
Adafruit 128x64 OLED Bonnet for Raspberry Pi
Created by lady ada

Last updated on 2020-12-30 12:12:49 PM EST

2
3
6
6
6
6
9

10
10
10
11
11
12
13
14
14
14

Guide Contents

Guide Contents
Overview
Usage

Install CircuitPython
Enable I2C
Verify I2C Device

Running Scripts on Boot
Library Usage

Python Library Setup
Display Setup

Pin Setup
Display Initialization
Button Input and Drawing

Speeding up the Display
Downloads
Files
Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 2 of 15

Overview

If you'd like a compact display, with buttons and a joystick - we've got what you're looking for. The Adafruit

128x64 OLED Bonnet for Raspberry Pi is the big sister to our mini PiOLED add-on (https://adafru.it/wVd).

This version has 128x64 pixels (instead of 128x32) and a much larger screen besides. With the OLED

display in the center, we had some space on either side so we added a 5-way joystick and two

pushbuttons. Great for when you want to have a control interface for your project.

These displays are small, only about 1.3" diagonal, but very readable due to the high contrast of an

OLED display. This screen is made of 128x64 individual white OLED pixels and because the display makes

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 3 of 15

https://www.adafruit.com/product/3527

its own light, no backlight is required. This reduces the power required to run the OLED and is why the

display has such high contrast; we really like this miniature display for its crispness!

Please note that this display is too small to act as a primary display for the Pi (e.g. it can't act like or

display what would normally be on the HDMI screen). Instead, we recommend using pygame for drawing

or writing text.

Using the display and controls in python is very easy, we have a library ready-to-go for the SSD1306 OLED

chipset and the joystick/buttons are connected to GPIO pins on the Pi. Our example code allows you to

draw images, text, whatever you like, using the Python imaging library. We also have example code for

using the joystick/buttons/OLED together. Our tests showed 15 FPS update rates once you bump the I2C

speed to 1MHz, so you can do animations or simple video.

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 4 of 15

Comes completely pre-assembled and tested so you don't need to do anything but plug it in and install

our Python code! Works with any Raspberry Pi computer, including the original Pi 1, B+, Pi 2, Pi 3 and Pi

Zero.

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 5 of 15

Usage
� This guide assumes you have your Raspberry Pi all set up with an operating system, network

connectivity and SSH!

Install CircuitPython
This guide assumes that you've gotten your Raspberry Pi up and running, and have CircuitPython

installed. If not, check out the guide:

https://adafru.it/Deo

To install the library for the Pi OLED (https://adafru.it/u1f), enter the following into the terminal:

sudo pip3 install adafruit-circuitpython-ssd1306

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

We also need PIL to allow using text with custom fonts. There are several system libraries that PIL relies

on, so installing via a package manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

Enable I2C
To enable i2c, you can follow our detailed guide on configuring the Pi with I2C support

here. (https://adafru.it/dEO)

You also need to install Blinka support as detailed here (https://adafru.it/Deo)

After you've enabled I2C you will need to shutdown with sudo shutdown -h now

Once the Pi has halted, plug in the PiOLED. Now you can power the Pi back up, and log back in. Run the

following command from a terminal prompt to scan/detect the I2C devices

sudo i2cdetect -y 1

You should see the following, indicating that address 0x3c (the OLED display) was found

Verify I2C Device

https://adafru.it/Deo

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 6 of 15

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi#enable-i2c-and-spi-3-5

You can run our buttons example, which will let you press various buttons and see them mimicked on the

OLED.

Create a new file with nano ~pi/bonnet_buttons.py and paste this code below in! Then save it.

Copyright (c) 2017 Adafruit Industries
Author: James DeVito
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

import board
import busio
from digitalio import DigitalInOut, Direction, Pull
from PIL import Image, ImageDraw
import adafruit_ssd1306

Create the I2C interface.
i2c = busio.I2C(board.SCL, board.SDA)
Create the SSD1306 OLED class.
disp = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)

Input pins:
button_A = DigitalInOut(board.D5)
button_A.direction = Direction.INPUT
button_A.pull = Pull.UP

button_B = DigitalInOut(board.D6)
button_B.direction = Direction.INPUT
button_B.pull = Pull.UP

button_L = DigitalInOut(board.D27)
button_L.direction = Direction.INPUT
button_L.pull = Pull.UP

button_R = DigitalInOut(board.D23)
button_R.direction = Direction.INPUT
button_R.pull = Pull.UP

button_U = DigitalInOut(board.D17)
button_U.direction = Direction.INPUT
button_U.pull = Pull.UP

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 7 of 15

button_D = DigitalInOut(board.D22)
button_D.direction = Direction.INPUT
button_D.pull = Pull.UP

button_C = DigitalInOut(board.D4)
button_C.direction = Direction.INPUT
button_C.pull = Pull.UP

Clear display.
disp.fill(0)
disp.show()

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
width = disp.width
height = disp.height
image = Image.new("1", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

while True:
 if button_U.value: # button is released
 draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=0) # Up
 else: # button is pressed:
 draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=1) # Up filled

 if button_L.value: # button is released
 draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=0) # left
 else: # button is pressed:
 draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=1) # left filled

 if button_R.value: # button is released
 draw.polygon([(60, 30), (42, 21), (42, 41)], outline=255, fill=0) # right
 else: # button is pressed:
 draw.polygon(
 [(60, 30), (42, 21), (42, 41)], outline=255, fill=1
) # right filled

 if button_D.value: # button is released
 draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=0) # down
 else: # button is pressed:
 draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=1) # down filled

 if button_C.value: # button is released
 draw.rectangle((20, 22, 40, 40), outline=255, fill=0) # center
 else: # button is pressed:
 draw.rectangle((20, 22, 40, 40), outline=255, fill=1) # center filled

 if button_A.value: # button is released
 draw.ellipse((70, 40, 90, 60), outline=255, fill=0) # A button
 else: # button is pressed:
 draw.ellipse((70, 40, 90, 60), outline=255, fill=1) # A button filled

 if button_B.value: # button is released
 draw.ellipse((100, 20, 120, 40), outline=255, fill=0) # B button
 else: # button is pressed:
 draw.ellipse((100, 20, 120, 40), outline=255, fill=1) # B button filled

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 8 of 15

 draw.ellipse((100, 20, 120, 40), outline=255, fill=1) # B button filled

 if not button_A.value and not button_B.value and not button_C.value:
 catImage = Image.open("happycat_oled_64.ppm").convert("1")
 disp.image(catImage)
 else:
 # Display image.
 disp.image(image)

 disp.show()

Run sudo python3 bonnet_buttons.py to run the demo, you should see something like the below:

Press buttons to interact with the demo. Press the joystick + buttons at once for an Easter egg!

Running Scripts on Boot
You can pretty easily make it so this program (or whatever program you end up writing) run every time you

boot your Pi.

The fastest/easiest way is to put it in /etc/rc.local

Run sudo nano /etc/rc.local and add the line

sudo python /home/pi/bonnet_buttons.py &

on its own line right before exit 0

Then save and exit. Reboot to verify that the screen comes up on boot!

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 9 of 15

For more advanced usage, check out our linux system services guide (https://adafru.it/wFR)

Library Usage
In the examples subdirectory of the Adafruit_CircuitPython_SSD1306 repository (https://adafru.it/EsZ),

you'll find more examples which demonstrate the usage of the library.

To help you get started, I'll walk through the bonnet_buttons.py code below, that way you can use this file

as the basis of a future project.

Python Library Setup
import board
import busio
from digitalio import DigitalInOut, Direction, Pull
from PIL import Image, ImageDraw
import adafruit_ssd1306

First, a few modules are imported, including the adafruit_ssd1306 module which contains the OLED driver

classes. The code also imports board (containing the Raspbery Pi pin definitions), busio (communication

with the i2c and spi buses), and digitalio (to control the Raspberry Pi's pins).

You can also see some of the Python Imaging Library modules like Image, ImageDraw, and ImageFont

being imported. Those are, as you can imagine, are for drawing images, shapes and text/fonts!

Display Setup
Create the I2C interface.
i2c = busio.I2C(board.SCL, board.SDA)
Create the SSD1306 OLED class.
disp = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)

The next bit of code creates the I2C interface (which the display on the bonnet communicates over) and

creates a SSD1306 OLED class. Note that we are passing SSD1306_I2C 128 and 64, those values

correspond to the bonnet's OLED display.

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 10 of 15

file:///running-programs-automatically-on-your-tiny-computer/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/tree/master/examples

Pin Setup
Input pins:
button_A = DigitalInOut(board.D5)
button_A.direction = Direction.INPUT
button_A.pull = Pull.UP

button_B = DigitalInOut(board.D6)
button_B.direction = Direction.INPUT
button_B.pull = Pull.UP

button_L = DigitalInOut(board.D27)
button_L.direction = Direction.INPUT
button_L.pull = Pull.UP

button_R = DigitalInOut(board.D23)
button_R.direction = Direction.INPUT
button_R.pull = Pull.UP

button_U = DigitalInOut(board.D17)
button_U.direction = Direction.INPUT
button_U.pull = Pull.UP

button_D = DigitalInOut(board.D22)
button_D.direction = Direction.INPUT
button_D.pull = Pull.UP

button_C = DigitalInOut(board.D4)
button_C.direction = Direction.INPUT
button_C.pull = Pull.UP

Next up we define the pins that are used for the joystick and buttons. The Joystick has Left, Right, Center

(press in), Up and Down. There's also the A and B buttons on the right. Each one should be set as an input

with pull-up resistor (Pull.UP in the code)

Display Initialization
Clear display.
disp.fill(0)
disp.show()

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
width = disp.width
height = disp.height
image = Image.new('1', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

The next chunk of code clears the display by inverting its fill with fill(0) and then writing to the display

with show() .

Then it will configure a PIL drawing class to prepare for drawing graphics. Notice that the image buffer is

created in 1-bit mode with the '1' parameter, this is important because the display only supports black and

white colors.

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 11 of 15

We then re-draw a large black rectangle to clear the screen. In theory we don't have to clear the screen

again, but its a good example of how to draw a shape!

Button Input and Drawing
while True:
 if button_U.value: # button is released
 draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=0) #Up
 else: # button is pressed:
 draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=1) #Up filled

 if button_L.value: # button is released
 draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=0) #left
 else: # button is pressed:
 draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=1) #left filled

 if button_R.value: # button is released
 draw.polygon([(60, 30), (42, 21), (42, 41)], outline=255, fill=0) #right
 else: # button is pressed:
 draw.polygon([(60, 30), (42, 21), (42, 41)], outline=255, fill=1) #right filled

 if button_D.value: # button is released
 draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=0) #down
 else: # button is pressed:
 draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=1) #down filled

 if button_C.value: # button is released
 draw.rectangle((20, 22, 40, 40), outline=255, fill=0) #center
 else: # button is pressed:
 draw.rectangle((20, 22, 40, 40), outline=255, fill=1) #center filled

 if button_A.value: # button is released
 draw.ellipse((70, 40, 90, 60), outline=255, fill=0) #A button
 else: # button is pressed:
 draw.ellipse((70, 40, 90, 60), outline=255, fill=1) #A button filled

 if button_B.value: # button is released
 draw.ellipse((100, 20, 120, 40), outline=255, fill=0) #B button
 else: # button is pressed:
 draw.ellipse((100, 20, 120, 40), outline=255, fill=1) #B button filled

 if not button_A.value and not button_B.value and not button_C.value:
 catImage = Image.open('happycat_oled_64.ppm').convert('1')
 disp.image(catImage)
 else:
 # Display image.
 disp.image(image)

 disp.show()

Once the display is initialized and a drawing object is prepared, you can draw shapes, text and graphics

using PIL's drawing commands (https://adafru.it/dfH).

This is a basic polling example - we'll check each button.value in order, and draw a different shape - a

directional arrow or a round circle) depending on whether the button is pressed. If the button is pressed

we have the shape filled in. If the button is not pressed, we draw an outline only

Then we run disp.image(image) and disp.show() to actually push the updated image to the OLED. This is

required to actually make the changes appear!

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 12 of 15

http://effbot.org/imagingbook/imagedraw.htm

Speeding up the Display
For the best performance, especially if you are doing fast animations, you'll want to tweak the I2C core to

run at 1MHz. By default it may be 100KHz or 400KHz

To do this edit the config with sudo nano /boot/config.txt

and add to the end of the file

dtparam=i2c_baudrate=1000000

reboot to 'set' the change.

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 13 of 15

Downloads
Files

EagleCAD PCB files on GitHub (https://adafru.it/wWC)

UG-2864HSWEG01 (https://adafru.it/aJI) Datasheet

UG-2864HSWEG01 (https://adafru.it/wWD) User Guide

SSD1306 (https://adafru.it/aJK) Datasheet

Fritzing objects available in the Adafruit Fritzing Library (https://adafru.it/aP3)

Schematic & Fabrication Print
Dimensions in mm

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 14 of 15

https://github.com/adafruit/Adafruit-128x64-OLED-Bonnet-for-Raspberry-Pi-PCB
http://www.adafruit.com/datasheets/UG-2864HSWEG01.pdf
http://www.adafruit.com/datasheets/UG-2864HSWEG01%20user%20guide.pdf
http://www.adafruit.com/datasheets/SSD1306.pdf
https://github.com/adafruit/Fritzing-Library

© Adafruit Industries Last Updated: 2020-12-30 12:12:49 PM EST Page 15 of 15

	Guide Contents
	Overview
	Usage
	Install CircuitPython
	Enable I2C
	Verify I2C Device

	Running Scripts on Boot
	Library Usage
	Python Library Setup
	Display Setup

	Pin Setup
	Display Initialization
	Button Input and Drawing

	Speeding up the Display

	Downloads
	Files
	Schematic & Fabrication Print

