ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Buffer with Open Drain Output

NL17SG07MU3TBG

The NL17SG07 is a buffer with open drain output in tiny footprint packages. The device is designed to operate for $V_{CC} = 0.9 \text{ V}$ to 3.6 V.

Features

- Designed for 0.9 V to 3.6 V V_{CC} Operation
- 3.7 ns (Typ) at $V_{CC} = 3.0 \text{ V}$, $C_L = 15 \text{ pF}$
- Inputs/Outputs Over-Voltage Tolerant up to 3.6 V
- I_{OFF} Supports Partial Power Down Protection
- Available in UDFN Package
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen–Free/BFR–Free and RoHS–Compliant

Figure 1. Logic Symbol

PIN ASSIGNMENTS

Pin	UDFN
1	NC
2	Α
3	GND
4	Y
5	NC
6	V _{CC}

FUNCTION TABLE

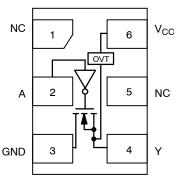
Input	Output
Α	Y
L	L
Н	Z

ON Semiconductor®

www.onsemi.com

UDFN6 1.0 x 1.0 CASE 517BX

MARKING DIAGRAM


X = Specific Device Code

M = Date Code*
■ Pb–Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

PINOUT DIAGRAM

(Top View)

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 7 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +4.3	V
V _{IN}	DC Input Voltage	-0.5 to +4.3	V
V _{OUT}	DC Output Voltage Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)	-0.5 to +4.3	V
I _{IK}	DC Input Diode Current V _{IN} < GND	-20	mA
I _{OK}	DC Output Diode Current V _{OUT} < GND	-20	mA
l _{out}	DC Output Source/Sink Current	±20	mA
I _{CC or} I _{GND}	DC Supply Current Per Supply Pin or Ground Pin	±20	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
TJ	Junction Temperature Under Bias	+150	°C
$\theta_{\sf JA}$	Thermal Resistance (Note 2)	154	°C/W
P _D	Power Dissipation in Still Air	812	mW
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage (Note 3) Human Body Model Charged Device Model		V
I _{LATCHUP}	Latchup Performance (Note 4)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Applicable to devices with outputs that may be tri-stated.
 Measured with minimum pad spacing on an FR4 board, using 10 mm by 1inch, 2 ounce copper trace no air flow per JESD51–7.
 HBM tested to EIA / JESD22–A114–A. CDM tested to JESD22–C101–A. JEDEC recommends that ESD qualification to EIA/JESD22–A115A (Machine Model) be discontinued.
 4. Tested to EIA/JESD78 Class II.

Table 1. RECOMMENDED OPERATING CONDITIONS

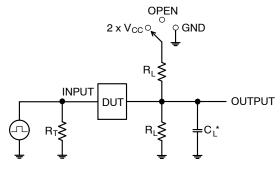
Symbol	Parameter		Min	Max	Unit
V _{CC}	Positive DC Supply Voltage		0.9	3.6	V
V _{IN}	Digital Input Voltage		0	3.6	V
V _{OUT}	Output Voltage	Active Mode (High or Low State) Tri-State Mode (Note 1)	0	V _{CC} 3.6	V
		Power Down Mode (V _{CC} = 0 V)	0	3.6	
T _A	Operating Free-Air Temperature		-55	+125	°C
t _r , t _f	Input Transition Rise or Fall Rate	V_{CC} = 3.3 V \pm 0.3 V	0	10	nS/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 2. DC ELECTRICAL CHARACTERISTICS

				7	Γ _A = 25°0	2	T _A = -55°C	to +125°C		
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit	
V _{IH} High-Level	V_{IH}			0.9	-	V_{CC}	-	-	-	V
	Input Voltage		1.1 to 1.3	$0.7 \times V_{CC}$	-	-	$0.7 \times V_{CC}$	-		
			1.4 to 1.6	$0.65 \times V_{CC}$	-	-	$0.65 \times V_{CC}$	-		
			1.65 to 1.95	$0.65 \times V_{CC}$	-	-	$0.65 \times V_{CC}$	-		
			2.3 to 2.7	1.7	-	-	1.7	-		
			3.0 to 3.6	2.0	-	-	2.0	-		
V_{IL}	Low-Level		0.9	-	GND	-	-	-	V	
	Input Voltage		1.1 to 1.3	-	-	$0.3 \times V_{CC}$	-	$0.3 \times V_{CC}$		
			1.4 to 1.6	-	-	$0.35 \times V_{CC}$	-	$0.35 \times V_{CC}$		
			1.65 to 1.95	-	-	$0.35 \times V_{CC}$	-	$0.35 \times V_{CC}$		
			2.3 to 2.7	-	-	0.7	-	0.7		
			3.0 to 3.6	-	-	0.8	-	0.8		
V_{OL}	Low-Level	$V_{IN} = V_{IH}$ or V_{IL}							V	
	Output Voltage	I _{OL} = 20 μA	0.9	-	0.1	-	-	-		
		I _{OL} = 0.3 mA	1.1 o 1.3	-	-	$0.25 \times V_{CC}$	_	$0.25 \times V_{CC}$		
		I _{OL} = 1.7 mA	1.4 to 1.6	-	-	$0.25 \times V_{CC}$	_	$0.25 \times V_{CC}$		
		I _{OL} = 3.0 mA	1.65 to 1.95	-	-	0.45	-	0.45		
		I _{OL} = 4.0 mA	2.3 to 2.7	=	-	0.4	-	0.4		
		I _{OL} = 8.0 mA	2.7 to 3.6	=	-	0.4	-	0.4		
I _{IN}	Input Leakage Current	V _{IN} = 0 V to 3.6 V	0.9 to 3.6	-	_	±0.1	-	±1.0	μА	
l _{OFF}	Power Off Leakage Current	V _{IN} = 0 V to 3.6 V; V _{OUT} = 0 V to 3.6 V	0	-	_	1.0	-	10.0	μΑ	
I _{CC}	Quiescent Supply Current	V _{IN} = V _{CC} or GND	0.9 to 3.6	-	-	0.5	-	10.0	μΑ	

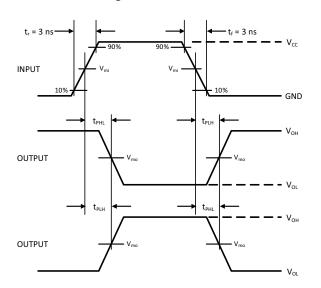
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


Table 3. AC ELECTRICAL CHARACTERISTICS

					T _A = 25°C	; 	$T_A = -55^{\circ}C$	C to +125°C]
Symbol	Parameter	Test Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t_{PZL}	Propagation Delay	C _L = 10 pF;							ns
	A to Y	R_L = 100 $k\Omega$	0.9	-	31.6	-	_	-	
	(Figures 3 and 4)	$R_L = 5 \text{ k}\Omega$	1.1 to 1.3	_	8.2	12.7	_	13.0	
		$R_L = 5 \text{ k}\Omega$	1.4 to 1.6	_	4.3	5.7	_	7.3	
		$R_L = 5 \text{ k}\Omega$	1.65 to 1.95	_	3.4	4.5	-	5.9	
		$R_L = 5 \text{ k}\Omega$	2.3 to 2.7	_	2.2	3.3	_	4.5	
		$R_L = 5 \text{ k}\Omega$	3.0 to 3.6	_	1.7	2.9	-	3.7	
		C _L = 15 pF;							
		$R_L = 100 \text{ k}\Omega$	0.9	_	32.5	_	_	-	
		$R_L = 5 \text{ k}\Omega$	1.1 to 1.3	_	8.5	13.0	-	13.5	
		$R_L = 5 \text{ k}\Omega$	1.4 to 1.6	_	4.5	6.0	_	7.9	
		$R_L = 5 \text{ k}\Omega$	1.65 to 1.95	-	3.6	4.5	_	6.2	
		$R_L = 5 \text{ k}\Omega$	2.3 to 2.7	-	2.3	3.4	-	4.6	
		$R_L = 5 \text{ k}\Omega$	3.0 to 3.6	_	1.8	3.0	-	3.7	
		C _L = 30 pF;							1
		$R_L = 100 \text{ k}\Omega$	0.9	_	35.2	-	_	-	1
		$R_L = 5 \text{ k}\Omega$	1.1 to 1.3	-	9.3	14.0	_	14.2	
		$R_L = 5 \text{ k}\Omega$	1.4 to 1.6	_	5.1	6.2	_	8.5	
		$R_L = 5 \text{ k}\Omega$	1.65 to 1.95	_	4.0	4.9	_	6.4	
		$R_L = 5 \text{ k}\Omega$	2.3 to 2.7	_	2.6	3.6	_	4.7	
		$R_L = 5 \text{ k}\Omega$	3.0 to 3.6	_	2.1	3.1	_	3.9	
t _{PLZ}	Propagation Delay,	C _L = 10 pF;							ns
	A to Y	$R_L = 100 \text{ k}\Omega$	0.9	_	14.9	-	_	-	1
	(Figures 3 and 4)	$R_L = 5 \text{ k}\Omega$	1.1 to 1.3	-	7.2	10.9	_	11.5	
		$R_L = 5 \text{ k}\Omega$	1.4 to 1.6	_	5.1	7.2	_	8.3	
		$R_L = 5 \text{ k}\Omega$	1.65 to 1.95	_	4.8	7.0	_	7.8	
		$R_L = 5 \text{ k}\Omega$	2.3 to 2.7	-	4.2	6.5	_	7.3	
		$R_L = 5 \text{ k}\Omega$	3.0 to 3.6	_	3.8	6.2	_	6.8	
		C _L = 15 pF;							1
		$R_L = 100 \text{ k}\Omega$	0.9	-	16.2	-	-	-	
		$R_L = 5 \text{ k}\Omega$	1.1 to 1.3	-	8.5	13.4	_	14.0	
		$R_L = 5 \text{ k}\Omega$	1.4 to 1.6	_	6.4	10.0	_	10.8	
		$R_L = 5 \text{ k}\Omega$	1.65 to 1.95	_	6.1	9.5	_	10.5	
		$R_L = 5 \text{ k}\Omega$	2.3 to 2.7	-	5.5	7.8	_	10.0	
		$R_L = 5 \text{ k}\Omega$	3.0 to 3.6	_	5.2	7.2	_	9.3	
		C _L = 30 pF;]
		$R_L = 100 \text{ k}\Omega$	0.9	-	20.1	-	-	-	1
		$R_L = 5 \text{ k}\Omega$	1.1 to 1.3	_	12.4	18.4	-	20.0	1
		$R_L = 5 \text{ k}\Omega$	1.4 to 1.6	-	10.2	15.0	_	16.0	
		$R_L = 5 \text{ k}\Omega$	1.65 to 1.95	-	9.9	14.5	_	15.8	
		$R_L = 5 \text{ k}\Omega$	2.3 to 2.7	-	9.4	13.5	_	15.4	
		$R_L = 5 \text{ k}\Omega$	3.0 to 3.6	_	9.0	13.2	_	14.3	1

Table 4. CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition	Typical (T _A = 25°C)	Unit
C _{IN}	Input Capacitance	V _{CC} = 0 V	3.0	pF
C _{OUT}	Output Capacitance	V _{CC} = 0 V	3.0	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	f = 10 MHz, V_{CC} = 0.9 V to 3.6 V, V_{IN} = 0 V or V_{CC}	4.0	pF


^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation $I_{CC(OPR)} = C_{PD} \times V_{CC} \times f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption: $P_D = C_{PD} \times V_{CC}^2 \times f_{in} + I_{CC} \times V_{CC}$.

Test	Switch Position
t _{PLH} / t _{PHL}	Open
t _{PLZ} / t _{PZL}	$2 \times V_{CC}$
t _{PHZ} / t _{PZH}	GND

 C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 W) f = 1 MHz

Figure 2. Test Circuit

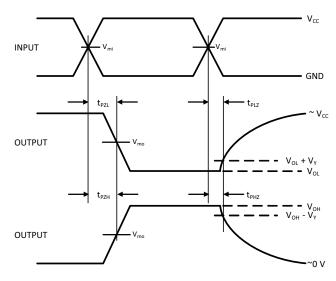
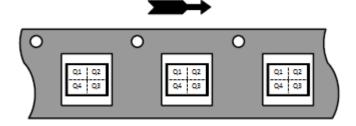


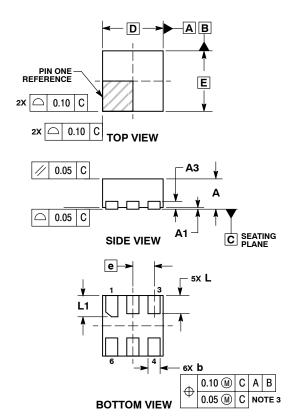
Figure 3. Switching Waveforms


V _{CC} , V	V _{mi} , V	V _{mo} , V	V _Y , V
0.9	V _{CC} /2	V _{CC} /2	0.1
1.1 to 1.3	V _{CC} /2	V _{CC} /2	0.1
1.4 to 1.6	V _{CC} /2	V _{CC} /2	0.1
1.65 to 1.95	V _{CC} /2	V _{CC} /2	0.15
2.3 to 2.7	V _{CC} /2	V _{CC} /2	0.15
3.0 to 3.6	1.5	1.5	0.3

ORDERING INFORMATION

Device	Package	Marking	Pin 1 Orientation (See below)	Shipping [†]
NL17SG07MU3TBG	UDFN6, 1.0 x 1.0, 0.35P	J	Q2	3000 / Tape & Reel

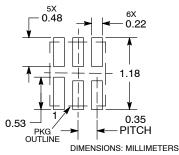
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


Pin 1 Orientation in Tape and Reel Direction of Feed

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC – Q100 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

UDFN6, 1x1, 0.35P CASE 517BX **ISSUE O**



NOTES

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION 6 APPLIES TO PLATED
 TERMINAL AND IS MEASURED BETWEEN
- 0.15 AND 0.20 MM FROM TERMINAL TIP. PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH.

	MILLIMETERS				
DIM	MIN	MAX			
Α	0.45	0.55			
A1	0.00	0.05			
A3	0.13 REF				
b	0.12	0.22			
D	1.00 BSC				
E	1.00 BSC				
е	0.35 BSC				
L	0.25	0.35			
L1	0.30	0.40			

RECOMMENDED **SOLDERING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 🕠 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

0