ADA 600

(1) (2)

${ }_{c} \mathrm{TN}_{\text {us }} \triangle C \epsilon$ RoHS

| Example recommended EM/EMC filter NAC-20-472

High voltage pulse noise type : NAP series Low leakage current type : NAM series * A higher current rating EMI/EMC filter may be recommended in view of the other devices that could be connected in parallel with the power supply.
(1)Series name (2)Output wattage (3)Universal input (4) Output voltage (5) Optional *

G:Low leakage current
E:Low leakage current and EMI class A
F :with Fan unit
T :Vertical terminal block
J :Connector type
C :with Coating
R:Remote ON/OFF
N1:DIN rail
W:Alarms and Redundant operation
Specification is changed at option, refer to Instruction Manual.

Please refer to derating curve, because the rated load current depends on cooling method that is convection cooling or forced air.

* Make sure necessary tests will be carried out on your end equipment with the power supply installed in accordance with any required EMC/EMI regulations.

SPECIFICATIONS

	MODEL		ADA600F-24	ADA600F-30	ADA600F-36	ADA600F-48
INPUT	VOLTAGE[V]		AC85-264 1ϕ or DC 120-350 (AC64 or DC90 optionally available *6)			
	FREQUENCY[Hz]		50/60 (47-63) or DC			
	EFFICIENCY[\%]	ACIN 100 V	84typ (10=100\%)	86typ (Io=100\%)	86typ (10=100\%)	86typ (10=100\%)
		ACIN 200 V	86typ (lo=100\%)	87typ (lo=100\%)	87typ (lo=100\%)	89typ (lo=100\%)
	POWER FACTOR	ACIN 100 V	0.99typ (lo=100\%)			
		ACIN 200 V	0.98typ (lo=100\%)			
	INRUSH CURRENT[A]	ACIN 100V *1	20typ (lo=100\%) (More than 3sec.to re-start)			
		ACIN 200V *1	40typ (lo=100\%) (More than 3sec.to re-start)			
	LEAKAGE CURRENT[mA]		0.75max (60Hz, According to IEC60950 and DEN-AN) (Io=100\%)			
OUTPUT	VOLTAGE[V]		24	30	36	48
	CURRENT[A]	ACIN 100V *2	14 (Peak 25) convection	11 (Peak 20) convection	9 (Peak 16.5) convection	6.5 (Peak 12.5) convection
		ACIN 100V *2	21 (Peak 25) forced air	16.5 (Peak 20) forced air	14 (Peak 16.5) forced air	10.5 (Peak 12.5) forced air
		ACIN 200V *2	15 (Peak 31) convection	12 (Peak 24.5) convection	10 (Peak 20.5) convection	7 (Peak 15.5) convection
		ACIN 200 O *	25 (Peak 31) forced air	20 (Peak 24.5) forced air	16.5 (Peak 20.5) forced air	12.5 (Peak 15.5) forced air
	LINE REGULATION[mV]		96max	120max	144max	192max
	LOAD REGULATION[mV]		150max	180max	240max	300max
	RIPPLE[mVp-p]	0 to $+50^{\circ} \mathrm{C} * 3$	120max	160max	200max	200max
		$-10 \cdot 0^{\circ} \mathrm{C}$ *	160max	230max	260max	300max
	RIPPLE NOISE[mVp-p]	0 to $+50^{\circ} \mathrm{C} * 3$	150max	190max	230max	250max
		$-10 \cdot 0^{\circ} \mathrm{C} * 3$	180 max	250max	280max	400max
	TEMPERATURE REGULATION[mV] 0 to $+50^{\circ} \mathrm{C}$		240max	300max	360max	480max
	DRIFT[mV]		96max	120max	144max	192max
	START-UP TIME[ms]		$500 \max$ (ACIN 100V, Io=100\%)			
	HOLD-UP TIME[ms]		20typ (ACIN 100V, lo=100\%)			
	OUTPUT VOLTAGE ADJUSTMENT RANGE[V]		21.6-27.0	27.0-33.0	33.0-41.0	41.0-52.8
	OUTPUT VOLTAGE SETTING[V]		23.5-24.5	29.0-31.0	35.0-37.0	47.0-49.0
PROTECTION CIRCUIT AND OTHERS	OVERCURRENT PROTECTION		Works over 101\% of peak current and recovers automatically			
	OVERVOLTAGE PROTECTION[V]		$31-34.5$	40-48	51-60	64-76
	OPERATING INDICATION		LED (Green)			
	ALARM OUTPUT		Detecting low input voltage(PF), detecting low output voltage(LV). (Optional : -W, refer to Instruction Manual 5)			
	REMOTE ON/OFF(RC)		Requirement for external source (Option : -R, refer to Instruction Manual 5)			
ISOLATION	INPUT-OUTPUT • RC		AC3,000V 1minute, Cutoff current $=10 \mathrm{~mA}, \mathrm{DC} 500 \mathrm{~V} 50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)			
	INPUT-FG		AC2,000V 1minute, Cutoff current $=10 \mathrm{~mA}, \mathrm{DC} 500 \mathrm{~V} 50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)			
	OUTPUT • RC-FG		AC500V 1minute, Cutoff current $=100 \mathrm{~mA}$, DC500V $50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)			
ENVIRONMENT	OPERATING TEMP.,HUMID.AND ALTITUDE		-10 to $+71^{\circ} \mathrm{C}, 20-90 \% R H$ (Non condensing) (Refer to DERATING CURVE), 3,000m (10,000feet) max			
	STORAGE TEMP.,HUMID.AND ALTITUDE		-20 to $+75^{\circ} \mathrm{C}, 20-90 \% R H$ (Non condensing), 9,000m (30,000feet) max			
	VIBRATION		$10-55 \mathrm{~Hz}, 19.6 \mathrm{~m} / \mathrm{s}^{2}(2 \mathrm{G})$, 3minutes period, 60minutes each along X, Y and Z axis			
	IMPACT		$196.1 \mathrm{~m} / \mathrm{s}^{2}$ (20G), 11ms, once each X, Y and Z axis			
SAFETY AND NOISE REGULATIONS	AGENCY APPROVALS		UL60950-1, C-UL(CSA60950-1), EN60950-1, EN60065, EN50178 Complies with DEN-AN and IEC60950-1 (At only AC input)			
	CONDUCTED NOISE		Complies with FCC-B, CISPR22-B, EN55022-B, VCCI-B			
	HARMONIC ATTENUATOR		Complies with IEC61000-3-2 *8			
OTHERS	CASE SIZE/WEIGHT		$65 \times 127 \times 195 \mathrm{~mm}$ [$2.56 \times 5 \times 7.68$ inches] ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) (without terminal block) /1.5kg max			
	COOLING METHOD		Convection/Forced air			

[^0][^1]
Block diagram

External view

※Tolerance : $\pm 1[\pm 0.04]$
※ Weight: $: 1.5 \mathrm{~kg}$ max
※ PCB material / thickness : FR-4 / 1.6 mm [0.06]
※ Chassis and cover material : alumini
※ Dimensions in mm $[$ inches
※ $\left.{ }^{\text {Mimensions in } \mathrm{mm},[}\right]=$ inches
※ Mounting torque : $1.2 \mathrm{~N} \cdot \mathrm{~m}(12.8 \mathrm{kgf} \cdot \mathrm{cm})$ max
※ Screw tighting torque
$\mathrm{M} 4: 1.6 \mathrm{~N} \cdot \mathrm{~m}(16.9 \mathrm{kgf} \cdot \mathrm{cm})$ max $, \mathrm{M} 3: 0.8 \mathrm{~N} \cdot \mathrm{~m}(8.5 \mathrm{kgf} \cdot \mathrm{cm}) \max$
※ $1 / 0$ terminal for option-J and -T is shown in Instruction Manual 5 .

ADA 750
 F -24

(1) (2)

${ }_{c} \mathrm{TN}_{\text {us }} \triangle C \epsilon$ RoHS

Example recommended EM/EMC filter NAC-20-472

High voltage pulse noise type : NAP series Low leakage current type : NAM series * A higher current rating EMI/EMC filter may be recommended in view of the other devices that could be connected in parallel with the power supply.
(1)Series name (2) Output wattage (3)Universal input (4) Output voltage (5) Optional *

G:Low leakage current
E :Low leakage current and EMI class A
F :with Fan unit
T :Vertical terminal block
J :Connector type
C :with Coating
R:Remote ON/OFF
N1:DIN rail
W:Alarms and Redundant operation
Specification is changed at option, refer to Instruction Manual.

Please refer to derating curve, because the rated load current depends on cooling method that is convection cooling or forced air

* Make sure necessary tests will be carried out on your end equipment with the power supply installed in accordance with any required EMC/EMI regulations.

SPECIFICATIONS

	MODEL		ADA750F-24	ADA750F-30	ADA750F-36	ADA750F-48
INPUT	VOLTAGE[V]		AC85-264 1 ϕ or DC 120-350 (AC64 or DC90 optionally available *6)			
	FREQUENCY[Hz]		50/60 (47-63) or DC			
	EFFICIENCY[\%]	ACIN 100 V	86typ (10=100\%)	86typ (Io=100\%)	87typ (10=100\%)	87typ (10=100\%)
		ACIN 200 V	88typ (10=100\%)	88typ (lo=100\%)	89typ (lo=100\%)	89typ (lo=100\%)
	POWER FACTOR	ACIN 100 V	0.99typ (lo=100\%)			
		ACIN 200 V	0.98typ (lo=100\%)			
	INRUSH CURRENT[A]	ACIN 100V *1	20typ (lo=100\%) (More than 3sec.to re-start)			
		ACIN 200V *1	40typ (lo=100\%) (More than 3sec.to re-start)			
	LEAKAGE CURRENT[mA]		0.75max (60Hz, According to IEC60950 and DEN-AN) (Io=100\%)			
OUTPUT	VOLTAGE[V]		24	30	36	48
	CURRENT[A]	ACIN 100V *2	17 (Peak 42) convection	13.5 (Peak 33.5) convection	11 (Peak 28) convection	8 (Peak 21) convection
		ACIN 100V *2	25 (Peak 42) forced air	20 (Peak 33.5) forced air	16.5 (Peak 28) forced air	12.5 (Peak 21) forced air
		ACIN 200V *2	19 (Peak 63) convection	15 (Peak 50) convection	12.5 (Peak 42) convection	9 (Peak 31.5) convection
		ACIN 200 O *	31.5 (Peak 63) forced air	24.5 (Peak 50) forced air	20.5 (Peak 42) forced air	15.5 (Peak 31.5) forced air
	LINE REGULATION[mV]		96max	120max	144max	192max
	LOAD REGULATION[mV]		150max	180max	240max	300max
	RIPPLE[mVp-p]	0 to $+50^{\circ} \mathrm{C} * 3$	120max	160max	200max	200max
		$-10 \cdot 0^{\circ} \mathrm{C}$ *	160max	230max	260max	300max
	RIPPLE NOISE[mVp-p]	0 to $+50^{\circ} \mathrm{C} * 3$	150max	190max	230max	250max
		$-10 \cdot 0^{\circ} \mathrm{C} * 3$	180 max	250max	280max	400max
	TEMPERATURE REGULATION[mV] 0 to $+50^{\circ} \mathrm{C}$		240max	300max	360max	480max
	DRIFT[mV]		96max	120max	144max	192max
	START-UP TIME[ms]		$500 \max$ (ACIN 100V, Io=100\%)			
	HOLD-UP TIME[ms]		20typ (ACIN 100V, lo=100\%)			
	OUTPUT VOLTAGE ADJUSTMENT RANGE[V]		21.6-27.0	27.0-33.0	33.0-41.0	41.0-52.8
	OUTPUT VOLTAGE SETTING[V]		23.5-24.5	29.0-31.0	35.0-37.0	47.0-49.0
PROTECTION CIRCUIT AND OTHERS	OVERCURRENT PROTECTION		Works over 101\% of peak current and recovers automatically			
	OVERVOLTAGE PROTECTION[V]			40-48	51-60	64-76
	OPERATING INDICATION		LED (Green) 6			
	ALARM OUTPUT		Detecting low input voltage(PF), detecting low output voltage(LV). (Optional : -W, refer to Instruction Manual 5)			
	REMOTE ON/OFF(RC)		Requirement for external source (Option : -R, refer to Instruction Manual 5)			
ISOLATION	INPUT-OUTPUT • RC		AC3,000V 1minute, Cutoff current $=10 \mathrm{~mA}, \mathrm{DC} 500 \mathrm{~V} 50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)			
	INPUT-FG		AC2,000V 1minute, Cutoff current $=10 \mathrm{~mA}, \mathrm{DC} 500 \mathrm{~V} 50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)			
	OUTPUT • RC-FG		AC500V 1minute, Cutoff current $=100 \mathrm{~mA}$, DC500V $50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)			
ENVIRONMENT	OPERATING TEMP.,HUMID.AND ALTITUDE		-10 to $+71^{\circ} \mathrm{C}, 20-90 \% R H$ (Non condensing) (Refer to DERATING CURVE), 3,000m (10,000feet) max			
	STORAGE TEMP.HUMID.AND ALTITUDE		-20 to $+75^{\circ} \mathrm{C}, 20-90 \% R H$ (Non condensing), 9,000m (30,000feet) max			
	VIBRATION		$10-55 \mathrm{~Hz}, 19.6 \mathrm{~m} / \mathrm{s}^{2}(2 \mathrm{G})$, 3minutes period, 60minutes each along X, Y and Z axis			
	IMPACT		$196.1 \mathrm{~m} / \mathrm{s}^{2}$ (20G), 11 ms , once each X, Y and Z axis			
SAFETY AND NOISE REGULATIONS	AGENCY APPROVALS		UL60950-1, C-UL(CSA60950-1), EN60950-1, EN60065, EN50178 Complies with DEN-AN and IEC60950-1 (At only AC input)			
	CONDUCTED NOISE		Complies with FCC-B, CISPR22-B, EN55022-B, VCCI-B			
	HARMONIC ATTENUATOR		Complies with IEC61000-3-2 *8			
OTHERS	CASE SIZE/WEIGHT		$70 \times 127 \times 230 \mathrm{~mm}$ [$2.76 \times 5 \times 9.06$ inches] ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) (without terminal block) /1.9kg max			
	COOLING METHOD		Convection/Forced air			

[^2][^3]
Block diagram

External view

※ Tolerance : $\pm 1[\pm 0.04]$
Weight: 1.9kg max
※ PCB material/thickness : FR-4 / 1.6mm [0.06]
Chassis and cover material : aluminium
※ Mounting torque: : $1.2 \mathrm{~N} \cdot \mathrm{~m}(12.8 \mathrm{kgf} \cdot \mathrm{cm})$ max
. Screw tighting torque
(/0 $\cdot \mathrm{cm})$ max , M3: $0.8 \mathrm{~N} \cdot \mathrm{~m}(8.5 \mathrm{kgf} \cdot \mathrm{cm})$ max

	CN3(Option)		
4]	Pin No.		Function
21	1	RC+	: Remote ON/OFF+(-R)
65 65	2	RC-	: Remote ON/OFF-(-R)
9	3-8	NC	: N.C.
$13 \longrightarrow$	9	LV+	: LV Alarm(-W)
	10	LV-	: LV Alarm ground(-W)
	11-12	NC	: N.C.
	13	PF+	: PF Alarm(-W)
	14		: PF Alarm ground(-W)

C@ (BEl AC-DC Power Supplies Enclosed Type ADA1000F

${ }_{c} \mathrm{TN}_{\text {us }} \triangle C \epsilon$ RoHS

ADA 1000

(1) (2)

$\|$Example recommended EMI/EMC filter (1) Series name (2) Output wattage	
NAC-20-472 (3) Universal input	
	(4) Output voltage

(2) Output wattage (4)Output voltage (5) Optional *

G:Low leakage current
E :Low leakage current and EMI class A
F :with Fan unit
T :Vertical terminal block
J :Connector type
C :with Coating
R:Remote ON/OFF N1:DIN rail
W:Alarms and Redundant operation
Specification is changed at option, refer to Instruction Manual.

Please refer to derating curve, because the rated load current depends on cooling method that is convection cooling or forced air.

* Make sure necessary tests will be carried out on your end equipment with the power supply installed in accordance with any required EMC/EMI regulations.

SPECIFICATIONS

	MODEL		ADA1000F-24	ADA1000F-30	ADA1000F-36	ADA1000F-48
INPUT	VOLTAGE[V]		AC85-264 1 ϕ or DC 120-350 (AC64 or DC90 optionally available *6)			
	FREQUENCY[Hz]		50/60 (47-63) or DC			
	EFFICIENCY[\%]	ACIN 100 V	86typ (10=100\%)	86typ (Io=100\%)	87typ (10=100\%)	87typ (10=100\%)
		ACIN 200 V	88typ (10=100\%)	88typ (lo=100\%)	89typ (lo=100\%)	89typ (lo=100\%)
	POWER FACTOR	ACIN 100 V	0.99typ (lo=100\%)			
		ACIN 200 V	0.98typ (lo=100\%)			
	INRUSH CURRENT[A]	ACIN 100V *1	20typ (lo=100\%) (More than 3sec.to re-start)			
		ACIN 200V *1	40typ (lo=100\%) (More than 3sec.to re-start)			
	LEAKAGE CURRENT[mA]		0.75max (60Hz, According to IEC60950 and DEN-AN) (Io=100\%)			
OUTPUT	VOLTAGE[V]		24	30	36	48
	CURRENT[A]	ACIN 100V *2	21 (Peak 63) convection	16.5 (Peak 50) convection	14 (Peak 42) convection	10.5 (Peak 31.5) convection
		ACIN 100V *2	33 (Peak 63) forced air	26 (Peak 50) forced air	22 (Peak 42) forced air	16.5 (Peak 31.5) forced air
		ACIN 200 O *2	25 (Peak 83) convection	20 (Peak 66) convection	16.5 (Peak 55) convection	11.5 (Peak 41.5) convection
		ACIN 200 O *	42 (Peak 83) forced air	33.5 (Peak 66) forced air	28 (Peak 55) forced air	21 (Peak 41.5) forced air
	LINE REGULATION[mV]		96 max	120max	144max	192max
	LOAD REGULATION[mV]		150max	180max	240max	300max
	RIPPLE[mVp-p]	0 to $+50^{\circ} \mathrm{C} * 3$	120max	160max	200max	200max
		$-10 \cdot 0^{\circ} \mathrm{C}$ *	160max	230max	260max	300max
	RIPPLE NOISE[mVp-p]	0 to $+50^{\circ} \mathrm{C} * 3$	150max	190max	230max	250max
		$-10 \cdot 0^{\circ} \mathrm{C} * 3$	180 max	250max	280max	400max
	TEMPERATURE REGULATION[mV] 0 to $+50^{\circ} \mathrm{C}$		240max	300max	360max	480max
	DRIFT[mV]		96max	120max	144max	192max
	START-UP TIME[ms]		$500 \max$ (ACIN 100V, Io=100\%)			
	HOLD-UP TIME[ms]		20typ (ACIN 100V, lo=100\%)			
	OUTPUT VOLTAGE ADJUSTMENT RANGE[V]		21.6-27.0	27.0-33.0	33.0-41.0	41.0-52.8
	OUTPUT VOLTAGE SETTING[V]		23.5-24.5	29.0-31.0	35.0-37.0	47-49
PROTECTION CIRCUIT AND OTHERS	OVERCURRENT PROTECTION		Works over 101\% of peak current and recovers automatically			
	OVERVOLTAGE PROTECTION[V]			40-48	51-60	64-76
	OPERATING INDICATION		LED (Green) 6			
	ALARM OUTPUT		Detecting low input voltage(PF), detecting low output voltage(LV). (Optional : -W, refer to Instruction Manual 5)			
	REMOTE ON/OFF(RC)		Requirement for external source (Option : -R, refer to Instruction Manual 5)			
ISOLATION	INPUT-OUTPUT • RC		AC3,000V 1minute, Cutoff current $=10 \mathrm{~mA}, \mathrm{DC} 500 \mathrm{~V} 50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)			
	INPUT-FG		AC2,000V 1minute, Cutoff current $=10 \mathrm{~mA}, \mathrm{DC} 500 \mathrm{~V} 50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)			
	OUTPUT • RC-FG		AC500V 1minute, Cutoff current $=100 \mathrm{~mA}$, DC500V $50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)			
ENVIRONMENT	OPERATING TEMP,HUMID.AND ALTITUDE		-10 to $+71^{\circ} \mathrm{C}, 20-90 \% R H$ (Non condensing) (Refer to DERATING CURVE), 3,000m (10,000feet) max			
	STORAGE TEMP.HUMID.AND ALTITUDE		-20 to $+75^{\circ} \mathrm{C}, 20-90 \% R H$ (Non condensing), 9,000m (30,000feet) max			
	VIBRATION		$10-55 \mathrm{~Hz}, 19.6 \mathrm{~m} / \mathrm{s}^{2}(2 \mathrm{G})$, 3minutes period, 60minutes each along X, Y and Z axis			
	IMPACT		$196.1 \mathrm{~m} / \mathrm{s}^{2}$ (20G), 11 ms , once each X, Y and Z axis			
SAFETY AND NOISE REGULATIONS	AGENCY APPROVALS		UL60950-1, C-UL(CSA60950-1), EN60950-1, EN60065, EN50178 Complies with DEN-AN and IEC60950-1 (At only AC input)			
	CONDUCTED NOISE		Complies with FCC-B, CISPR22-B, EN55022-B, VCCI-B			
	HARMONIC ATTENUATOR		Complies with IEC61000-3-2 *8			
OTHERS	CASE SIZE/WEIGHT		$75 \times 127 \times 280 \mathrm{~mm}$ [2.95 $\times 5 \times 11.02$ inches] ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) (without terminal block) $/ 2.5 \mathrm{~kg} \mathrm{max}$			
	COOLING METHOD		Convection/Forced air			

[^4]
Block diagram

[^0]: *1 The value is primary surge.The current of input surge to a built-in EM/EMC Filter (0.2 ms or less) is excluded.
 *2 Peak loading for 10sec.And Duty 35\% max.Refer to Instruction Manual 4.Forced air is shown in Instruction Manual 2.3.
 *3 This is the value that measured on measuring board with capacitor of $22 \mu \mathrm{~F}$ within 150 mm from output terminal.Measured by 20MHz oscilloscope or Ripple-Noise meter (Equivalent to KEISOKU-GIKEN: RM101).

[^1]: *4 Drift is the change in DC output for an eight hour period after a half-hour warm-up at $25^{\circ} \mathrm{C}$ with the input voltage held constant at the rated input/output.
 *5 Applicable when remote control (optional) is added.
 *6 Derating is required.Consult us for details.

 * 7 Please contact us about safety approvals for the model with option.
 * 8 Please contact us about class C
 * A sound may occur from power supply at pulse loading.

[^2]: *1 The value is primary surge.The current of input surge to a built-in EM/EMC Filter (0.2 ms or less) is excluded.
 *2 Peak loading for 10sec.And Duty 35\% max.Refer to Instruction Manual 4.Forced air is shown in Instruction Manual 2.3.
 *3 This is the value that measured on measuring board with capacitor of $22 \mu \mathrm{~F}$ within 150 mm from output terminal.Measured by 20MHz oscilloscope or Ripple-Noise meter (Equivalent to KEISOKU-GIKEN: RM101).

[^3]: *4 Drift is the change in DC output for an eight hour period after a half-hour warm-up at $25^{\circ} \mathrm{C}$ with the input voltage held constant at the rated input/output.
 *5 Applicable when remote control (optional) is added.
 *6 Derating is required.Consult us for details.

 * 7 Please contact us about safety approvals for the model with option.
 * 8 Please contact us about class C.
 * A sound may occur from power supply at pulse loading

[^4]: *1 The value is primary surge.The current of input surge to a built-in EM/EMC Filter (0.2 ms or less) is excluded.
 *2 Peak loading for 10sec.And Duty 35\% max.Refer to Instruction Manual 4.Forced air is shown in Instruction Manual 2.3.
 *3 This is the value that measured on measuring board with capacitor of $22 \mu \mathrm{~F}$ within 150 mm from output terminal.Measured by 20MHz oscilloscope or Ripple-Noise meter (Equivalent to KEISOKU-GIKEN: RM101).

