connection the user would like (radio, serial, etc).

Setting Up A Base Station

https://www.sparkfun.com/products/12576
https://www.sparkfun.com/categories/410
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://github.com/sparkfun/SparkFun_Ublox_Arduino_Library
https://github.com/sparkfun/SparkFun_Ublox_Arduino_Library/archive/master.zip

If you’re located further than 20km from a correction station you can create your own station using the NEO-M8P-
2. Ublox provides a great setup guide showing the various settings needed via U-Center. We’ll be covering how to
setup the GPS-RTK using I2C commands only. This will enable a headless (computerless) configuration of a base
station that outputs RTCM correction data. You can watch a brief demo of this in the product video:

Before getting started we recommend you configure the module using U-Center. Checkout our tutorial on using U-
Center then read the Ublox datasheet on getting the NEO-M8P configured for RTK using U-Center. Once you’ve
been successful controlling the module in the comfort of your lab, then consider heading outdoors.

For this exercise we’ll be using the following parts:

SparkFun GPS-RTK Board
SparkFun BlackBoard makes I2C easy
microB Cable if you need one
Antenna GNSS 3-5V Magnetic Mount
GPS Antenna Ground Plate
U.FL to SMA Cable
Two Qwiic Cables
20x4 SerLCD with Qwiic Adapter soldered on
A 20+ft SMA extension can be handy when first experimenting with base stations so you can sit indoors with
a laptop and analyze the output of the GPS-RTK
A standard camera tripod

The NEO-M8P-2 can be configured using Serial, SPI, or I2C. We’re fans of the daisychain-ability of I2C so we’ll be
focusing on the Qwiic system. For this exercise we’ll be connecting the an LCD and GPS-RTK to a BlackBoard
using two Qwiic cables.

Product Showcase: SparkFun GPS-RTK Board

https://learn.sparkfun.com/tutorials/getting-started-with-u-center
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/C94-M8P-AppBoard_UserGuide__UBX-15031066_.pdf
https://www.sparkfun.com/products/15005
https://www.sparkfun.com/products/14669
https://www.sparkfun.com/products/14741
https://sparkle.sparkfun.com/sparkle/products/14986
https://www.sparkfun.com/products/15004
https://www.sparkfun.com/products/9145
https://www.sparkfun.com/search/results?term=qwiic+cable
https://www.sparkfun.com/products/14074
https://www.sparkfun.com/products/14495
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/SparkFun_GPS_RTK_Survey_In_Mode.jpg
https://www.youtube.com/watch?v=PKTDkGRHY0Q
https://www.youtube.com/channel/UCKPLvnWhN1Qo51IDDZsmq1g

For the antenna, you’ll need a clear view of the sky. The better your antenna position the better your accuracy and
performance of the system. We designed the GPS Antenna Ground Plate to make this setup easy. The plate has a
¼” threaded hole that threads directly onto a camera tripod. The plate thickness was chosen to be thick enough so
that the threaded screw is flush with the plate so it won’t interfere with the antenna. Not sure why we’re using a
ground plate? Read the Ublox white paper on using low-cost GNSS antennas with RTK. Mount your magnetic
mount antenna and run the SMA cable to the U.FL to SMA cable to the GPS-RTK board.

There are only three steps to initiating a base station:

Enable Survey-In mode for 5 minutes (300 seconds) Enable RTCM output messages Being Transmitting the
RTCM packets over the backhaul of choice

Be sure to grab the SparkFun Arduino Library for Ublox. You can easily install this via the library manager by
searching ‘SparkFun Ublox’. Once installed click on File->Examples->SparkFun_Ublox_Arduino_Library .

Example5 of the library demonstrates how to send the various commands to the GPS-RTK to enable Survey-In
mode. Let’s discuss the important bits of code.

response = myGPS.enableSurveyMode(300, 2.000); //Enable Survey in, 300 seconds, 2.0m

The library is capable of sending UBX binary commands with all necessary headers, packet length, and CRC
bytes over I2C. The enableSurveyMode(minimumTime, minimumRadius) command does all the hard work to tell the
module to go into survey mode. The module will begin to record lock data and calculate a 3D standard deviation.
The survey-in process ends when both the minimum time and minimum radius are achieved. Ublox recommends
300 seconds (5 minutes) and a radius of 2m. With a clear view of the sky, with a low cost GNSS antenna mounted
to a ground plate we’ve seen the survey complete at 301 seconds with a radius of around 1.5m.

https://www.sparkfun.com/products/15004
https://cdn.sparkfun.com/assets/0/c/0/1/c/AntennasForRTK_WhitePaper__UBX-16010559_.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/SparkFun_GPS_RTK_Antenna_on_a_camera_tripod.jpg
https://github.com/sparkfun/SparkFun_Ublox_Arduino_Library
https://sparkle.sparkfun.com/sparkle/products/14986
https://www.sparkfun.com/products/15004

response &= myGPS.enableRTCMmessage(UBX_RTCM_1005, UBX_RTCM_I2C_PORT, 1); //Enable message 1005
to output through I2C port, message every second
response &= myGPS.enableRTCMmessage(UBX_RTCM_1077, UBX_RTCM_I2C_PORT, 1);
response &= myGPS.enableRTCMmessage(UBX_RTCM_1087, UBX_RTCM_I2C_PORT, 1);
response &= myGPS.enableRTCMmessage(UBX_RTCM_1230, UBX_RTCM_I2C_PORT, 10); //Enable message ever
y 10 seconds

These four lines enable the four RTCM output messages needed for a second GPS-RTK to receive correction
data. Once these sentences have been enabled (and assuming a survey process is complete) the GPS-RTK base
module will begin outputting RTCM data every second after the NMEA sentences (the RTCM_1230 sentence will
be output once every 10 seconds). You can view an example of what this output looks like here.

The size of the RTCM correction data varies but in general it is approximately 350 bytes every second (~500 bytes
every 10th second when 1230 is transmitted).

//This function gets called from the SparkFun Ublox Arduino Library.
//As each RTCM byte comes in you can specify what to do with it
//Useful for passing the RTCM correction data to a radio, Ntrip broadcaster, etc.
void SFE_UBLOX_GPS::processRTCM(uint8_t incoming)
{
 //Let's just pretty-print the HEX values for now
 if (myGPS.rtcmFrameCounter % 16 == 0) Serial.println();
 Serial.print(" ");
 if (incoming < 0x10) Serial.print("0");
 Serial.print(incoming, HEX);
}

If you have a ‘rover’ in the field in need of correction data you’ll need to get the RTCM bytes to the rover. The
SparkFun Ublox library automatically detects the difference between NMEA sentences and RTCM data. The
processRTCM() function allows you to ‘pipe’ just the RTCM correction data to the channel of your choice. Once the

base station has completed the survey and has the RTCM messages enabled, your custom processRTCM()
function can pass each byte to any number of channels:

A wireless system such as LoRa or Cellular
Posting the bytes over the internet using WiFi or wired ethernet over an Ntrip caster
Over a wired solution such as RS485

The power of the processRTCM() function is that it doesn’t care; it presents the user with the incoming byte and is
agnostic about the back channel.

Heads up! We’ve been experimenting with various LoRa solutions and the bandwidth needed for RTCM
(~500 bytes) is right at the usable byte limit for many LoRa setups. It’s possible but you may need to adjust
your LoRa settings to reach the throughput necessary for RTK.

What about configuring the rover? Ublox designed the NEO-M8P to automatically go into RTK mode once RTCM
data is detected on any of the ports. Simply push the RTCM bytes from your back channel into one of the ports
(UART, SPI, I2C) on the rover’s GPS-RTK and the location accuracy will go from meters to centimeters. The
rover’s NMEA messages will contain the improved Lat/Long data and you’ll know where you are with mind-
bending accuracy. It’s a lot of fun to watch!

https://cdn.sparkfun.com/assets/learn_tutorials/8/1/4/Example_RTCM_Binary_Output.txt

NMEA and RTK

Can I Really Use NMEA with a High Precision GPS Receiver?

Yes! Except that NMEA sentences are right on the edge of enough precision. NMEA sentences look something
like this:

$GNGGA,012911.00,4003.19080,N,10416.95542,W,1,12,0.75,1647.1,M,-21.3,M,,*4F

NMEA outputs coordinates in the ddmm.mmmmm format. So what is the weight of the least significant digit? Said
differently, what is the impact of one digit change?

104 16.95542

vs

104 16.95543

If we know 1 degree of latitude is 111.3km at the equator, we can glean the change of a fraction of a minute:

1 degree = 60 minutes
1 minute = 1 degree/60 = 111.32km / 60 = 1.855km
1 minute = 1855m
0.1min = 185.5m
0.01min = 18.55m
0.001min = 1.855m
0.0001min = .1855m = 185.5mm
0.00001min = 0.0185m = 18.55mm = 1.855cm

Using the NMEA sentence, the NEO-M8P will only be able to communicate a change of ~1.5cm location change
for each digit in the 5th position. This is pretty close to the 2.5cm accuracy of the module. If you want additional
precision, you should consider using the UBX protocol which can output up to 8 digits of precision in dd.dddddddd
format which will get you down to 1.11mm of precision!

Resources and Going Further
Have fun with your new found super power: sub decimeter grade GPS!

For more on the GPS-RTK, check out the links below:

Schematic (PDF)
Example RTCM output from the NEO-M8P-2
NEO-M8P-2 Datasheet (PDF)
Using U-Center to configure the NEO-M8P for base station RTCM output
NEO-M8P Hardware Integration Manual (PDF)
NEO-M8P Product Summary (PDF)
Ublox M8 Series Protocol
U-blox ECCN notice
GitHub

Arduino Library
Product Repo

SFE Product Showcase

https://en.wikipedia.org/wiki/Decimal_degrees
https://cdn.sparkfun.com/assets/e/9/4/4/1/Qwiic_GPS-RTK_-_ublox_NEO-M8P.pdf
https://cdn.sparkfun.com/assets/5/3/8/5/7/Example_RTCM_Binary_Output.txt
https://cdn.sparkfun.com/assets/2/f/6/8/3/NEO-M8P_DataSheet__UBX-15016656_.pdf
https://cdn.sparkfun.com/assets/6/e/7/1/0/C94-M8P-AppBoard_UserGuide__UBX-15031066_.pdf
https://cdn.sparkfun.com/assets/a/a/d/2/2/NEO-M8P_HardwareIntegrationManual__UBX-15028081_.pdf
https://cdn.sparkfun.com/assets/6/2/0/3/a/NEO-M8P_ProductSummary__UBX-15015836_.pdf
https://cdn.sparkfun.com/assets/0/9/4/3/5/u-blox8-M8_ReceiverDescrProtSpec__UBX-13003221__Public.pdf
https://cdn.sparkfun.com/assets/9/b/5/5/8/Ublox_ECCN.pdf
https://github.com/sparkfun/SparkFun_Ublox_Arduino_Library
https://github.com/sparkfun/Qwiic_GPS-RTK
https://youtu.be/PKTDkGRHY0Q

Need some inspiration? Check out some of these related tutorials:

Building an Autonomous Vehicle: The Batmobile
Documenting a six-month project to race autonomous
Power Wheels at the SparkFun Autonomous Vehicle
Competition (AVC) in 2016.

What is GPS RTK?
Learn about the latest generation of GPS and GNSS
receivers to get 2.5cm positional accuracy!

Getting Started with U-Center
Learn the tips and tricks to use the u-blox software tool
to configure your GPS receiver.

https://learn.sparkfun.com/tutorials/building-an-autonomous-vehicle-the-batmobile
https://learn.sparkfun.com/tutorials/what-is-gps-rtk
https://learn.sparkfun.com/tutorials/getting-started-with-u-center

