ArmekEilL

Microcontroller Tools

Getting started with MDK

Create applications with pVision®
for Arm® Cortex®-M microcontrollers

KA wvision - m] X
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
Bl9c|e-|mn Y = | e davl@ecsald s
i | §¥ | stm32FT4s Flash VA AR d
Ll] HTTPServenc* || Abstracttd v x
Project: HTTP_Server 109 MPU InitStruct.DisableExec = MPU INSTRUCTION ACCESS ENABLE; ~
[45 STM32F746 Flash X 110 Mey - - B
B i Source LEL MFU BASE A
1) HTTP Serverc 12| R R
] HTTP Server Colc s MPU_CTRL ENABLE Msk
MPU_CTRL_ENABLE Pos
0 webc 115 MPU CTRL HFNMIENA Msk wif
) C3 Web files -l — -
B3 Documentation B Manage Run-Time Environment X
] Abstract.bet
4 Board Support Software Component Sel. Veriant Version Description
& @ cwsis 5 4 Board Support STM32F746G-Discovery |~|1.00 |STMicroelectronics STM32F746G-Discovery Kit =
0 CMSIS Driver @ € CMSIS Cortex Microcentroller Softwiare Interface Components
@ % Device @ € CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
59 Network = @ Compiler ARM Compiler Software Extensions
5 Net.cM3 LB (CO | 1 @ Device Stertup, System Setup
] Net_Config.c (COR | 5 @b Fite System MOK-Pro 650 | File Access on various storage devices
U] Net Config ETHO | 5 € Graphics MOK-Pro 5300 UserInterface on graphical LCD displays
L1 Net_Config HTTP_ | & Graphics Display Display Interface including configuration for emWIN
U Net Config TCPh | o Network MOK-Pro 650 | IP Networking using Ethemet or Serial protocols
L] Net_Config_UDP.h @ CORE | Release <1650 Networking Core for Cortex-M (Release)
@ Inteface Connection Mechanism
5 @ Service Metwork Services il
3 0 Socket Network protocol
= @ use MOK-Pro 650 |USBC ication with various device classes =]
Validation Qutput Description
= s Keil MDK-Pro:Network: CORE Additional software components required i‘
= require CMSIS:RTOS Select component from list
@ ARM:CMSIS:RTOS:Keil RTX CMSIS-RTOS RTX implementation for Cortex-M, 5C000, and SC300 3]
il | | Besve | [sebctrecal [Dase [_me ||,
Elproject |5 D Templates | € =
ST-link Debugger 1110 CG:6

Preface

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

Copyright © 1997-2020 Arm Germany GmbH
All rights reserved.

Arm®, Keil®, uVision®, Cortex®, TrustZone®, CoreSight™ and ULINK™ are
trademarks or registered trademarks of Arm Germany GmbH and Arm Ltd.

Microsoft® and Windows™ are trademarks or registered trademarks of Microsoft
Corporation.

PC" is a registered trademark of International Business Machines Corporation.

NOTE
We assume you are familiar with Microsoft Windows, the hardware, and the
instruction set of the Arm® Cortex®-M processor.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Getting Started with MDK: Create Applications with pVision

Preface

Thank you for using the Arm Keil® MDK Microcontroller Development Kit. To
provide you with the best software tools for developing Arm Cortex-M processor
based embedded applications we design our tools to make software engineering
easy and productive. Arm also offers complementary products such as the
ULINK™ debug and trace adapters and a range of evaluation boards. MDK is
expandable with various third-party tools, starter kits, and debug adapters.

Chapter overview

The book starts with the installation of MDK and describes the software
components along with complete workflow from starting a project up to
debugging on hardware. It contains the following chapters:

MDK Introduction provides an overview about the MDK Tools, the software
packs, and describes the product installation along with the use of example
projects.

CMSIS is a software framework for embedded applications that run on Cortex-M
based microcontrollers. It provides consistent software interfaces and hardware
abstraction layers that simplify software reuse.

Software Components enable retargeting of 1/O functions for various standard
I/O channels and add board support for a wide range of evaluation boards.

Create Applications guides you towards creating and modifying projects using
CMSIS and device-related software components. A hands-on tutorial shows the
main configuration dialogs for setting tool options.

Debug Applications describes the process of debugging applications on real
hardware and explains how to connect to development boards using a wide range
of debug adapters.

MDK-Middleware gives an overview of the middleware components available
for users of the MDK-Professional and MDK-Plus editions. It also explains how
to create applications that use the MDK-Middleware and contains essential tips
and tricks to get you started quickly.

Preface

Contents
Preface. . iioeciicinniiiininnniccnnnnsicssssnssiesssssssicsssssssesssssassasssssassssssssassesses 3
ChAPLET OVEIVIBWeiuiiiniieiieiieeieeie ettt ettt st st st e sbtesbeesaeesbeenseens 3
MDK INtrodUCHIONeeeieervneericsicnnercssscnnnncssssansicsssssssassssssssssssssssesssssassessses 7
IMIDK TOOIS .ttt ettt ettt st et e s abe e sab e e ane e 7
SOFtWATe PACKSeieiiiiiie e 8
MDK EAItIONS. ... ttiieiieeeiie ettt ettt e e st e e et e e e e eaeeenneeaeenseeas 8
LICENSE TYPES oeeeurreeeiiieeeiiee e ettee ettt e e e e ettt e et e e e e e e eeaeeesnnaeeenseeesasaeeennnneeennneeas 8
0TS #2111 8 0] PSR 9
Software and hardware reqUIremMentscceeveeeieerieerieenieerieesee e 9
INStall MK ..ot e 9
Install Software Packs..........ccoeiiiierienieceeeeeee e 10
MDK-Professional Trial LICENSE.......ccceevierviiiiieriiieiiieiieesieeeeneeeeeen 12
Verify Installation using Example Projectsccccoccvevvvieniienieenieesieennne 14
ACCeSS DOCUMENTALIONeveeiiieiieeiieeciieeieeeeiee et ieeete et e et e e teeeaeeesbeesareeenneas 18
ReEQUEST ASSISEANCEvviieiiiiiciiie ettt ettt e eette e e e ba e e e ataeeanenis 18
ON-1N€ LEATNINGiiiiiiieiieiieiie ettt ettt ettt e enee e 18
CIMISITS caaveeeiiiiiiinssnnnnnesicsssssssssnsssscsssssssssnssnsssssssssssasssssssssssssnassassssssssssnennnns 19
CMSIS-CORE ..ottt ettt ettt be e e se e 20
Using CMSIS-CORE ..o 20
CMSIS-RTOS2 ...ttt ettt ettt be et e s e beebeease e 23
SOTtWAIE CONCEPLSvvieieiiieeiiieeeiiee ettt e et e e et e e aae e e eabeeeeaaee s 23
USING Kl RTXS ..ottt e te et e aae s ens 24
Component Viewer for RTX RTOScooooiiiiiiieeeceeee e 29
CIMSIS-DISP...eeeeee ettt ettt ettt et taeaeebeebeense s 30
CIMSIS-DIIVET ittt ettt ettt ettt et et e 32
CONTIGUIALIONeeitieeiiie ettt ettt et e s e e st e et e e s e e eneeennteesneeenneeennes 33
Validation Suites for Drivers and RTOScccoeiiiiiiiniieee e 34
Software COMPONENLSvveereeiccisssessrnneerccssssssssrasssssssssssssssssssssssssssssnanss 35
Use SOftWare Packscoovieiiiiiiiiic e 35
Software Component OVEIVIEW........c..eeveeerieeriierieeeriieeieeeieeseeeereeseeesanees 36
Product Lifecycle Management with Software Packscccooeeevienencen. 37
Software Version Control Systems (SVCS)covvviieviieiieeieeeeeie e, 39
Compiler:Event RECOTAETccc.eoiiiiiiiiiieie e 39
COMPILET:I/O .ttt 40
B0ard SUPPOTT......veiiiiiieee et et et e et e e e 42
JOT CHENLS ...ttt ettt e et e e e tbee e saba e e esteeeensaeeeensaaeennns 43
Create APPLICALIONS.....cccceerriirvrnrrcsscsenresssssnnressssnsressssassasssssassessssassessses 44

pVision Project from ScratChccoooeeviiiiiiiiiiiciiccecceeeeee e 44

Getting Started with MDK: Create Applications with pVision

Setup New PVISION Projectcoocuveieeiiieeiieeiiee e 45
Add main.c Source Code File........cccovriiiniiieniiiiieieeneee e 47
Configure Project OPtionsSc.ccecveeriieeiiienieeireeeieesiee e esaeesreeseeeesene e 49
Build the Application Projectcccoeeviiiiiiiiiiieie e 52
Project with CMSIS-RTOS2oooiiieieeieeeeee ettt 52
Copy an EXamPIe.......c.cccoieiiiieiieciieciie e 53
Add CMSIS-RTO2 COMPONENL ...cevvireiiiieeiiieeeiiieeeiieeeiieeeeieeeesveeeeeaee e 54
Add RTOS Initialization..........cceiieiiiiieiieeiie et 56
Configure Keil RTXS RTOS ..o 57
Implement User Threads..........cccvierieiriieeiieeiie et 57
Device Configuration Variationsccceeeeuveeeruieeeniveeeeineeesieeeesveeeessneeessneessnnns 58
Example: STM32CUDEcooiniiiiiieieeieceee e 59
Example: MCUXpresso Config ToOlS.......ccoverierierienieiieniesieieeeseeene 63
Secure/non-secure ProgramIMINGcc.veeveeerueerrreerreeniseenreesseeseeenseesseeessseennes 67
Create Armv8-M SOftWare Projectscccvevvveerieerieerieeneeeneeenreeseeeneeeenens 68
Debug APPLICALIONSceveieuneiiiisicniiiisisnnienssssnnicssssssicssssassecssssssssssssassanes 69
Debug@er CONNECLIONeeeeieeiieeiieeieeeieeeieeetee st e seesaeeseee e saeenseeesseeenaeeneeens 69
USING the DEebUZEEToeeeiiiieeieeee e et 70
DebUZ TOOIDATcoiiiiiiiiieie et 71
Command WINAOWooiiiiiiiiieniecieeie ettt 72
Disassembly WINAOWcccuiiiiieiiiiiiieieecie et 72
ComPONENT VIEWETeiiiiiiiiiiiiiiiiiteeite ettt e 73
Event RECOTARTc...iiiiiiiieie et 74
SyStem ANALYZETc.eiiiiiiiiiieee e 76
BreakpOointsvieeiieecciiieeiee et aae e 77
WatCh WINAOWooiiiiiiiieciicceceeeeee e ens 78
Call Stack and Locals WIndOW.........ccceeoierieniiniiiniiniinieeiceiceieeeeeeeene 78
RegISter WINAOWooiiiiiiiieiie e 79
MeEMOTY WINAOWcciiiiiieiieeeiie ettt e eee e e e ereeeeeaeeesnaeeenes 79
Peripheral ReISTETSccvcviiiiiiiieeiiee ettt e e 80
TTOCE ettt ettt et e e et e et e e e st e e enree s 81
Trace with Serial Wire OUtPUL..........ccoviieiiieiieiiie e 82
Trace EXCEPLIONS ...ooociuiiiieiiiieciiee ettt ettt e e e ane e e e aae e 84
LOZIC ANALYZET ...ooviiiiiieieecie ettt saae e 85
Debug (Printf) VIEWETcccuviieeiiiieeiiee ettt e e vee e e saee e aaee e 86
EVENt COUNTETS.ueiiiiiieeiiie ettt et e ete e e e e aeee e 87
Trace with 4-Pin Outputcoooiiiiiiiiiiiii e 88
Trace with On-Chip Trace Buffer..........cccoeviiiiiiiniiiiiiieieeeeeee 88
MDK-MidAIEWATIE ..cccueereerscnerecsssnercssesnsnessssassrcsssssssacssssassscsssossessssassenes 89
Network COMPONENL.........cccviiiiiiiieiiiieeiee ettt eeeree e e earaeeeraeeenes 91
File System COmpPONENt..........cc.eeevuiiieiiiieeeiiie e eriee e e e e siveeeeareeesreeeenenas 93

USB COMPONENL....ccoiiiiiiiiiiiiiiieiiitee ettt ettt e e st s sibee e e e e s nabeeesaenee 94

Graphics COMPONENLvviieiiieeeiiee et e eiee e et e e rree e et e eebeeeereeeenaeesssneeesnneens 95
MDbed [OT COMPONECILESc.veeeereeeieeiieeiieeieeetee e e sieesaeeseeeessaeenseeesseeensaeenseeans 96
FTP Server EXample.......coocoiiiiiiiiie ettt 96
USING MIAAIEWATEcovvieiiieiiieie et 97

USB Device HID EXample........cccoeeviieiiiiiiiieniieeiiecie et 99
INAEX cuuuririnriiiiiieiiieeisieeicintecinnecssanecsssnecsssnecssssesssssesssssescsssasssssassssasesses 107
NOTE

This user’s guide describes how to create projects for Arm Cortex-M
microcontrollers using the uVision IDE/Debugger.

Getting Started with MDK: Create Applications with yVision

MDK Introduction

MDK helps you to create embedded applications for more than 7,500 Arm
Cortex-M processor-based devices. MDK is a powerful, yet easy to learn and use
development system. It consists of MDK-Core and software packs, which can be
downloaded and installed based on the requirements of your application.

MDK-Core Arm C/C++ Compiler
uV|‘5|0n IDE S8 Dueer With safety qualification
with pack management
Device CMSIS MDK-Middleware
Network ;
, USB Mbed TLS
DeviEE AL RMSIS0E Host/Device SSL/TLS security
CMSIS Drivers CMSIS-RTOS File System

MDK Tools

v
K,
3]
]
o
w
b
©
s
£
(=}
n

MDK Tools

The MDK Tools include all the components that you need to create, build, and
debug an embedded application for Arm based microcontroller devices.
MDK-Core consists of the Keil pVision IDE and debugger with leading support
for Cortex-M processor-based microcontroller devices.

MDK includes the Arm C/C++ Compiler with assembler, linker, and highly
optimize run-time libraries tailored for optimum code size and performance. Arm
Compiler version 6 is based on the innovative LLVM technology and supports
the latest C language standards including C++11 and C++14. It is also available
with a TUV certified qualification kit for safety applications, as well as long-term
support and maintenance.

MDK Introduction

Software Packs

Software packs contain device support, CMSIS components, middleware, board
support, code templates, and example projects. They may be added any time to
MDK-Core, making new device support and middleware updates independent
from the toolchain. pVision IDE manages the provided software components that
are available for the application as building blocks.

MDK Editions

The product selector, available at keil.com/editions, gives an overview of the
features enabled in each edition:

= MDK-Lite is code size restricted to 32 KByte and intended for product
evaluation, small projects, and the educational market.

* MDK-Essential supports all Cortex-M processor-based microcontrollers up
to Cortex-M>55.

* MDK-Plus adds middleware libraries for IPv4 networking, USB Device, File
System, and Graphics. It supports Arm Cortex-M, Arm Cortex-R4, ARM?7,
and ARMO processor-based microcontrollers.

= MDK-Professional contains all features of MDK-Plus. In addition, it
supports IPv4/IPv6 dual-stack networking and a USB Host stack. It also gives
access to the safety-qualified version of the Arm Compiler with all required
documents and certificates.

License Types

Apart from MDK-Lite, all MDK editions require activation using a license code.
The following licenses types are available:

1. Single-user license (node-locked) grants the right to use the product by one
developer on two computers at the same time.

2. Floating-user license or FlexNet license grants the right to use the product
on different computers by several developers at the same time.

For further details, refer to the Licensing User’s Guide at
keil.com/support/man/docs/license.

Getting Started with MDK: Create Applications with pVision

Installation

Software and hardware requirements

MDK has the following minimum hardware and software requirements:

= A PC running a current Microsoft Windows desktop operating system
(32-bit or 64-bit)

= 4 GB RAM and 8 GB hard-disk space
= 1280 x 800 or higher screen resolution; a mouse or other pointing device

Exact requirements can be found at keil.com/system-requirements/

Install MDK

Download MDK from keil.com/demo/eval/arm.htm and run the installer.

Follow the instructions to install MDK on your local computer. The installation
also adds the software packs for Arm CMSIS, Arm Compiler and
MDK-Middleware.

After the MDK installation is complete, the Pack Installer starts automatically,
which allows you to add supplementary software packs. As a minimum, you need
to install a software pack that supports your target microcontroller device.

NOTE

MDK version 5 can use MDK version 4 projects after installation of the legacy
support from keil.com/mdk5/legacy. This adds support for Arm7, Arm9, and
Cortex-R processor-based devices.

10

Install Software Packs

The Pack Installer manages software packs on the local computer. The software
packs are stored in the pack root folder (default: %localappdata®\Arm\Packs).

@ The Pack Installer runs automatically during the installation, but also can
be run from pVision using the menu item Project — Manage — Pack
Installer. To get access to devices and example projects, install the software
pack related to your target device or evaluation board.

MDK Introduction

NOTE
To obtain information of published software packs the Pack Installer connects to

keil.com/pack.

@ Pack Installer - C:\Keil_vS\ARM\PACK - m] *
File Packs Window Help
e’ Device: ARM - ARMCM23
ﬂ - Devices Bua:ds. ﬂ ﬂ 7 Packs | Examples ﬂ
Search: - X Pack Action Description
Device /| Summary = Device Specific 0 Packs .ARMCMZB selected |
£ 7 Al Devices 3735 Devices <[|| = Generic 16 Packs)
B % ABOV Semiconductor H‘i)‘[ie;man =--ARM:=CMEIS & Up to date CMSIS (Cortex Microcontroller Software Interface Standard)
+ @ Ambiq Micro 10 Devices 50.1-dev3 x Remove C‘I\;IS.IS“fCort‘ex‘M‘\crccor‘\tro‘ller S;fbwaralnt‘ar‘face S‘tandard‘]
[# Analog Devices ED“IjE;f\{ES 5,00 (2016-11-11) 8 Remove C.MSIS.(C_D.rt.ex M\cr_u.:ontmll.er Sm_"twaralntarface Standard)
5@ ARM 35 Devices [#-Previous ARM::CMSIS - Previous Pack Versions
& #_5 ARM Cortex MO 2 [‘JEY.\.E.ES #--ARM::CMSIS-Driver_Validation .:/':_'2 \nstal.l ;I\quS.IS“-.Dri\ra.r"\d’?.l_idétion
%% ARM Cortex MO plus 2 Dievices - ARM:CMSIS-RTOS Validation 4 _Install _| EMSIS-RTOS Validation
5% ARM Cortex M3 2 Devices #--ARM:mbedClient 4?' \nstal.l A A.RM mbed .Chan.tfor Cortex-M devlces] B B
%5 ARM Cortex Md 4 Devices I | #--ARM:mbedTLS 3?'2 Install] ARM mbed Cr)fptog.raphic and SSL/TLS library for Cortex-M
5% ARM Cortex M7 6 Devices +--ARM:minar _-:{:_2_ \ns@ll A mbed OS Scheduler for C.o“rtex-M devices
2% ARM Cortex M23 2 Devices + [EETEEETEIN € s to date | Keil ARM Compiler extensions
1 ARMCM23 ARM Cortex-M23.... +-Keil:Jansson &p_Install Jansson is a C library for enceding, deceding and manipulat
8 ARMCM23.TZ ARM CortexM23.... ¥l Keil:MDK-Middleware % Up todate | Keil MDK-ARM Professional Middleware for ARM Cortex-M
5 % ARM Cortex M33 I Devices #1- halP:hwlP & Install | IwlP is a ight-weight implementation of the TCP/IP protoce |
%5 ARM SCODD 1 Device [#--Micrium:RTOS 312 Install | Micrium software components
5% ARM SC300 1 Device +--Oryx-Embedded:Middleware fﬁg \nstal.l A Middl.e\.cvare Package (CyclorleTCF.’, Cyc\o.naSSL and C)"F'Oﬂl
w45 ARMVE-M Baseline 2 Devices [#-RealTimeLogic:SharkS5L-Lite 312 Install | SharkSSL-Lite is a super small and suFerfast.pre-com.piled g
5% ARMVE-M Mainline (9 Devices +-RealTimeLogic:SMQ &p_Install Simple Message Queues (SMQ) is an easy to use loT pul:{hs};j
m @ Areel 263 Devices =] ||]
output ax
Refresh Pack descriptions
Update available for Keil::LPC54000_DFP (installed: 2.1.0, available: 2.2.0)
Completed to read Pack descriptions bNL\NE

The status bar at the bottom of the Pack Installer, shows information about the
Internet connection and the installation progress.

T1P: The device database lists all supported devices and provides download
access to the related software packs. It is available at
https://developer.arm.com/embedded/cmsis/cmsis-packs/devices. If the
Pack Installer does not have Internet access, you can manually install
software packs using the menu command File — Import or by double-
clicking *.PACK files.

Getting Started with MDK: Create Applications with yVision 11

Manage local repositories

While developing a software pack, it is useful to quickly verify how it works in a
pVision project without re-building and re-installing the pack after every
modification.

For this purpose, the folder with the pack’s content shall be added to the list of
managed local repositories. To do this use the Pack Installer menu File -
Manage Local Repositories..., click Add..., select the PDSC file in the pack
folder and press OK:

Manage Local Repositories bt

Pack | Repository]
ARM::CMSISDriver::2.3.0 C:\02_Git\CMSIS-Driver,
MyVendor::MVCM3::0.0.9 C:\06_tempiworking'Files,

Add...] Remoye ! Ok] Cancel I

To ensure that the changes to the pack are applied in the project reload the packs
using pVision menu Project - Manage - Reload Software Packs.

12 MDK Introduction

MDK-Professional Trial License

MDK has a built-in functionality to request a thirty-day trial license for MDK-
Professional. This removes the code size limits and you can explore and test the
comprehensive middleware.

Start pVision with administration rights.

(¥ In uVision, go to File — License Management... and click Evaluate MDK
Professional

Single-User License l Floating License | Floating License Administrator | FlexLM License |

Customer Information Computer |D -
Name: | i |
Compary. | Get LIC via Intemet..

Email: |

Product | License 1D Code... | Support Period
MDHK-Lite Evaluation Version

New License 1D Code (LIC): |

[Evaluate MDK Professional I Close Help

A window opens that shows you the data that is submitted to the Arm Keil server
to generate your personal license key:

Evaluate MDK Professional for 30 Days

4% You are about to request a 30-day MDK Professional
'-_ ! Evaluation License.

The following information will be sent to www. keil.com:

Computer ID Number [CID}:
Mame:

Email:

Company:

OK | Cancel ‘

When you click OK, your browser opens, and you are directed to a registration
page. Confirm that the information is correct by clicking the Submit button:

Getting Started with MDK: Create Applications with yVision

Request a free 30 day trial of MDK-Professional

Please validate the information on the following form and submit.
Please make certain your e-mail address is valid. We will send you a License 1D Code(LIC) vie e-mail.
Email is sent from licmgr@keil.com so make sure any spam blocker you use is configured to allow this address.

Enter Your Contact Information Below

Computer ID (CID):
First Name:
Last Name:
E-mail:
Company:
[J 1 would like to get assistance during my evaluation.
NOTICE:
If you selectthis check box, you agree that an Arm technical person may
contact you via e-mail

We will process your information in accordance with the Forum section of our Privacy Policy

Please complete the Captcha check

P

reCAPTCHA

Privacy - Terms

\/ I'm not a robot

Once done, you receive an email from the Keil web server with the license
number for your evaluation.

In pVision’s License Management dialog, enter the value in the New License ID
Code (LIC) ficld and click Add LIC:

License Management

Single-Lser License ! Floating License 1 Floating License Administrator | FlexMNet License]

~Customer Information - 1 r~Computer 1D |
Name:] D |
Company: | Get LIC via Intemet .. |

Email: I

Product | License ID Code... | Support Period
MODK-Lite Ewvaluation Version

Mew License ID Code {L|C}; 431 7A-K355H-AAGAB-IRTVA-55IEK-FJBB2

Evaluate MDK Professional J Close Help

Now you can use MDK-Professional for thirty days.

14 MDK Introduction

Verify Installation using Example Projects

Once you have selected, downloaded, and installed a software pack for your
device, you can verify your installation using one of the examples provided in the
software pack. To verify the software pack installation, we recommend using a
Blinky example, which typically flashes LEDs on a target board.

T1P: Review the getting started video on keil.com/mdkS/install that explains
how to connect and work with an evaluation kit.

Copy an Example Project

@ In the Pack Installer, select the tab Examples. Use Search fielad in the
toolbar to narrow the list of examples.

%% Pack Installer

File Packs Window Help
.e-‘ Device: ARM - ARM Cortex MO
ﬂ Devices | Buards. | ﬂ ﬂ y ; Packs 7 Examples ﬂ
Search: - X | l_ Show examples from installed Packs anly
Device e [Summary Example Action Description
=% ARM 57 Devices j -~ CIFAR10 (uVision Simulator) & Copy j CIFAR10 image recognition CMSIS-NR e;]
SR ARM Cortex MD 2 Devices [CMS5IS RTOS Blinky -CMSBK_CMO (V2M-MPS2) & Copy | CMSIS RTOS based Blinky example
. ®HE ARM Cortex MO plus 3 Devices J 1+~ CMSIS RTOS Blinky - CMSDK_CMOPIus (V2M-MPS2) | € Copy j‘CMS\S RTOS based Blinky example —]
+715 ARM Cortex M1 | 1 Device +-~CMSIS RTOS Blinky -CMSDK_CM3 (V2M-MPS52) & Copy | CMSIS RTOS based Blinky example
. @15 ARM Cortex M3 3 Devices -+~ CMSIS RTOS Blinky - CMSDK_CM4_FP (V2M-MP52) | Copy j‘CMS\S RTOS based Blinky example
+715 ARM Cortex M4 |4 Devices +-~CMSIS RTOS Blinky - CMSDK_CM7_SP (V2M-MP52) | 4 Copy | CMSIS RTOS based Blinky example
. #¥E ARM Cortex M7 6 Devices +--CMSIS-RTOS Validation {uVision Simulator) f’,:\'f Install J CMSIS-RTOS Validation Example
: + i ARM Cortex M23 |3 Devices CMSIS-RTOS2 Blinky (uVision Simulator) & Copy | CMSIS-RTOS2 Blinky example
. @ ARM Cortex M33 10 Devices CMSIS-RTOS2 FreeRTOS Blinky (uVision Simulator) @ Copy J CMSIS-RTOS2 Blinky example using FreaF—J
i 3 > - —— -
- @ ARM CortexM33 (MPS3) |3 Devices j 1] ~raein e e e Adart e g o~ | W rtamim mrmen va R , i
Output . x
Ready ONLINE

Click Copy and enter the Destination Folder name of your working directory.

Copy Example X

~Destination Folder -

] Ci\Projects L] Browse... |

|+ Use Pack Folder Structure v Launch pyision

Ok] Cancel |

NOTE
You must copy the example projects to a working directory of your choice.

* Enable Launch pVision to open the example project directly in the IDE.

Getting Started with MDK: Create Applications with yVision 15

= Enable Use Pack Folder Structure to copy example projects into a common
folder. This avoids overwriting files from other example projects. Disable
Use Pack Folder Structure to reduce the complexity of the example path.

* (Click OK to start the copy process.

Use an Example Application with pVision

uVision starts and loads the example project where you can:

Build the application, which compiles and links the related source files.

LopD

¥4 Download the application, typically to on-chip Flash ROM of a device.

@] Run the application on the target hardware using a debugger.

The step-by-step instructions show you how to execute these tasks. After copying
the example, pVision starts and looks like the picture below.

W C:\Projects\Boards\ ARM\V2M-MPS2\CMSDK_CMO\RTX_Blinky\Blinky.uvprojx - pVision

File Edit View Project Flash Debug Peripherals Taols SVCS Window Help

=T -y | s | = = e | B count JEe @-|lecoa-|B-]%
B - | B vammesz SEIN -EE]
Project i |] Abstract.txt =
7% Project: Blinky The 'RTX_Blinky' project is a simple CMSIS RTOS Kernel based example for
= &3 V2M-MPs2 ARM 'Cortex-M@' microcontroller using ARM 'V2M-MPS2' Evaluation Board.
5B SourceFiles Compliant to Cortex Microcontroller Software Interface Standard (GHSIS).
@ B""ky“_ Example functionality:
£ 5 Documentation - Clnck Settings:
] Abstract.bet - XTAL = 58 MHz
4 Board Support = G Z5CHE
B cmsis

The simple RTX Kernel based example similates the step-motor
o Deviee driver. Four LEDs are blinking simulating the activation of
the four output driver stages:

- phase A
- phase B

- phase C

- phase D

This example simulates Half step driver mode and

W rotation direction.

The Blinky program is available in different targets:

Simulator: configured for software Simulator

Fastiodels: configured for Fastdodels MPS2 Simulator

Build Output .8 x |

ULINK2/ME Cortex Debugger Lict CAP. NUM SCRL OVR R AWV

TIP: Most example projects contain an Abstract.txt file with essential
information about the operation and hardware configuration.

16 MDK Introduction

Build the Application

The Build Output window shows information about the build process. An error-
free build shows information about the program size.

Build Output a B
* Using Compiler 'V5.06 update & (build 750)', folder: 'C:\Keil vS\ARM\ARMCC\Bin' ~

Rebuild target 'V2ZM-MP52'

compiling GLCD Fonts.c...

compiling Blinky.c...

compiling GLCD V2M-MPSZ.c...

compiling LED VZIM-MPS5Z.c...

assembling startup CMS5DK CMO.s...

compiling RIX Conf CHM.c...

compiling system CMSDK CMO.c...

linking...
Program Size: Code=8976 RO-data=&6732 RW-data=%2 ZI-data=3620
" \Out\Blinky.axf" - 0 Error(s), O Warning(s).

Build Time Elapsed: ©00:00:01

Download the Application

Connect the target hardware to your computer
using a debug adapter that typically connects
via USB. Several evaluation boards provide
an on-board debug adapter.

Now, review the settings for the debug adapter. Typically, example projects are
pre-configured for evaluation kits; thus, you do not need to modify these settings.

X Click Options for Target on the toolbar and select the Debug tab. Verify
that the correct debug adapter of the evaluation board you are using is
selected and enabled. For example, CMSIS-DAP Debugger is a common
on-board debug adapter for various starter kits.

KA Opticns for Target 'STM32F746 Flash' >
Device] Target] Output] Listingl User] CJ'CH] Asm] Linker Litilties]
" Use Simulator with restrictions Settings & Use:

[™ Limit Speed to Real-Time

W Load Application at Startup ¥ FRunto main(} W Load Application at Startup W Fun to main{)

Getting Started with MDK: Create Applications with pVision

17

(¥ Enable Load Application at Startup for loading the application into the
uVision debugger whenever a debugging session is started.

Enable Run to main() for executing the instructions up to the first
executable statement of the main() function. The instructions are executed
upon each reset.

T1P: Click the button Settings to verify communication settings and diagnose
problems with your target hardware. For further details, click the button
Help in the dialogs. If you have any problems, refer to the user guide of the
starter kit.
%3 Click Download on the toolbar to load the application to your target
hardware.

Build Output B

Load "C:\\Workspaces\\MDE\\STM32\\MDE\\Boards\\ST\\5TM32F746G_Discovery\\Blinky\\Flash\\Blinky.axf"
Erase Done.

Programming Done.

Verifv CK.

Application running ...

Flash Load finished at 14:38:29

The Build Output window shows information about the download progress.

Run the Application
@] Click Start/Stop Debug Session on the toolbar to start debugging the
application on hardware.

5l Click Run on the debug toolbar to start executing the application. LEDs
should flash on the target hardware.

18

Access Documentation

MDK provides online manuals and context-sensitive help. The pVision Help
menu opens the main help system that includes the uVision User’s Guide, getting
started manuals, compiler, linker and assembler reference guides.

Many dialogs have context-sensitive Help buttons that access the documentation
and explain dialog options and settings.

You can press F1 in the editor to access help on language elements like RTOS
functions, compiler directives, or library routines. Use F1 in the command line of
the Output window for help on debug commands, and some error and warning
messages.

The Books window may include device reference guides, data sheets, or board
manuals. You can even add your own documentation and enable it in the Books
window using the menu Project — Manage — Components, Environment,
Books — Books.

The Manage Run-Time Environment dialog offers access to documentation via
links in the Description column.

In the Project window, you can right-click a software component group and open
the documentation of the corresponding element.

Access the pVision User’s Guide on-line: keil.com/support/man/docs/uv4.

Request Assistance

If you have suggestions or you have discovered an issue with the software, please
report them to us. Support information can be found at keil.com/support.

When reporting an issue, include your license code (if you have one) and product
version, available from the pVision menu Help — About.

On-line Learning

Our keil.com/learn website helps you to learn more about the programming of
Arm Cortex-based microcontrollers. It contains tutorials, further documentation,
as well as useful links to other websites.

Selected videos showing the tools and different aspects of software development
are available at keil.com/video.

Getting Started with MDK: Create Applications with pVision 19

CMSIS

The Cortex Microcontroller Software Interface Standard (CMSIS) provides a
standardized software framework for embedded applications that run on Cortex
based microcontrollers. CMSIS enables consistent and simple software interfaces
to the processor and the peripherals, simplifying software reuse, reducing the
learning curve for microcontroller developers.

CMSIS is available under an Apache 2.0 license and is publicly developed on
GitHub: https://github.com/ARM-software/CMSIS S.

NOTE
This chapter is a reference section. The chapter Create Applications on page 44
shows you how to use CMSIS for creating application code.

CMSIS provides a common approach to interface peripherals, real-time operating
systems, and middleware components. The CMSIS application software
components are:

= CMSIS-CORE: Defines the API for the Cortex-M processor core and
peripherals and includes a consistent system startup code. The software
components ::CMSIS:CORE and ::Device:Startup are all you need to
create and run applications on the native processor that uses exceptions,
interrupts, and device peripherals.

= CMSIS-RTOS2: Provides a standardized real-time operating system API
and enables software templates, middleware libraries, and other components
that can work across supported RTOS systems. This manual explains the
usage of the Keil RTXS implementation.

= CMSIS-DSP: Is a library collection for digital signal processing (DSP) with
over 60 Functions for various data types: fix-point (fractional q7, q15, q31)
and single precision floating-point (32-bit).

= CMSIS-Driver: Is a software API that describes peripheral driver interfaces
for middleware components and user applications. The CMSIS-Driver API is
designed to be generic and independent of a specific RTOS making it
reusable across a wide range of supported microcontroller devices.

= CMSIS-Zone: Defines methods to describe and partition system resources
into multiple projects and execution areas. The system resources may include
multiple processors, memory areas, peripherals and related interrupts.

20

CMSIS-CORE

This section explains the usage of CMSIS-CORE in applications that run natively
on a Cortex-M processor. This type of operation is known as bare-metal, because
it does not use a real-time operating system.

Using CMSIS-CORE

A native Cortex-M application with CMSIS uses the software component
::CMSIS:CORE, which should be used together with the software component
::Device:Startup. These components provide the following key files:

CMSIS

The startup_<device>.s file with reset startup_<device>.c [] cMsIs-CORE device files
handler and exception vectors. I [CMSIS-CORE header ies
The system_<device>.c configuration User program
file for basic device setup.

. system_<device>.c partition_<device>.h
The <device>.h header file for user _

d h . 11 CMSIS system & clock Secure attributes &
co e acces? ot e I’.I’IICI'OCOIIt'I”O er configuration interrupt assignment
device. This file is included in C
source files and defines:]

<user>.c/c++ <device>.h
= Peripheral access with User application CMSIS
standardized register layout. main() { ...} device peripheral access

= Access to interrupts and exceptions, and the Nested Interrupt Vector
Controller (NVIC).

= Intrinsic functions to generate special instructions, for example to
activate sleep mode.

= Systick timer (SYSTICK) functions to configure and start a periodic
timer interrupt.

= Debug access for printf-style I/O and ITM communication via on-chip
CoreSight.

The partition_<device>.h header file contains the initial setup of the TrustZone
hardware in an Armv8-M system (refer to section Secure/non-secure
programming).

NOTE

In actual file names, <device> is the name of the microcontroller device.

Getting Started with MDK: Create Applications with yVision

21

Adding CMSIS-CORE Components to the Project

The files for the components ::CMSIS:CORE and ::Device:Startup are added
to a project using the pVision dialog Manage Run-Time Environment. Just
select the software components as shown below:

Software Component Sel,

o CuMsis '
¥ CORE v
@ Dsp [
L@ NN Lib o

€ RTOS (API)

m @ RTOS2 (API)
w @ CMSIS Driver
[c3} ‘@ CMSIS Driver Validation
&= @ Caompiler
H @ Data Exchange
= @ Device

¥ Startup v

& 4 File System [
& Q Graphics
& 4 laT Client
& @ laT Service

<

Source

Yariant Yersion

|5.40

[ARM tompiler 1180

[Cotartup [+]2.03

MDK-Plus |~ |5.13.8

[MDK-Plus |+ |8.108

| Cortex Microcontroller Software Interface .Clomnonenlts ;
;CMSIS-COF!E for Cortex-I1, SCOCE SC300, ARMwE-IM, ARMWE. -1 .
| CIMSIS-DSP Library for Cortex-hd SCC00, and SC300

;CMSIS—NN Meural MNetwork Library

| CIVISIS-RTOS API for Cortex-Ivl. SC000 and SC300

;CMSIS-F!TOS AP| for Cortex-M, SCO00, and SC300

.UnifiEd.D.E\‘iEE Drivers comnlian.t.f-.o C..P«iS.I-S-D.ri'«.'ErISrJecification;

Description

Comf)iler Eﬁensions for.i\F'\"M C.ompiler.S an ARN’.I L;_ompi.ler &

: Data exchange or data forrmatter

| Startup. Systern Setup

:Systc-m and Startup for Generic Arm Cortex-M3 device
| File Access on various storage devices

| User Interface on graphical LCD dizplays

|oT cloud client connector

| 10T specific services -
; 1

Validation Qutput

Resalve ;.Seleci Packs - Details

Description

o]

Cancel] Help I

The pVision environment adds the related files.

Source Code Example

The following source code lines show the usage of the CMSIS-CORE layer.

Example of using the CMSIS-CORE layer

#include "stm32f4xx.h"

uint32 t volatile msTicks;
uint32 t volatile frequency;

void SysTick Handler (void) {

msTicks++;
}
void WaitForTick (void) {
uint32 t curTicks;
curTicks = msTicks;
while (msTicks == curTicks) ({

_WFE ();
}

// File name depends on device used

// Counter for millisecond Interval
// Frequency for timer

// SysTick Interrupt Handler
// Increment Counter

// Save Current SysTick Value
// Wait for next SysTick Interrupt
/ Power-Down until next Event

22 CMSIS
}
void TIM1 UP_IRQHandler (void) { // Timer Interrupt Handler
; // Add user code here
}
void timerl init (int frequency) { // Set up Timer (device specific)
NVIC SetPriority (TIM1 UP IRQn, 1); // Set Timer priority
NVIC EnableIRQ (TIM1 UP IRQn); // Enable Timer Interrupt
}

// Configure & Initialize the MCU
void Device Initialization (void) {
if (SysTick Config (SystemCoreClock / 1000)) { // SysTick 1lms
: // Handle Error

}
timerl init (frequency); // Setup device-specific timer
}

// The processor clock is initialized by CMSIS startup + system file
int main (void) { // User application starts here
Device Initialization (); // Configure & Initialize MCU

while (1) { // Endless Loop (the Super-Loop)
__disable irqg (); // Disable all interrupts
// Get InputValues ();
__enable irq (); // Enable all interrupts
// Process Values ();
WaitForTick (); // Synchronize to SysTick Timer
}
}

For more information, right-click the group CMSIS in the Project window, and
choose Open Documentation, or refer to the CMSIS-CORE documentation
arm-software.github.io/CMSIS 5/Core/html/index.html.

iT’fII [7] overview % I+ o — o x%
A S D www keil.com/pack/dor m 7 = 4 @

@!}MSIS CMSIS-COI’E (COI’teX-M) Version 5.3.0

CMSIS-Core support for Cortex-M processor-based devices
General CMSIS-Core(A) Driver | DSP | NN | RTOSvl | RIOSv2 | Pack | svb | DAP | Zone

T

¥ CMSIS-Core (Cortex-M)
¥ Overview

Overview

» Processor Support
Tested and Verified Toolchains CMSIS-Core (Cortex-M) implements the basic run-time system for a Cortex-M device and gives the user access

Revisian History of CMSIS-Core (Cortex-M) to the processor core and the device peripherals. In detail it defines:

» Using CMSIS in Embedded Applications + Hardware Abstraction Layer (HAL) for Cortex-M processor registers with standardized definitions for
» Using TrustZone for Ammv8-M the SysTick, NVIC, System Control Block registers, MPU registers, FPU registers, and core access
functions.

CMSIS-Core Device Templates
MISRA-C Deviations
Register Mapping

System exception names to interface to system exceptions without having compatibility issues.
Methods to organize header files that makes it easy to learn new Cortex-M microcontroller products
and improve software portability. This includes naming conventions for device-specific interrupts.
Methods for system initialization to be used by each MCU vendor. For example, the standardized
SystemInit() function is essential for configuring the clock system of the device.

Deprecated List

» Reference » Intrinsic functions used to generate CPU instructions that are not supported by standard C functions.
» Data Structures + A variable to determine the system clock frequency which simplifies the setup the SysTick timer.
» Data Fields The following sections provide details about the CMSIS-Core (Cortex-M):

» Using CMSIS in Embedded Applications describes the project setup and shows a simple program
example.
* Using TrustZone® for Armv8-M describes how to use the security extensions available in the Armv8-M

Generated on Wed Jul 10 2019 15:20:26 for CMSIS-Core (Cortex-M) Version 5,3.0 by Arm Ltd. All rights reserved,

Getting Started with MDK: Create Applications with pVision 23

CMSIS-RTOS2

This section introduces the CMSIS-RTOS2 API and the Keil RTXS5 real-time
operating system, describes their features and advantages, and explains
configuration settings of Keil RTXS.

NOTE

MDK is compatible with many third-party RTOS solutions. However,
CMSIS-RTOS Keil RTXS is feature-rich and tailored towards the requirements of
deeply embedded systems. Also, it is well integrated into MDK.

While CMSIS-RTOS Keil RTX5 is open source, a variant certified for functional
safety applications is available as well. See keil.com/fusa-rts for details.

Software Concepts

There are two basic design concepts for embedded applications:

= Infinite Loop Design: involves running the program as an endless loop.
Program functions (threads) are called from within the loop, while interrupt
service routines (ISRs) perform time-critical jobs including some data
processing.

* RTOS Design: involves running several threads with a real-time operating
system (RTOS). The RTOS provides inter-thread communication and time
management functions. A pre-emptive RTOS reduces the complexity of
interrupt functions, because high-priority threads can perform time-critical
data processing.

Infinite Loop Design

Running an embedded program in an endless loop is an adequate solution for
simple embedded applications. Time-critical functions, typically triggered by
hardware interrupts, execute in an ISR that also performs any required data
processing. The main loop contains only basic operations that are not time-critical
and run in the background.

24 CMSIS

Advantages of an RTOS Kernel

RTOS kernels, like the Keil RTXS, are based on the idea of parallel execution
threads (tasks). As in the real world, your application will have to fulfill multiple
different tasks. An RTOS-based application recreates this model in your software
with various benefits:

* Thread priority and run-time scheduling is reliably handled by the RTOS.

» The RTOS provides a well-defined interface for communication between
threads.

» A pre-emptive multi-tasking concept simplifies the progressive enhancement
of an application even across a larger development team. New functionality
can be added without risking the response time of more critical threads.

* Infinite loop software concepts often poll for occurred interrupts. In contrast,
RTOS kernels themselves are interrupt driven and can largely eliminate
polling. This allows the CPU to sleep or process threads more often.

Modern RTOS kernels are transparent to the interrupt system, which is
mandatory for systems with hard real-time requirements. Communication
facilities can be used for IRQ-to-task communication.

Using Keil RTX5

The Keil RTX 5 implements the CMSIS-RTOS API v2 as a native RTOS
interface for Cortex-M processor-based devices.

Once the execution reaches main(), there is a recommended order to initialize the
hardware and start the kernel. The main() of your application should implement at
least the following in the given order:

1. Initialization and configuration of hardware including peripheral, memory,
pin, clock, and interrupt system.

2. Update SystemCoreClock using the respective CMSIS-CORE function.
3. Initialize CMSIS-RTOS kernel using osKernellnitialize.

4. Optionally, create a new thread app _main, which is used as a main thread
using osThreadNew. Alternatively, threads can be created in main() directly.

5. Start RTOS scheduler using osKernelStart. osKernelStart does not return in
case of successful execution. Any application code after osKernelStart will
not be executed unless osKernelStart fails.

Getting Started with MDK: Create Applications with yVision

25

The software component ::CMSIS:RTOS2 (API):Keil RTXS must be used
together with the components ::CMSIS:CORE and ::Device:Startup explained
in Using CMSIS-CORE section.

Central Keil RTXS5 files are:

The header file emsis_os2.h exposes the RTX functionality to the user
application via CMSIS-RTOS2 API.

The configuration files RTX Config.c/.h define thread options, timer
configurations, and RTX kernel settings.

The file RTX <core>.lib contains the library with RTOS functions and gets
included when RTXS is used in a library variant. In this case rex_lib.c file
contains the RTXS library configuration.

Section Project with CMSIS-RTOS2 gives an example how to setup a project
based on Keil RTXS.

Adding Keil RTX5 Components to the Project

The files for the components ::CMSIS:RTOS2 (API):Keil RTXS,
::CMSIS:CORE and ::Device:Startup are added to a project using the pVision
dialog Manage Run-Time Environment. Just select the software components as
shown below:

Software Component Sel, Yariant Version Description
= @ CMéIS [. [| Cortex Microcontroller Soﬂ'w.-are Interface .Comnonents _A_
o CORE r\: . :5.4.'3 :CMSIS—COPE for Cortex-M, SCO0E SC300, ARMwE-M, ARMWE.1-M .
@ Dsp [~ Source [“1120 | CISIS-DSP Library for Cortex-l SCO00 and SC300
@ NNLib | T [130 | CMSIS-NN Neural Network Library
w4 RTOS (API) ' 100 | CMSIS-RTOS APl for Cartex-h_SC00D and 5C300
o % RTOS2(4P) ' [21.3 | CIVSIS-RTOS AP for Cortex-I. SC000. and SCI00
¢ EEEE - [souce |]552 CMSIS-RTOS2 RTAS for Cortex-hd SC000 SC300 ARMVE-I. ARM:E
2] @ CIMSIS Driver | Unified Device Drivers compliant to CPSIS-Driver Specifications
[@ CIMSIS Driver Validation Source =
&3] @ Compiler [2R Compiler [1.60 :Compiler Extensions for ARM Compiler 5 and ARM Compiler &
&2 @ Data Exchange . [}Ijafa exchange or data formatter
B ‘@ Device . | ;Startug System Setup
L@ Startup v C étartup [“lz03 System and ;Startup for Generic Arm Cartex-M3 device
[2z) @ File System .MDI{-F’Ius v 6.13.8 :F”E Access on various storage devices
E2] @ Graphics MDK-Plus jv., 6108 | Userlnterface on qr;phicaILtD displays
® @ 10T Client . | 10T cloud client connector =
41 | | 5
Validation Qutput Description
Resolve “Seleci Packs Details oK | Cancel Help

26 CMSIS

Library variant of Keil RTXS has more compact code, while source variant
allows full program debug and supports RTOS-aware debugging via Event
Recorder support.

CMSIS-RTOS2 API Functions

The file emsis_os2.h is a standard header file that defines interfaces to every
CMSIS-RTOS API v2 compliant RTOS.

All definitions in the header file are prefixed with os to give a unique name space
for the CMSIS-RTOS functions.

All definitions and functions that belong to a module are grouped and have a
common prefix, for example, osThread for threads.

Refer to section Reference: CMSIS-RTOS2 API of the online documentation at
arm-software.github.io/CMSIS 5/RTOS2/html/index.html, for more
information.

Keil RTX5 Configuration

The file RTX_Config.h contains configuration parameters for Keil RTXS. A
copy of this file is part of every project using the RTX component.

] RTX_Config.h

Expand All | Collapse All J Help

Cption Value

=I-Systern Configuration

Global Dynamic Memory size [bytes] 4096

Kernel Tick Frequency [Hz] 1000
#-Round-Robin Thread switching 2

ISR FIFO Queue 16 entries

Chbject Memory usage counters []

4~ Thread Configuration

- Timer Configuration
+-Event Flags Configuration
[#--Mutex Configuration
+-Semaphore Configuration
#--Memory Pool Configuration
+--Message Queue Configuration

[#--Event Recorder Configuration

Text Editor)\C_onfigur_at_iqu Wizard /

You can set various system parameters such as the Tick Timer frequency, Round-
Robin time slice, specify configurations for specific RTOS objects, such as

Getting Started with MDK: Create Applications with yVision

27

threads, timers, event flags, mutexes, semaphores, memory pools, and message
queues, as well configure Event Recorder operation.

For more information about configuration options, open the RTX documentation
from the Manage Run-Time Environment window. The section Configure
RTX v5 describes all available settings:

arm-software.github.io/CMSIS 5/RTOS2/html/config rtx5.html

CMSIS-RTOS User Code Templates

MDK provides user code templates you can use to create C source code for the
application.

(¥ Inthe Project window, right click a group, select Add New Item to Group,
choose User Code Template, select any template and click Add.

@ CRis () Add template fle(s) to the prc:qeu;t.

= Component Mame
\J C++ File {.cpp) L—.IQ' CMSIS =
[RTOS2:Keil RTXS CISIS- R'I'OSZ main' function
Asm File {5}]
- RTOS2:Keil RTX5 CMSIS-RTOS2 Events
h | Header File (b 2 RTO52:Keil RTX5 CRSIS-RTOS2 Mermory Pool
RTOS2:Keil RTX3 CMSIS-RTOS52 Message Queue
= Tt e (1) RTOSZKeil RTX5 | CMSIS-RTOS2 Mutex
4 - RTOS2:Keil RTXS CPSIS-RTOS2 SV User Table
=l Image File {, i | =
=2 --RTOSZ:Keil RTX5 CMSIS-RTOS2 Semaphore
@ User Code Template RETOS2:Keil RTX5 CMSIS F‘TOSE Thread
- RTOS52:Keil RTX5 CRSIS-RTOS2 Timer _‘_1
Type: I User Code Template
Mame: Imain.c
Location: IC:'.Projects'.,BIinky_RTDS |

Add Close Help |

28 CMSIS

Source Code Example

Once these files are part of the project, developers can start using the CMSIS-
RTOS2 RTX functions.

The code example shows the use of CMSIS-RTOS RTX functions.
#include "cmsis os2.h" // CMSIS RTOS2 header file
void app main (void *argument) {

tid phaseA = osThreadNew (phaseA, NULL, NULL);

osDelay (osWaitForever) ;

while (1) ;
}

int main (void) {

// System Initialization
SystemCoreClockUpdate () ;

osKernelInitialize () ; // Initialize CMSIS-RTOS
osThreadNew (app main, NULL, NULL) ; // Create application main thread
if (osKernelGetState() == osKernelReady) {
osKernelStart () ; // Start thread execution
}
while (1) ;

}

Section Project with CMSIS-RTOS2 explains in details how to setup an RTOS-
based application using Keil RTXS.

Getting Started with MDK: Create Applications with pVision 29
Component Viewer for RTX RTOS
Keil RTXS5 comes with an SCVD file for the Component Viewer for RTOS
aware debugging. In the debugger, open View — Watch Windows — RTX
RTOS. This window shows system state information and the running threads.
The System property shows RITX RTOS ~ g
general information about the pmff Nale
RTQS cpnﬁgura‘uon in the & Fornol I TR
apphcatlon. # Kernel State osKernelRunning
¥ Kernel Tick Count 201385
The Threads property shows # Kernel Tick Frequency 1000
details about thread execution of ¥ o ol ok Lot)
. . ¥ FRound Rebin Timeout 5
Fhe appll(;atlon. For eaCh thread’ ¥ Global Dynamic Memory Base: (20000000, Size: 4096,
1t ShOWS lnfOI‘Inatlon about W Stack Overrun Check Enabled
priority’ execution state and ¥ Stack Usage Watermark Enabled
W Default Thread Stack Size 256
StaCk usage' ¥ ISR FIFD Cueue Size: 16, Used: &
. = “5 Threads
If the Optlon _StaCk usage el *’f;‘} iel: 320001200 "osRbddleThread” osThreadReady, osPriorityldl...
watermark 1S enabled fOI‘ ¥ id (20001314 "osRbTimerThread" osThreadBlocked, osPrierity...
Thread Conﬁguration ln the =% id Ox200000D8 "app_main” osThreadRunning, osPriority...
W Stat =ThreadRunni
il RTX_Conig I he el e
Stack shows the stack load. This ¥ Attributes oeThreadDetached
allOWS you to: =¥ Stack Used: 95 [118], Max: 24% [288]
¥ Used 116
= Identify stack overflows ¢ Max 288
. . ¥ Top Ox20001ADS
during thread execution o i e
or ¥ Limit Onc2 0001628
o ¢ Sie 1200
= Optimize and reduce the ¢ Flags —— i
stack space used for B Mutexes
#*T5 Message Queues
threads. =

Information about other RTXS5 objects, such as mutexes, semaphores, message
queues, 1s provided in corresponding properties as well.

NOTE

The uVision debugger also provides a view with detailed runtime information.
Refer to Event Recorder on page 74 for more information.

30 CMSIS

CMSIS-DSP

The CMSIS-DSP library is a suite of common digital signal processing (DSP)
functions. The library is available in several variants optimized for different Arm
Cortex-M processors.

When enabling the software component ::CMSIS:DSP in the Manage Run-
Time Environment dialog, the appropriate library for the selected device is
automatically included into the project. It is also possible to select source-code
variant,.

Software Component Sel. Yariant Version Description

= @ CMQIS . . [| Cortex Microcon.troller Soﬁware Inferface .Comnonen.t: a
@ CORE 2 [540 | CIMSIS-CORE for Cortexchd SC000 SC300 ARMVE-M. ARMMEI-M |
CENN - [ibery <180 |CMSIS-DSP Library for Cortex-M_5C000. and SC300
- ¥ NMLib [T [Gbray |30 | CIMSIS-NN Neursl Network Library
€ RTOS (4PI) Source 1.00 | CMSIS-RTOS AP for Cortex-l SC000, and 5C300
- RTOSZ (4P1) ' | [21.3 | CIMSIS-TOS API for Cortex-I, SC000, and SC300

A v ' i T T o D

The code example below shows the use of CMSIS-DSP library functions.

Multiplication of two matrixes using DSP functions

#include "arm math.h" // ARM::CMSIS:DSP

const float32 t buf A[9] = { // Matrix A buffer and values
1.0, 32.0, 4.0,

1.0, 32.0, 64.0,

1.0, 16.0, 4.0,

}i

float32 t buf AT[9]; // Buffer for A Transpose (AT)
float32 t buf ATmA[9] ; // Buffer for (AT * A)

arm matrix instance £f32 A; // Matrix A

arm matrix instance f32 AT; // Matrix AT (A transpose)

arm matrix instance f32 ATmA; // Matrix ATmA (AT multiplied by A)
uint32 t rows = 3; // Matrix rows

uint32 t cols EF // Matrix columns

int main(void) {
// Initialize all matrixes with rows, columns, and data array
arm mat init £32 (&A, rows, cols, (float32 t *)buf A); // Matrix A

arm mat init £32 (&AT, rows, cols, buf AT); // Matrix AT
arm mat init £32 (&ATmA, rows, cols, buf ATmA); // Matrix ATmA
arm mat trans £32 (&A, &AT); // Calculate A Transpose (AT)

arm mat mult £32 (&AT, &A, &ATmA); // Multiply AT with A

while (1);

Getting Started with MDK: Create Applications with yVision 31

For more information, refer to the CMSIS-DSP documentation on
arm-software.github.io/CMSIS 5/DSP/html/index.html.

B 1—E|| [3] Reference * |+ N — | X

<~ — (] {nr 0 www.keil.com/pack/doc/CMSIS/DSP/htmil/madules.html W 3= f;. =3

GGMSIS CMSIS DSP Version 1.7.0

COMPLIANT
CMSIS DSP Software Library
General CMSIS-Core{A) | CMSIS-Core{M) Driver m NN | RTOS v1 | RTOS v2 | Pack |
SVD | DAP | Zone |

Main Page | Usage and Description

v CMSIS-DSP
CMSIS DSP Software Library
Revision History of CMSIS-DSP

Reference

Here is a list of all medules:

Deprecated List
| slhsies ' [detail level 12 3]
» Data Structures | * Basic Math Functions
» Data Fields » Fast Math Functions

» Complex Math Functions
» Filtering Functions

* Matrix Functions

* Transform Functions

* Controller Functions

* Statistics Functions

¥ Support Functions

» Interpolation Functions
¥ Examples

Generated on Wed Jul 10 2019 15:20:40 for CMSIS-DSP Version 1.7.0 by Arm Ltd. All rights reserved.

32 CMSIS

CMSIS-Driver

Device-specific CMSIS-Drivers provide the interface between the middleware
and the microcontroller peripherals. These drivers are not limited to the MDK-

Middleware and are useful for various other middleware stacks to utilize those

peripherals.

The device-specific drivers are usually part of the software pack that supports the
microcontroller device and comply with the CMSIS-Driver standard. The device
database on https://developer.arm.com/embedded/cmsis/cmsis-packs/devices/
lists drivers included in the software pack for the device.

Device Software Packs
Device Pack contral Middleware
tro
Startup/System su':‘m
USB E USB Controller USB Device Driver USB Device
Ethernet E Ethernet PHY Ethernet PHY

1
Ethernet MAC Ethernet MAC - TCP/IP Networking

rxo/mo 5 USART T O USARTO |

WiFi Driver

SPIO E SP| Controller SPI Driver

RX/TX E CAN Controller CAN Driver CAND

SPI1 E SPI Controller Flash Driver
SDI00 E SDIO MCI Driver File System
[Fla] E Memory Controller NAND Driver

UsB E USB Controller USB Host Driver USB Host

RTE_Device.h
Configuration File

Middleware components usually have various configuration files that connect to
these drivers. Depending on the device, an RTE_Device.h file configures the
drivers to the actual pin connection of the microcontroller device. Some devices
require specific third-party tools to configure the hardware correctly.

The middleware/application code connects to a driver instance via a control
struct. The name of this control struct reflects the peripheral interface of the
device. Drivers for most of the communication peripherals are part of the
software packs that provide device support.

Getting Started with MDK: Create Applications with pVision

33

Use traditional C source code to implement missing drivers according the
CMSIS-Driver standard.

Refer to arm-software.github.io/CMSIS 5/Driver/html/index.html for detailed
information about the API interface of these CMSIS drivers.

ARM::CMSIS-Driver pack contains example CMSIS-Driver implementations
for such interfaces as WiFi, Ethernet, Flash, I2C and SPI.

Configuration

There are multiple ways to configure a CMSIS-Driver. The classical method is
using the RTE Device.h file that comes with the device support.

Other devices may be configured using third party graphical configuration tools
that allow the user to configure the device pin locations and the corresponding
drivers. Usually, these configuration tools automatically create the required C
code for import into the pVision project.

Using RTE_Device.h

For most devices, the RTE Device.h file configures the drivers to the actual pin
connection of the microcontroller device:

| RTE_Deviceh - X
Expand Al 1 Collapse All I Help [~ Show Grid
Option Value
= USBO Controller [Driver_USBDO and Driver USBHO] 7 -
=-Pin Configuration
USBO_PPWR (Host)
USBO_PWR_FAULT (Host)

USBO_INDD
USBO_IND1
- Device [Driver_USBDO]

#-USB1 Controller [Driver_USBD1 and Driver_USEH1]
H-EMET (Ethernet Interface) [Driver_ ETH_MACD]
USBO_PPWR (Host)
VBUS drive signal {towards external charge purnp or power ranagement
unit).

Text Editor }\ Configuration Wizard I.l'r

Using the Configuration Wizard view, you can configure the driver interfaces in
a graphical mode without the need to edit manually the #defines in this header
file.

34 CMSIS

Using STM32CubeMX

MDK supports CMSIS-Driver configuration for STM32 devices using
STM32CubeMX. This graphical software configuration tool allows you to
generate C initialization code using graphical wizards for STMicroelectronics
devices.

Simply select the required CMSIS-Driver in the Manage Run-Time Environment
window and choose Device:STM32Cube Framework (API):STM32CubeMX.
This will open STM32CubeMX for device and driver configuration. Once
finished, generate the configuration code and import it into pVision.

For more information, visit the online documentation at
keil.com/pack/doc/STM32Cube/General/html/index.html.

Validation Suites for Drivers and RTOS

Software packs to validate user-written CMSIS-Drivers or a new implementation
of a CMSIS-RTOS are available from keil.com/pack. They contain the source
code and documentation of the validation suites along with required configuration
files, and examples that show the usage on various target platforms.

The CMSIS-Driver validation suite performs the following tests:
» QGeneric validation of API function calls
» Validation of configuration parameters
» Validation of communication with loopback tests
* Validation of communication parameters such as baudrate
= Validation of event functions

The test results can be printed to a console, output via ITM printf, or output to a
memory buffer. Refer to the Driver Validation section in the documentation at
arm-software.github.io/CMSIS 5/Driver/html/driverValidation.html.

The CMSIS-RTOS validation suite performs generic validation of various RTOS
features. The test cases verify the functional behavior, test invalid parameters and
call management functions from ISR.

The validation output can be printed to a console, output via I'TM printf, or output
to a memory buffer. Refer to the section RTOS Validation in the documentation
at arm-software.github.io/CMSIS 5/RTOS2/html/rtosValidation.html.

Getting Started with MDK: Create Applications with pVision 35

Software Components

The development of complex embedded applications requires a modular
architecture with multiple own and third-party components used. MDK and
CMSIS allow to easily integrate and maintain software components in your
projects.

Use Software Packs

Software packs contain information about microcontroller devices and software
components that are available for the application as building blocks.

The device information pre-configures development tools for you and shows only
the options that are relevant for the selected device.

k2 Start uVision and use the menu Project - New pVision Project. After you
have selected a project directory and specified the project name, select a
target device.

Select Device for Target 'Target 1'.., *

Device]

|Soﬂ\-\'are Packs L]

Wendor: 5TMicroelectronics
Device: STM3Z2F746BETx

Toolset:. ARM
Search:
Description:
=~ STMicroelectronics j The STM32F7 family incomporates high-speed embedded memories and

an extensive range of enhanced /0= and penpherals connected to

=1 STM32FT Series two APB buses, three AHB buses and a 32-bit multi-AHB bus matric.

44 STM32F745
ot STM32F746
=% STM32F746BE

- B4-Kbyte of CCM {core coupled memory) data RAM
- LCD pargllel interface, 8080/6800 modes

- Timer with gquadrature {incremental) encoder input

- 5 V4olerant 1/0s

\ - STM32F746BE] - Parallsl camera interface
@ 7§ STM32FT46BG - True random number generator
¥ -RTC: subsecond accuracy, hardware calendar
@-*t§ STM32FT46IE - 96t unique 1D
[% STM32F746IG
! | ahd
oK | Cancel] Heln

TIP: Only devices that are part of the installed software packs are shown. If you
are missing a device, use the Pack Installer to add the related software
pack. The search box helps you to narrow down the list of devices.

36

@ After selecting the device, the Manage Run-Time Environment window
shows the related software components for this device.

kA Manage Run-Time Environment x
Software Component Sel. Variant Version Description
=] @’ CMSIS Cortex Micrecontroller Software Interface Components j
¥ CORE c [42.0 | CMSIS-CORE for Cortex-I. SCO0D, and SC300
@ Dsp [[146 | CMSIS-DSP Library for Cortex-M. SCOD0. and 5C300
w4 RTOS (API) ' [10 | CMSIS-RTOS API for Cortex-M, SC000, and SC300
= @’ CMSIS Driver | | Unified Device Drivers compliant te CIMSI5-Driver Specifications
@€ Ethemet (AP) | [201 | Ethernet MAC and PHY Driver API for Cortex-M
[‘@ Ethernet MAC [API) .2.01 .Ethemet MAC Driver AP for Cortex-M
-4 Ethernet PHY (API) | [200 | Ethernet PHY Driver API for Cortex-M
@4 Flash (AP) |2.00 | Flash Driver AP! for Cortex-M
=€ 12C (APY) ' [202 [12C Driver API for Cortex-M
v 1c I [11 |12C Driver for STM32F7 Series
w @ MCl (Pl | [202 | MCI Driver AP for Cortex-M
=4 NAND (API) (201 | NAND Flash Driver API for Cortex-M
w @ SAL(APY ' [1.00 | SAI Driver API for Cortex-M
w4 SPI(API) [201 | 5Pl Driver APl for Cortex-M
@ € USART (4PI) | [201 |USART Driver API for Cortex-M
-4 USE Device (AP) [201 | USE Device Driver AP for Cortex-M i
@€ USB Host (4PI) ' [201 | USB Host Driver API for Cortex-I
R 3 Compiler | | ARM Compiler Software Extensions
£ 4 Device | | .Startug. System Setup
W Startup [+ [to1 | System Startup for STMicroelectronics STM32FT Series
@€ STM32Cube Framework (AP1) | | ' | STM32Cube Framework o
S TR AN s P WL e S N S S S TH T YL = S, =
Validation Output Description
=4 Keil::CMSIS Driver:12C Additional software components required -
= require Device:5TM32Cube HALDMA Select component from list
W Keil:Device:5STM32Cube HALDMA | DMA controller (DMA) HAL driver
=1-require Device:5STM32Cube HAL: Commeon Select component from list
@ Keil:Device:STM32Cube HAL: Common | Common HAL driver
= require Device:5TM32Cube HALRCC Select component from list
¥ Keil:Device:5TM32Cube HALRCC | Reset and clock control (RCC) HAL driver LJ
Resolve | |Select Packs | | Details ok | canel | Heip

T1P: The links in the column Description provide access to the documentation of
each software component.

NOTE

The notation ::<Component Class>:<Group>:<Name> is used to refer to
components. For example, ::CMSIS:CORE refers to the component CMSIS-
CORE selected in the dialog above.

Software Component Overview

The following table shows the software components included with a typical MDK
installation. Depending on your MDK edition and selected device, some of these
software components might not be available in the Manage Run-Time
Environment window. In case you have installed additional software packs, more
software components will be available.

Software Components

Getting Started with MDK: Create Applications with yVision

Software Component Description Page

CMSIS CMSIS interface components, such as CORE, DSP, 19
and CMSIS-RTOS.

CMSIS Driver Unified device drivers for middleware and user 19
applications.

Compiler Arm Compiler specific software components to retarget 39

I/0 operations for example for printf style debugging.
Event recorder for debugging software components and
user application code.

Board Support Interfaces to the peripherals of evaluation boards. 42

loT Clients Components for communication with cloud services. 43

Device System startup and low-level device drivers. 58

File System Middleware component for file access on various 93
storage device types.

Graphics Middleware component for creating graphical user 95
interfaces.

Network Middleware component for TCP/IP networking using 91
Ethernet or serial protocols.

UsB Middleware component for USB Host and USB Device 94
supporting standard USB Device classes.

Mbed loT Components Mbed libraries for secure communication and 96
cryptography

Product Lifecycle Management with Software
Packs

MDK allows you to install multiple versions of a software pack. This enables
product lifecycle management (PLM) as it is common for many projects.

There are four distinct phases of PLM:

* Concept: Definition of major project requirements and exploration with a
functional prototype.

= Design: Prototype testing and implementation of the product based on the
final technical features and requirements.

= Release: The product is manufactured and brought to market.

= Service: Maintenance of the products including support for customers;
finally, phase-out or end-of-life.

38 Software Components

In the concept and design phase, you normally want to use the latest software
packs to be able to incorporate new features and bug fixes quickly. Before
product release, you will freeze the software components to a known tested state.
In the product service phase, use the fixed versions of the software components to
support customers in the field.

@4 The dialog Select Software Packs helps you to manage the versions of each
software pack in your project:

I Use Iatest versions of &l installed Software Packs
Pack Selection Yersion Description
B~ ARM:=CIMSIS latest &[570 [chsis (Cortex Microcontroller Software Interface Standard) =
0 A
56,0 (]
O ARM:CMSIS-Driver fied || 260 CMSIS Drivers for external devices
261 | '
26—
2,50 -
241 N
B ARM:CMEIS-Driver_Validation excluded [+ | | CMSIs-Driver Validation =
ARM:Musca-51_DFP .excludecl_v Musca-51 (with Dn-chip eMRAM and Cr,fptDCeIIj device and board support pack
~ARM:TFM excluded v [Trusted Firmware-M (TF-M] reference implementation of Arm's Platform Securit
ARM:zmbedCrypto excluded |~ ARM mbed Cryptographic library
- ARM:mbedTLS excluded v | LR mbed Cryptographic and S5L/TLS library
Hitexe: CMSIS_RTOS Tutarial .r:xcludecl_v An Introduction to u:ing CMSIS RTOS for Cortex-M Microcontrollers
- Keil:ARM_Compiler fixed [¢]1.63 | Keil ARM Compiler extensions for ARM Compiler 3 and ARM Compiler &
163 2
-1.8.3-devl [=
16.2 N
Keil:BulbBoard_BSP excluded |~ | .Glyn Bulb Board Development Board Support Package
Keil:FMOplus_DFP .excludecl_v Cypress FWIR+ Series Device Support
~Keil:MDK-Middleware excluded |« | Midelleware for Keil MDK-Professional and MDK-Plus
Keil::532K116_SDK_DFP excluded |~ MAP 532K116 SDK including 532K116 basic CMSIS Device Support A_’_j
4 +
OK | Cancel 1 Help

When the project is completed, disable the option Use latest version of all
installed Software Packs and specify the software packs with the settings under
Selection:

= Jatest: use the latest version of a software pack. Software components are
updated when a newer software pack version is installed.

* fixed: specify an installed version of the software pack. Software components
in the project target will use these versions.

= excluded: no software components from this software pack are used.

The colors indicate the usage of software components in the current project
target:

Some software components from this pack are used.

Getting Started with MDK: Create Applications with pVision 39

. Some software components from this pack are used, but the pack is
excluded.
No software component from this pack is used.

Software Version Control Systems (SVCS)

uVision carries template files for GIT, SVN, CVS, and others to support
Software Version Control Systems (SVCS).

Application note 279 “Using Git for Project Management with pVision”
(keil.com/appnotes/docs/apnt_279.asp) describes how to establish a robust
workflow for version control of projects using software packs.

Compiler:Event Recorder

Modern microcontroller applications often contain middleware components,
which are normally a "black box" to the application programmer. Even when
comprehensive documentation and source code is provided, analyzing of
potential issues is challenging.

The software component Compiler:Event Recorder uses event annotations in
the application code or software component libraries to provide event timing and
data information while the program is executing. This event information is stored
in an event buffer on the target system that is continuously read by the debug unit
and displayed in the event recorder window of the uVision debugger.

Application Code

Event Annotations

!

Event Recorder Debug

l

Event Buffer

Memory

During program execution, the pVision debugger reads the content of the event
buffer using a debug adapter that is connected via JTAG or SWD to the
CoreSight Debug Access Port (DAP). The event recorder requires no trace
hardware and can therefore be used on any Cortex-M processor-based device.

40 Software Components

To display the data stored in the event buffer in a human readable way, you need
to create a Software Component Viewer Description (SCVD) file. Refer to:
keil.com/pack/doc/compiler/EventRecorder/html/index.html

The section Event Recorder on page 74 shows how to use the event recorder in a
debug session.

Compiler:1/O

The software component Compiler:I/O allows you to retarget I/O functions of
the standard C run-time library. Application code frequently uses standard I/O
library functions, such as printf(), scanf(), or fgetc() to perform input/output
operations.

The structure of these functions in the standard Arm Compiler C run-time library
is:

High-Level Functions [
printf, scanf, etc. ‘

Hardware independent

Low-Level Functions {
fputc, fgetc, etc.

System 1/O Functions
_sys_write, _sys_read, etc.

Hardware
dependent

The high-level and low-level functions are not target-dependent and use the
system /O functions to interface with hardware.

The MicroLib of the Arm Compiler C run-time library interfaces with the
hardware via low-level functions. The MicroLib implements a reduced set of
high-level functions and therefore does not implement system /O functions.

The software component Compiler:1/O retargets the 1/O functions for the various
standard I/O channels: File, STDERR, STDIN, STDOUT, and TTY:

Getting Started with MDK: Create Applications with yVision 41

Manage Run-Time Environment x
Software Component Sel. Variant Version Description
& @ Board Support MCB1800 100 Keil Development Board MCB1300
3] @ CMEIS ' [[Cortex Microcontroller Software Interface Components
[@ CMSIS Driver . [| Unified Device Drivers comg.lianf to CMSI5-Driver Sgeci’fic-at.i.ons
=4 Compiler |ARM Compiler |1.20 | Compiler Extensions for ARM Compiler ARMCC and ARMClang
¥ Event Recorder I_ ' DAP .1.1.1'3 .I;:\reni: F‘.ecording using Débug ,.C\ccess ii‘crr’.c '§E]AI3'
EQ’ /0 . [-Retarget Input/Cutput
W File I [File Sg-,rstem [120 |use retargefi-ng fog&ﬁer with the File System component.
¥ STDERR " . Breakpoint G120 -Stcrp prug.ram execution at a breakpoiﬁt when usin.é STDERR
@ STDIN I mm [v|120 [Retrieve STDIN from a debug output window using [TM
@ stoout [[EvR (01120 |Redirect STDOUT to a debug output window using. Event Recorder
@ TIV I |User v 120 | Redirect TTY to a user defined output.targe‘.c
Validation Cutput Description
Fesove | | Selec Packs| | Datas | o | _coed | __re |

1/0 Channel Description

File Channel for all file related operations (fscanf, fprintf, fopen, fclose, etc.)
STDERR Standard error stream of the application to output diagnostic messages.
STDIN Standard input stream going into the application (scanf etc.).

STDOUT Standard output stream of the application (printf etc.).

TTY Teletypewriter which is the last resort for an error output.

The variant selection allows you to change the hardware interface of the I/O
channel.

Variant Description

File System Use the File System component as the interface for File related operations
EVR Use the event recorder to display printf debug messages
Breakpoint When the I/O channel is used, the application stops with BKPT instruction.
IT™ Use Instrumentation Trace Macrocell (ITM) for I/O communication via the debugger.
User Retarget I/O functions to a user defined routine (such as USART, keyboard).
Debug (printf] Viewer
The software component Compiler adds the file T lne = GETOT
retarget_io.c that will be configured acording to the e
. - . . value = 0Ox
variant settings. For the User variant, user code AD value = 0x101
. : BD value = 0x101
templates are ayallable that help you to 1mplernept ia i b
your own functionality. Refer to the documentation AD value = 0x101
. . AD value = 0x101
for more information. T vatne = BeipT
. A AD value = 0x101
ITM in the Cortex-M3/M4/M?7 supports printf style LD value = 0x101
debugging. If you choose the variant ITM, the I/O
é?j-:all Stack + Locals @Debug [printf] Vi...

42 Software Components

library functions perform I/O operations via the Debug (printf) Viewer window.

As ITM is not available in Cortex-M0/M0+ devices, you can use the event
recorder to display printf debug messages. Use the EVR variant of the STDOUT
I/0 channel for this purpose (works with all Cortex-M based devices).

For more details refer to:
keil.com/pack/doc/compiler/RetargetlO/html/index.html

Board Support

There are a couple of interfaces that are frequently used on development boards,
such as LEDs, push buttons, joysticks, A/D and D/A converters, LCDs, and
touchscreens as well as external sensors such as thermometers, accelerometers,
magnetometers, and gyroscopes.

The Board Support Interface API provides standardized access to these
interfaces. This enables software developers to concentrate on their application
code instead of checking device manuals for register settings to toggle a GPIO.

Many Device Family Packs (DFPs) have board support included. You can choose
board support from the Manage Run-Time Environment window:

Software Component Sel. Variant Version Description
= 4 Board Support STM22F746G-Discovery E 1.00 STMicroelectronics STM32F746G-Discovery Kit
= i‘%’ Buttons (API} 1.00 Buttons Interface
¥ Buttons [+ 1.00 Buttons Interface for STMicroelectronics STM32F746G-Discovery Kit
-4 Drivers . .Kinetis BSP Drivers
=R Graphic LCD [APT) . 1.00 Graphic LCD Interface
=4 LED (APT) . 1.00 LED Interface
¥ LED [¥ 1.00 LED Interface for STMicroelectronics STM32F746G-Discovery Kit
=3} i‘%’ Touchscreen (AP | 1.00 | Touchscreen Interface
& € emWin LCD (AP]) ' 11 | emWinLCDInterface

Be sure to select the correct Variant to enable the correct pin configurations for
your development board.

You can add board support to your custom board by creating the required support
files for your board’s software pack. Refer to the APl documentation available at:
keil.com/pack/doc/mw/Board/html/index.html

Getting Started with MDK: Create Applications with yVision

43

loT Clients

A set of MDK-Packs provides building blocks that enable secure connection from
a device to a cloud provider of choice.

Application

loT client
Mbed TLS
Socket (API)

Network stack

MDK-Middleware Network Component, IWIP and various WiFi modules
(through CMSIS WiFi-Driver) are supported as underlying network stacks.

Reference Socket (API) implementations are provided in the MDK::IoT_Socket
pack. mbed TLS contains required components to secure the connection. Finally,
communication with a cloud service is enabled with IoT Clients available for the
following providers:

* Amazon AWS loT

* Google Cloud IoT

= [IBM Watson IoT

* Microsoft Azure IoT Hub
= Paho MQTT (Eclipse)

The software packs are generic (device-independent) and can be found in the
Pack Installer.

ﬂ__. Packs | Examples |

Pack | Action Description
i_'f"---MDK—Packs::AWS_IoT_Device Up to date | SDK for connecting to AWS loT from a device using embedded C
MDK-Packs:Azure_loT b Up to date Microsoft Azure loT SDKs and Libraries
=_f----MDK—Pack5::rJSON & Up to date | Ultralightweight JSON parser in ANSI C
[;'.I----I'\-"I DK-Packs:Google_loT_Device Q Up to date | Google Cloud loT Device Connector
:_i----MDK—Packs::IoT_Socket T’ Up to date Simple IP Socket (BSD like)
EI----MDK—Packs::Paho_MQ'IT Q UE to date Embedded MCTT C/C++ Client Libraries
$---MDK—Packs::Watson_IoT_Deuice & Up to date I Client libraries and samples for connecting to IBM Watson loT using Embedded C

Additional information is provided at: keil.com/iot.

44 Create Applications

Create Applications

This chapter guides you through the steps required to create a projects using
CMSIS components described in the previous chapter.

For many popular development boards MDK already provides ready-to-use
CMSIS based examples. It is always beneficial to take such an example as a
starting point as explained in Verify Installation using Example Projects and
then modify it for own application needs.

Device vendors may also provide MDK example applications in separate
deliverables not indexed in the MDK Pack Installer explained in Install Software
Packs. Development and configuration tools from device vendors may also allow
export of application projects into Keil MDK format. These two options should
be explored if no examples are found in MDK Pack Installer.

This chapter is structured as follows:

= Section pVision Project from Scratch explains how to start a new project
from scratch and can be followed when there is no example applications
available.

» Section Project with CMSIS-RTOS2 shows how to easily convert an
existing application with infinite loop design into Real-Time OS based
system using CMSIS-RTOS2 API.

» Device Configuration Variations explains integrations with device vendor
tools for device startup.

* Finally, section Secure/non-secure programming guides through the project
setup for devices based on Armv8-M architecture.

NOTE

The example code in this chapter works for the MIMXRT1050-EVK evaluation
board (populated with MIMXRTI1052DVL6B device). Adapt the code for other
starter kits or boards.

pVision Project from Scratch

This section describes the steps for setting up a new CMSIS based project from
scratch:

» Setup New pVision Project: create a project file and select the
microcontroller device along with the relevant CMSIS components.

Getting Started with MDK: Create Applications with yVision 45

* Add main.c Source Code File: Add main.c file to the project with initial
code for main() function and device initialization.

* Configure Project Options: adjust project settings to ensure that the project
can be built correctly.

* Build the Application Project: compile and link the application for
programming it onto the target microcontroller device.

» Using the Debugger guides you through the steps to connect your evaluation
board to the PC and to download the application to the target.

Setup New pVision Project

From the pVision menu bar, choose Project — New puVision Project.

5 Select an empty folder and enter the project name, for example, MyProject.
Click Save, which creates an empty project file with the specified name
(MyProject.uvprojx).

Next, the dialog Select Device for Target opens.

Device |

lSoﬂware Packs _:I
Vendor: NP
Device:: MIMxRT10520V0LEE
Toolset: ARM
Search; |
Description:
' I£|"’i$ IIMKRT 1051 :l The MIMXRT1052 are ARM Cortex-M7 based microcontrollers for

= Tﬁ MIMKRT 1052 embedded applications.

&% MIMKRT 10520006
-8 MIMXRT1052CVI5B
-8 MIMXRT1052CVLSE
-8 MIMXRT1032DVIEB

@ & MIMXRT1061
B4 MIMXRT1082 :
K | bzl

QK I Cancel Help I

46 Create Applications

= Select the target device and, if necessary, the target CPU in a multi-core
device. In our case this is MIMXRT1052DVL6B and click OK.

T1P: If the target device is not available in the list — verify that the
corresponding Device Family Pack (DFP) is installed as explained in Install
Software Packs.

The device selection defines essential tool settings such as compiler controls, the
memory layout for the linker, and the Flash programming algorithms. However,
in some cases (especially for more complex devices) additional configurations are
required to achieve correct project build and debug. This is explained in step
Configure Project Options.

Then the Manage Run-Time Environment dialog opens and shows the software
components that are installed and available for the selected device.

Following components need to be added for CMSIS-based project:

5~ Expand ::CMSIS and enable CORE.

Expand ::Device::Startup and enable one of the offered variants. In our
case it is just one: MIMXRT1052_startup.

Software Component Sel, Wariant Versi.. Description
2] @ Board éupport [[= Generic Interfaces for Evaluation and Development Boards izt
=] @ CMSIS | [| :CDITEX Microcontroller Software Interface Components
L% CORE [v |540 | CMSIS-CORE for Cortex-hl, SC000. SC300 ARMVE-M. ARMY2,1-I
@ Dsp [~ [Source [v|1.80 | CMSIS-DSP Library for Cortex-I SCO0C, and 5C300
L% NN Lib = [13.0 | CMSIS-NN Neural Network Library
w4 RTOS (AP) ' [1.0.0 | CISIS-RTOS APl for Cortex-hA. SC000. and 5C300
-4 RTOS2 (APT) |21.3 | CMSIS-RTOS APl for Cortex-hl. SCO00. and 5C300
w € CMSIS Driver | ' | NXP MCUXpreszo SDK Peripheral CMSIS Drivers
H @ CMSIS Driver Validation ,'E\PI l1.4.0 | Bun cIri'-.fErvaIicIation tes.tl for enabled clri'-.'er;
€ Compiler |&RM Compiler | 160 | Compiler Extensions for 8RM Compiler 5 and ARM Compiler &
@ 4 Data Exchange | ;Ijafa exchange or data formatter
=] @ Device | [| ;Startug System Setup
w4 CMSIS ' il
- SDK Drivers | ' | NXP MCUXpreszo SDK Peripheral Drivers
w4 SDK Praject Template . NP MCU)&pre::o“SDl.{ RTE Device.Projec.t Template
w4 SDK Utilities | ' | NP MCUXpresso SDK Utilities
SR 3 Startup . NXP MCUXpreszo"SDl.{. Start up
- @ MIMARTI052 startup ¥ | [100 |
& 4 File System MDK-Pro |~ | 6132 | File Access onvarious storage devices
ER 3 Graphics | MDK-Pra :v_ 6.10.8 |User Interface on graphical LCD displays <
‘!A.__.. | VR J "J—‘
Walidation Cutput Description
Resolve Select Packs Details | oK | Cancel Help |

Getting Started with MDK: Create Applications with yVision 47

Other components can be added depending on the application needs. In our case
we limit to the bare minimum.

The Validation Output field may show dependencies to other software
components that are required based on the current selection. In such case click
Resolve button to automatically resolve all dependencies and enable other
required

TIP: A click on a message highlights the related software component.

In our example shown above there is no extra dependencies to resolve.

= Click OK.

The selected software components are included into the project together with the
device startup file and CMSIS system files. The Project window displays the

selected software components along with the related files. Double-click on a file
to open it in the editor.

Flash Debug ools SVCS Window Help

-:;5| = =§ fE I | @ toggle [~ B §h| @ '| L & - ‘
AR I _| %9 | Target oY@
Project | 1] system_MIMXRT1052.c
=18 Project: MyProject LE/*
(=14 Target 1 Z|
[Source Group 1 =
& awvsis i
=] @ Device &

J startup_MIMXRT1052.5 (Startup:MIMXRT 1052 _startup)

_] system_MIMKRT1052.c (Startup:MIMXRT 1052_startup)

_] MINMXRT 103 20000 _flexspi_nor.scf (Startup:MIMART 1052 _startup)

| MIMXRT 105 2i0000¢_flexspi_nor_sdram.scf (Startup:MIMXRT1052_startup)
_] MIMERT 105 20000_ram.scf (Startup:MIMART 1052 _startup) 1z
J IMIMXRT 10323000 sdram.scf (Startup:MIMXRT 1952 _startup) :—"
L1 MIMXRT10520000_sdram_ti.scf (Startup:MIMXRT 1052 _startup)

Add main.c Source Code File

Now we can add the main.c file with initial program code.

= In the Project window, right-click Source Group 1 and open the dialog
Add New Item to Group.

=" Click on C File (.c) specify the file name, in our case main.c and click Add.

48

Create Applications

\Cj C++ File {.cpp)

A | Asm File (s

b | Header File {h}

Test File ()

@ Image File (")
'@ ser Code Template

Type: | CFile {.cj

Create & new C source file and add it to the project.

Mame: | M. c

Location: | C:\MyPrograms \MyProject

Add

=
Help |

Close |

This creates the file main.c in the project group Source Group 1. Add following

content to the file:

#include "RTE Components.h"
#include CMSIS device header

uint32 t volatile msTicks;

void SysTick Handler (void) {
msTicks++;

}

void WaitForTick (void) {
uint32 t curTicks;

curTicks = msTicks;
while (msTicks == curTicks) {
__WFE ();

}
}

// Configure & Initialize the MCU
void Device Initialization (void)

SystemInit () ;
SystemCoreClockUpdate () ;

if (SysTick Config (SystemCoreClock / 1000)) {

; // Handle Error
}

{

// Component selection
// Device header

// Counter for millisecond Interval

// SysTick Interrupt Handler
// Increment Counter

// Save Current SysTick Value
// Wait for next SysTick Interrupt
// Power-Down until next Event

// Device initialization
// Clock setup

// SysTick 1lms

Getting Started with MDK: Create Applications with pVision

49

// The processor clock is initialized by CMSIS startup + system file

int main (void) { // User application starts here
Device Initialization (); // Configure & Initialize MCU
while (1) { // Endless Loop (the Super-Loop)
__disable irg (); // Disable all interrupts
// Get InputValues ();
__enable irqg (); // Enable all interrupts
// Process Values ();
WaitForTick () // Synchronize to SysTick Timer

}
}
For many devices the build process described in step Build the Application
Project will succeed already after this this step.

In some cases (and in our example for MIMXRT1052) additional changes in the
project configurations are required as explained in Configure Project Options
section below.

Device Initialization

System initialization in our simple example is done in the Device_initialization()
function using only CMSIS-Core API.

Silicon vendors provide the device-specific file system_<device>.c (in our case
system MIMXRT2052.c) that implements Systemlnit and
SystemCoreClockUpdate functions. This file gets automatically added to the
project with the selection of ::Device::Startup component in the Manage Run-
Time Environment in the previous step.

Real-world examples often require complex configuration for pins and
peripherals with a significant part of the system setup relying on the device
hardware abstraction layer (HAL) provided by the vendor.

Section Device Configuration Variations explains additional details and
provides examples on device configuration using external tools.

Configure Project Options

For some devices new projects cannot be built and programmed onto the device
with default settings and require special configuration options. This is often a
reason why starting with a ready-to-use example can be beneficial.

,’iﬁ Click Options for Target... button on the toolbar to access the
configuration options.

50 Create Applications

It contains multiple tabs that provide configuration options for corresponding
functionality.

Device Target |Output | Listing | User | C/C++(ACE) | Asm | Linker | Debug | Uities |

e I

Changes required for getting started depend on the target device and software
components used in the project. Subsections below explain the modifications
required in the specified dialog tabs for the MIMXRT1052 used in our example.

C/C++ (AC6) dialog

To exclude mostly just informative warnings generated by the Arm Compiler 6
select ACS-like Warnings in the Warnings field of the C/C++ (AC6) tab.

Linker dialog

Complex devices or programs may require use of a scatter file to specify memory
layout. The figure below highlights the changes required in our example:

Device | Target | Output | Listing | User | C/Co+ (ACE) | Asm Linker lDebug | Utiities |
1 se Memory Layout from Target Dialog X/0 Base:
[~ Make RW Sections Posttion Independent R/O Base:| [x00000000 2
I Make RO Sections Posttion Independent R/W Base| [20000000
[Dent Search Standand Libraries =
i inas: 4
[V Report might fail' Condttions as Emors dadtle Wam:ngs.u_gi
4
scag!;?e' [I RTE\Device \MIMXRT 1052DVLEB\MIMXRT 10520000c_ram scf Ll Iﬂ Edit...
Misc
controls
Linker |-cpu Cottex-M7fpdp "o ~
control |-diag_suppress 6314 —strict —scatter " \RTE\Device\MIMXRT1052DVLEB\MIMXRT1052000c¢_ram.:
string v
[0K I [Cancel I [Defaults I

1. Unchecking the flag Use Memory Layout from Target Dialog enables use
of custom scatter file provided in the item 4 below.

2. R/O and R/W Bases define the start addresses for read only (code and
constants) and read-write areas respectively.

3. Disable warning #6314 for unused memory objects.

Getting Started with MDK: Create Applications with pVision 51

4. The Device Family Pack (DFP) contains some preconfigured scatter files that
are copied into the new project. To simplify project configuration, we will
execute the program from the on-chip RAM and hence choose in the drop-
down menu for the Scatter file the
ARTE\Device\MIMXRT1052DVL6B\MIMXRT1052xxxxx_ram.scf.

Debug dialog

To ensure that the program loads to RAM and we can debug it, following changes
are required in the Debug tab.

sm | Linker Debug | Utiies |

@ Use: [CMSIS-DAP Debugger x| Settings

W Load Application at Startup v Run to maini)
Inftialization File:

[].'evkbimx:ﬂ 050 _ram ini J _] Edt...

L BT R I e

5" In the project folder create a new file that will be used to initialize the debug
session (in our case - evkbimxrt1050 ram.ini) and provide path to it in the
Initialization File field.

For this example, add the following content to the file:

2 —
* evkbimxrtl1050 ram.ini file

e e */
FUNC void Setup (void) {

SP = RDWORD (0x00000000) ; // Setup Stack Pointer

PC = RDWORD (0x00000004) ; // Setup Program Counter

_ WDWORD (0xE000ED08, 0x00000000) ; // Setup VTOR
}

FUNC void OnResetExec (void) { // executes upon software RESET
Setup () ; // Setup for Running

}

LOAD %L INCREMENTAL // Download

Setup () ; // Setup for Running

// g, main

Utilities dialog

5 In the Utilities dialog, uncheck the option Update Target before
Debugging to ensure that the debugger doesn’t try to load program to Flash.

52

Device | Target] Output | Listing] User] C/C++(ACK)] Asm | Linker | Debug

—Cenfigure Hash Menu Command

(¥ Lse Tanget Driver for Flash Programming ¥ Use Debug Driver

— Use Debug Driver — Settings deate Target before Debugging

it Fie: | J Edt..

Build the Application Project

all related source files. Build Output shows information about the build process.

An error-free build displays program size information, zero errors, and zero
warnings.

Euild Output

Rebuild started: Project: MyProject
* Using Compiler 'Ve.l4', folder: 'C:\Keil wi\ABRM\ARMCLANG\Bin'

Rebuild target 'Target L1°

1056 RW-data=4 ZI-data=2641%5¢

0 Erxror{s}, O Warning{s=s) .

=] Build Output _R' I Fifes

The section Debug Applications guides you through the steps to connect your
evaluation board to the PC and download the application to the target hardware.

Project with CMSIS-RTOS2

The section shows how to setup a simple project based on CMSIS-RTOS2. The
project uses device HAL to control on-board LED.

To avoid making project configuration and device initialization from scratch we
take an existing blinky example in infinite-loop design delivered with the DFP
and modify it to operate based on CMSIS-RTOS2 API. Following steps are
required:

1. Copy an Example: copy an existing example and verify that it works

2. Add CMSIS-RTO2 Component: add CMSIS-RTOS2 API and RTXS kernel
to the

Create Applications

Getting Started with MDK: Create Applications with yVision

53

3. Add RTOS Initialization: add main.c file that initializes the device and
RTOS.

4. Configure Keil RTXS RTOS: modify the RTOS settings according to the
application needs.

5. Implement User Threads: implement user code.

6. Build and Run the program: the step is same as explained in the previous
section.

In our case we will use a simple iled_blinky example for IMXRT1050-EVK
board.

Copy an Example

File Packs Window Help
o | Device: MNXP - MIMXRT1052000B
4] f [}eﬂ’cej]r Eoards I b |14] - Packs ' [Examples | N
Search: - X [~ show examples fram installed Packs only
Device /| Summary Example Action Description
C @ MIMXRT1013 2 Devices ;1 - flexspi_hyper_flash_polling_transfer (EVKB-IMXRT1050) |4 Copy Theﬂexzpi_hypr:r_ﬂa:h_p_:l
i % MIMHRT 1021 4 Devices flexspi_nor_polling_transfer (EVKB-IMXRT1030) & Copy The flexspi_nor_polling_tr
i AL MIMXRT1051 6 Devices gpt_timer (EVKB-IMXRT1050) & Copy The gpt_timer project is a
= % MIMXRT 1052 & Devices g----helln_world (EVKB-IMXRT 10503 & Copy The Hello Waorld demo ap
@ MIMART1052000 |2 Devices “igpio_input_interrupt (EVKB-IMXRT1030) 4 Copy The GPIO Example projec
HL MIMXRT10520008 | |4 Devices igpio_led_output (EVKB-IMXRT1850) & Copy The GPIO Example projec
o 4 . |ARM Cnrt..._ ; d R & Copy The LED Blinky demo app__|
;----ﬁ MIMXRT1852C... ~kpp (EVKB-IMXRT1050) & Copy The KPP Example project
ﬂ MIMXRET1052D | o |pi2e_interrupt (EVKB-IMXRT1050) & Copy The IpiZc_functional_inte
; E MIMKRT1952D... |ARM Cort... ' Ipi2c_interrupt_b2b transfer_master (EVKB-IMXRT1050) Copy The IpiZc_interrupt_b2b t
1 +]"T3 MIMXRT 1061 itl Devices ~lpiZe_interrupt_bZ2b transfer slave (EVKB-IMXRT1030) Copy The IpiZc_interrupt_b2b t =
. @ MIMXRT1062 [4Devices |l 4] | = |_|
Output ax
Ready [[ontme

Section Verify Installation using Example Projects explains the steps needed to
copy, build and run an example project. In our example we use target iled blinky
debug that executes the program from on-chip RAM.

54 Create Applications

25 To build the project with the iled _blinky debug target, the SPI flash related
file fsl_flexspi_nor_boot.c has to be excluded from the build.

Find this file in the Project window under Device component, right-click on
it, then select Options for Component Class ‘Device’ and in the
Properties tab uncheck Include in target build. Press OK. The file will be
marked with a corresponding symbol I

Settings

| Layer:

Variant: | =]
:

oK Cancel Help

Add CMSIS-RTO2 Component

Next, add the RTOS software component:

= Expand ::CMSIS::RTOS2 (API) and enable Keil RTXS. In the Variant
column select Source to have the RTOS added to the project as a source
code that also supports detailed debugging using Event Recorder. For
reduced code size, use the Library variant instead. Press OK.

Getting Started with MDK: Create Applications with yVision

55

Software Component Sel, Yariant Versi... Description
= @ Board E-.uppo.rt . :v: | Generic Interfaces for Evaluation and Development Boards it
=] ¢ CMS5IS | [T ;CDITEX Microcontroller Software Interface Components

¥ CORE 2 [5.40 | CISIS-CORE for Cortex-Ivl, SCODC SC300 ARMwE-W ARNKE.1-I

@ Dep ¥ Source [“11.80 | CIMSI5-DSP Library for Cortex-h. SC000 and 5C300

@ NN Lib i 130 | CIMSIS-MIN Meural Network Library

m € RTOS (AP)) [[[10.0 | CIMSIS-RTOS API for Cortex-l SC000 and 5C300

=€ RTOS2 (APY) |21.3 | CIMSIS-RTOS API for Cortex-I SC000 and SC300

@ FreeRTOS T | Cortexm [103.1 | CISI5-RTOS? implementation for Cortex-1 based on FreeRTOS
BN eil RTXS ¥ source [&]552 [CMSIS-RTOS2 RTXS for Cortex-M, SCO00, SC300 ARMvE-M, ARME.T.
w4 CMSIS Driver [T | NP MCUXpresso SDK Peripheral CMSIS Drivers
@ € CMSIS Driver Validation [' '
=] @ Compiler | | 2Rm Compiler [16.0 ;Comgiler Extenzions for ARM Compiler 5 and ARM Compiler §
[@ Data Exchange [. E-Ija.t-a exchange ar data formatter
2] @ Device | [. ;Startup System Setup
[@ File System |[MDE-Plus [+ 513.3 | File Access on varipus storage devices i
23] @ Graphics | [MDK-Plus |~ | 6102 | UserInterface on graphical LCD dizplays
£} @ loT Client [10T cloud client connectar
=] @ loT Service | [. lloT specific services
[@ laT Utility [. 0T specific software thili-tg,.f
=) @ Metwark | [moK-Pius [~ 7740 ;IP'\f-l INetwarking using Ethernet or Serial protocols =
N . S Tl T e SRR ; :.!_I
Validation Cutput Description
Resolve Select Packs Details | O] Cancel I Help |

Keil RTXS5 code appears in the Project window under CMSIS component.

= In our case for MIMRT1052 we need to change the Assembler Option so
that Keil RTX5 file irq4_cm4f.s can be assembled correctly.

For that go to the Options for Target.. — Asm tab and in the dropdown
menu Assembler Option select armclang (Auto Select) instead of
armclang (GNU Syntax) configured by default in the original example.
Press OK.

— Language / Code Generation
Assembler Option: 1am1ciang (Auto Select) _:j

[T Read-Only PosiEulE]
G armc:lang (GNU Sy!'daxj

I™ Read-Wrte Pod amelang (Am Syntax)

™ Thumb Mode LEmMasm (Am Syrtax)

[T No Wamings [~ Not#

[Split

Alternatively, the assembler option can be specified for the irq4_cmd4f.s file
only. For that find this file in the Project window under CMSIS component,
right-click on it, then select Options for Component Class ‘CMSIS’ and in
the Asm tab choose armclang (Arm Syntax) from the drop-down menu in
Assembler Option field. Press OK.

56

Create Applications

Add RTOS Initialization

Add template application code using pre-configured User Code Templates
containing routines that resemble the functionality of the software component.

>~ In the Project window, right-click in the group with the source code (in our
case source and open the dialog Add New Item to Group.

= Click on User Code Template to list available code templates for the
software components included in the project. Select CMSIS-RTOS2 ‘main’
function, verify the file name, and click Add.

Location:

@ C e (o) Add template file(s) to the I:lI'O_]E-Ct.

= . Compo_nfant” _ Marme

@ C++ File { cpp) o ¥ CMsis 4

\ﬂ i FG £ R .CMSIS—RTI'_C.JE%'maiT'function 1

:Kel | CMBIS-RTORS Events

\ﬂ Header File {hj o RTO52:Keil RT3 | chasis-RTOS2 Memory Pool

— - RTOS2:Kell RTXS | CMSIS-RTOS2 Message Queue

é Teeet File (1) - RTOS2Keil RT#5 | CMSIS-RTOS2 Mutex

ﬂ image Fe () - RTOS2Keil RTX5 | CMSIS-RTOS2 SVC User Table

= - RTOS2:Keil RT3 CMSIS-RTOS2 Semaphore =
@ User Code Template - RTOS2:Keil RT4S | CMSIS-RTOS2 Thread

— “--RTQ52:Keil RTX3 | CIMSIS-RTOS2 Timer _'j
Type: ! User Code Template
Mame: """'E'i"'-c l

I C:\MyPrograms\led_blinky_RTOS\demo_appsied_blinkymdk ik |

e | o |

This adds the file main.c to the project group source. The file contains the
necessary functions for minimal CMSIS-RTOS application.

We reuse the device initialization functions from the original main() function. We
remove the implementation of app_main function as it will be placed in the other
file. As a result, the main.c file contains following code:

/* ___
* CMSIS-RTOS 'main' function template
e — */

#include "RTE Components.h"

#include CMSIS device header

#include "cmsis os2.h"

#include "board.h"

#include "pin mux.h"

extern void app main (void *argument); //

application main thread

Getting Started with MDK: Create Applications with pVision 57

int main (void) {

/* Board pin init */
BOARD InitPins();
BOARD InitBootClocks();

// System Initialization
SystemCoreClockUpdate () ;

/] ...

osKernelInitialize () ; // Initialize CMSIS-RTOS
osThreadNew (app_main, NULL, NULL); // Create application main thread
osKernelStart () ; // Start thread execution

for (;;) {1}

}

Note the Board_InitPins() and Board_InitBootClocks() functions that configure
the underlying MIMXRT1052 device. Section Example: MCUXpresso Config
Tools explains device configuration in more details.

Configure Keil RTX5 RTOS

= In Project window - CMSIS group open RTX_Config.h file and configure
according to the project requirements as explained in
Keil RTXS Configuration. In our example we can keep default settings.

Implement User Threads

The file led blinky.c, containing the initial main() function, can now be rewritten
using RTOS threads. We implement two user threads: thrLED toggling the LED
and thrSGN acting as a signal thread that triggers thrLED thread with regular
delays.

#include "cmsis os2.h"
#include "fsl gpio.h"
#include "pin mux.h"
#include "board.h"

static osThreadId t tid thrLED; // Thread id of thread: LED
static osThreadId t tid thrSGN; // Thread id of thread: SGN

~ NO RETURN static void thrLED(void *argument) {
(void) argument;
uint32_t active flag = 1U;

for (;;) {

58 Create Applications

osThreadFlagsWait (1U, osFlagsWaitAny, osWaitForever);
GPIOiPinWrite(BOARDiUSERiLEDiGPIO, BOARD USER LED PIN, activeiflag);
active flag=l!active flag;

thrSGN: Signal LED to change

__ NO RETURN static void thrSGN(void *argument) {
(void)argument;
uint32 t last;

for (;;) |
osDelay (5000) ; // Run delay for 500 ticks
osThreadFlagsSet (tid thrLED, 1U); // Set flag to thrLED

void app main(void *argument) {
(void) argument;

tid thrLED = osThreadNew (thrLED, NULL, NULL); // Create LED thread
if (tid thrLED == NULL) { /* add error handling */ }

tid thrSGN = osThreadNew (thrSGN, NULL, NULL); // Create SGN thread
if (tid thrSGN == NULL) { /* add error handling */ }

osThreadExit () ;

Device Configuration Variations

CMSIS-CORE defines methods for device startup such as SystemlInit() and
SystemClock Config() but the actual implementation details vary between
different vendors.

Some devices perform a significant part of the system setup as part of the device
hardware abstraction layer (HAL). In many cases the HAL components for the
target platform are delivered as part of the Device Family Pack (DFP) and are
available for selection in the Manage Run-Time Environment dialog, typically
under ::Device component.

Device vendors frequently provide a software framework that allows device
configuration with external utilities.

In the following section, device startup variations are exemplified.

Getting Started with MDK: Create Applications with pVision

59

Example: STM32Cube

Many STM32 devices are using the STM32Cube framework that can be
configured with a classical method using the RTE Device.h configuration file or
by using STM32CubeMX tool.

The classic STM32Cube Framework component provides a specific user code
template that implements the system setup. Using STM32CubeMX, the main.c
file and other source files required for startup are copied into the project below
the STM32CubeMX:Common Sources group.

Setup the Project using the Classic Framework

This example creates a project for the STM32F746G-Discovery kit using the
classical method. In the Manage Run-Time Environment window, select the
following:

= Expand ::Device:STM32Cube Framework (API) and enable :Classic.

Expand ::Device and enable :Startup.

KA Manage Run-Time Environment X
Software Component Sel, Variant Version Description
& 4 Board Support STM32F746G-Discovery |+~ 1.00 STMicroelectronics STM32F746G-Discovery Kit =
] @ CMSIS [.Curtac Microcontroller Software Interface Components
[E] @ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
ER 2 Compiler ARM Compiler Software Extensions
= ‘@ Device Startup. System Setup
“ Startup ~ | [1.04 | Systemn Startup for STMicroelectrenics STM32F7 Series
= A STMIZCube il [| STM32Cube Framework
@ Classic c [100 | Configuration via RTE Deviceh
¥ STM32CubeMX O | [100 Configuration via STM32CubeMX
= € STMI2Cube HAL [[| STIM32F T Hardware Abstraction Layer (HAL) Drivers
R 3 File System MDK-Pro 1650 File Access on various storage devices
[4 Graphics | MDK-Pro [530.0 | UserInterface on graphical LCD displays
E2] @ Graphics Display | | Display Interface including configuration for emWIN
[4 Metwork MDK-Pro 6.5.0 IP Networking using Ethernet or Serial protocols il
[‘@ UsB MDE-Pro 6.5.0 USE Communication with varicus device classes _J
-
Validation Output Description
Resalve Select Packs Details oK | Cancel I Help

=" Click Resolve to enable other required software components and then OK.

60

Create Applications

= In the Project window, right-click Source Group 1 and open the dialog

Add New Item to Group.

Add New ftem to Group ‘Source Files' X
X Add template fie(s) to th .
ﬂ CHie (e} mplate file(s) to the projec
-‘, Companent Narne
@ G () =@ cmsis
ﬂ Ao File (5) =% oeice
= SR e SIS "main’ module for STM32Cube
|ﬂ Header Fie (1) STM32Cube FrameworkcClassic | Exception Handlers and Peripheral IRQ)
= STM32Cubs Framework:Classic | MCU Specific HAL Initialization / De-Intti.
IEII Text Flle (0d) Startup Flash One-Time programmable Bytes
- Startup Flash Option Bytes
@ User Code Template
Type: User Code Template
e [Fernmanz
Location: | cr\WiorkspacesIMDK|STM32 MDK\Boards\STISTM32F 7466 Discovery Blinky .

= Click on User Code Template to list available code templates for the
software components included in the project. Select ‘main’ module for

STM32Cube and click Add.

The main.c file contains the function SystemClock Config(). Here, you need to
make the settings for the clock setup:

Code for main.c

static void SystemClock Config (void) {

RCC ClkInitTypeDef RCC_ClkInitStruct;
RCC OscInitTypeDef RCC OscInitStruct;

/* Enable HSE Oscillator and activate PLL with HSE as source
RCC_OSCILLATORTYPE HSE;

RCC OscInitStruct.
RCC_OscInitStruct.HSEState = RCC_HSE ON;

RCC OscInitStruct.HSIState = RCC _HSI OFF;

RCC OscInitStruct.PLL.PLLState = RCC PLL ON;

RCC OscInitStruct.PLL.PLLSource = RCC PLLSOURCE HSE;

OscillatorType =

RCC OscInitStruct.PLL.PLLM = 25;
RCC_OSCInitStruct.PLL.PLLN = 432;
RCC_OSCInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC OscInitStruct.PLL.PLLQ = 9;

HAL RCC OscConfig (&RCC OscInitStruct);

*/

/* Activate the OverDrive to reach the 216 MHz Frequency */

HAL PWREx EnableOverDrive () ;

/* Select PLL as system clock source and configure the HCLK,

PCLK2 clocks dividers */

RCC ClkInitStruct.ClockType = (RCC_CLOCKTYPE SYSCLK |
RCC CLOCKTYPE PCLK1l | RCC CLOCKTYPE PCLKZ2) ;

RCC ClkInitStruct.SYSCLKSource =
RCC_ClkInitStruct.AHBCLKDivider =

RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APBICLKDivider = RCC_HCLK DIV4;
RCC ClkInitStruct.APB2CLKDivider = RCC HCLK DIVZ2;

PCLK1 and

RCC CLOCKTYPE HCLK

RCC_SYSCLKSOURCE PLLCLK;

HAL RCC ClockConfig (&RCC ClkInitStruct, FLASH LATENCY 7);

Getting Started with MDK: Create Applications with yVision

61

Now, you can start to write your application code using this template.

Setup the Project using STM32CubeMX

This example creates the same project as before using STM32CubeMX. In the
Manage Run-Time Environment window, select the following:

= Expand ::Device:STM32Cube Framework (API) and enable
:STM32CubeMX. Expand ::Device and enable :Startup.

W] Manage Run-Time Environment X
Software Component Sel, Variant Version Description
= 4 Board Support S5TM32756G-E~ | 1.1.0 STMicroelectronics STM32756G-EVAL Board
] @ CMSIS [Cortex Microcentroller Software Interface Components
[E2] @ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
&3] @ Compiler | ARM Compiler [120 Compiler Extensions for ARM Compiler ARMCC and ARMClang
=] @ Device | Startup, System Setup
¥ Startup [v | [112 System Startup for STMicroelectronics STM32F7 Series
B % 5TM32Cube Framework (API) | 1.0.0 STM32Cube Framework
¥ Classic l— L Configuration via RTE Deviceh
@ v [100 Configuration via STM32CubelX
=] ‘@ STM32Cube HAL | STM32F o Hardware Abstraction Layer (HAL) Drivers
w4 File System MDK-Pro ~|69.0 File Access on various storage devices
= Graphics | MDK-Pro w 5366 User Interface on graphical LCD displays
R 3 Graphics Display | Display Interface including configuration for emWIN
2] @ Metwork .MDK-Pro w1730 1Pv4/1PvE Metworking using Ethernet or Serial protocols
e @ UsB MDE-Pro L 6:9.0 USE Communication with \farious de\rice classes
Validation Output Drescription
Resolve Select Packs Details oK Cancel ‘ Help

5" Click Resolve to enable other required software components and then OK.
A new window will ask you to start STM32CubeMX.

&

MDK: Selected Software Component Requires Code Generation by 'STM32CubeMX! >

Component:
Keil::Device:STM32Cube Framework:STM32CubeMX

Generator Program:
STM32CubeMX

Generates:
JRTE\Device \STM32F 746MGHx \FrameworkCubeMX., gpdsc

Start STM32CubeMy

Cancel

62 Create Applications

STM32CubeMX is started with the correct device selected:
| MRCTORGmemstiocSHFONSR =@ x

SEM[;, r\? File Window Help
ube

fioy x &Gy

746NGHx STCubeGenerated.ioc - Pinout & Configuration GENERATE CODE

& Configuration Clock Configuration Project Manager
v Software Packs v Pinout

Q e CORTEX_M7 Mode and Configuration :
 Cotssaies | -2 MO Coviguaton |

System Core Ll Reset Canfiguration

ik Pinout view == System view

A

= @ Parameter Settings Caonsta
CORTEX_M7 k
DMA (Configure the below parameters
Woe ~ Cortex Interface Settings
FéC(.: Flash Interface AXl Interface
o ARTACCLERA..
WWOG Instruction Prefe... Disabled
CPU ICache Disabled
CPU DCache Disabled
Analog 5 ~ Cortex Memory Protect...
MPU Control M._. MPU NOT USED
Timers >
Connectivity >
Multimedia >
Security]
Computing 5 TFBGA216 (Top view)
Widdleware >

R I Q@ b & m =

= Configure your device as required. When done, go to Project > Generate
Code to create a GPDSC file. pVision will notify you:

WVision

@ For the current project new generated code is available for import.

Project:
CA\Workspaces\MDKASTMI2ZASTM32CubeMX\STM32CubeMX.uvprojx

Generated:
Ch\Workspaces\MDKNSTM32\STM32CubeMX\RTE\ Device\STM32F746N
GHx\FrameworkCubeMX.gpdsc

Import Changes?

Yes I Mo |

= Click Yes to import the project. The main.c and other generated files are
added to a folder called STM32CubeMX:Common Sources.

Read more about device setup for a pVision project using STM32CubeMX in
dedicated documentation
keil.com/pack/doc/STM32Cube/General/html/index.html.

Getting Started with MDK: Create Applications with yVision 63

Example: MCUXpresso Config Tools

For configuring most of its Kinetis, LPC and iMX RT devices NXP provides
MCUXpresso Config Tools.

Enable Project for Configuration

To configure an MDK project for MCUXpresso Config Tools it has to contain
special components in the Board Support and Device groups. This is already the
case for many example projects available via the Pack Installer but needs to be
ensured for older projects or when creating a project from scratch.

= Expand ::Board Support::SDK Project Template:: and enable
:project_template. From the drop-down menu in Variant column choose
either an option for target MCU or if available target board (evkbimxrt1050
in our case). Multiple dependencies may be highlighted in yellow as

required.
Software Component Sel. Variant Versi... Description
= 4 Board Support v Generic Interfaces for Evaluation and Development Boards -
= ‘ SDK Project Template NXP MCUXpresso SDK Project Template
[¥ project_template '77 evkbimxrt1050 |v]1.0.0]
[E3] ‘ CMSIS Cortex Microcontroller Software Interface Components
5 @ CMSIS Driver NXP MCUXpresso SDK Peripheral CMSIS Drivers
@ € CMSIS Driver Validation
o ¢ Compiler ARM Compiler 160 | Compiler Extenzions for ARM Compiler 5 and ARM Compiler §
#- € Data Exchange Data exchange or data formatter
=] ‘ Device Startup, System Setup
@ ¢ Cmss
2] 0 SDK Drivers MNXP MCUXpresso SDK Peripheral Drivers
@ ’ SDK Project Template NXP MCUXpresso SDK RTE Device Project Template
= € SDK Utilities [NXP MCUXpresso SDK Utilities
@@ Startup NXP MCUXpresso SDK Start up
. € File Sustem MDK-Pro v 16.13.8 |File Access on various storade devices _'J
< | i)
Validation Output Description
=«B NXP:Device:SDK Driversiip_device Additional software components required =
=) require Device:SDK Drivers:common Select component from list j
¥ NXP:Device:SDK Drivers:common COMMON Driver
=B NXP:Board Support:SDK Project Template:project_template | Additional software components required
=) require Device:SDK Utilities:serial_manager Select component from list
¥ NXP:Device:SDK Utilities:serial_manager NXP:Device:SDK Utilities:serial_manager
= require Device:SDK Drivers:common Select component from list
NXP:Device:SDK Driversicommon COMMON Driver =]
Select Packs Details oK] Cancel Help

64 Create Applications

== Click Resolve to enable the required software components and then OK.

Project R x |
=¥ Project: iled_blinky -
-l g3 iled_blinky debug
#- source
S | doc
- & Board Support
] board.c (SDK Project Template:project_template)
_] board.h (SDK Project Template:project_template)
|1 clock_config.c (SDK Project Template:project_template)
B clock_config.h (SDK Project Template:project_template)
_] peripherals.c (SDK Project Template:project_template)
_] peripherals.h (SDK Project Template:project_template)
] pin_mux.c (SDK Project Template:project_template)
B pin_mux.h (SDK Project Template:project_template)
= CMGIS

Configure the Device

When the project contains the components explained in the subsection above
MCUXpresso Config Tools can be used to create the device initialization code.

5" Start the MCUXpresso Config Tools. Create a new configuration dialog
opens. The dialog can be also open from File — New... menu.

= Select option Create a new configuration based on an existing
IDE/toolchain project and specify the path to the pVision project. In our
case we take an example explained in section Project with CMSIS-
RTOS2.

Getting Started with MDK: Create Applications with yVision

5~ Press Finish.

Create a new configuration

(O Create a new configuration based on an SDK example or hello world project

Uze thiz eption to clone an SDK example or create a hello world project for a supported IDE/toolchain

(®) Create a new configuration based on an existing IDE/toclchain project

Select toolchain project: | Ch\MyProgramsiiled_blinky_RTOS\demo_apps'led_blinkymdk ' Erowse.., |

Use this option to create the Pins, Clocks, and/or Peripherals configuration of an existing Keil uVision, |AR Embedded Workbench, or ARM GCC
project.
Once created, this option will support directly updating the Ping, Clocks, and Peripheral files associated with the IDEftoolchain project,

(O Create a new standalone configuration for pr . board or kit

Use this option to create a new Pins, Clocks, and/or Peripherals configuration for 2 selected processor or board without association to a toolchain
project. Generated source code can be exported to a specified folder. It is possible to associate the configuration to any toolchain project later by
saving the standalone configuration file (.mex) that will be generated by Config Toels into the toolchain project directory and then open it using

the "Open an existing configuration”.

< Back et > Finish | | Cancel |

Wait until Config Tool Overview window opens.

5= Use available graphical tools to configure device clocks, pins, peripherals,
and DCD as required.

i Project opened for the first time, Click on & tocl icon ko select the tocl,
A Configuration - General Info # Configuration - HW Info ~ Project
Mame iled blinky_cp.mex Processar: MIMART 105208 Project name iled_blinky
Path C:\MyFrograms\iled_blinky..\demo_apps\led_blinky\mak Part number: MIMART 10520VL68 Tealchain: MDK uVision
(< imported from C:1 Core: CorteeMTF i MMERT e
it s 3} Past ns e MIMEE 2
Description: 2.0\beards!evkbimart 1050, dema_sppstied_blinky\iar RNESE ast pumber: MIMART 10520VL68
Core Conex-MTF
SO Version: ksdk2_0
[
A Fns ~ Clocks A Peripherals # Device Configuration
Contigures pin reuting, imcluding Contigures the initialization of the P Configures the inialization of the . Centigures Device Contiguration
Tunctional electrical pin properties, core, system, bus, and peripheral y & N, SDK peripheral drwvers. Data (DCD) contained in the.
woltage/pawer rads, and run-time dlocks | \ program image that the Boot RGM
pin configuration. <ode interprets £0 set up vanious
| or-thip periphersls prior the
e) «© ‘program faunch
A Generated code # Generated code
@ # Generated code
Update code ensbled
s £ Update code enabled
A Fanchonaly [@ RTE\Board_Support\Mi, DVLER clock_confi c e —
roups 3 ourdided.c
W BOARD.itpins |8 RTEEoard Support\hi, DVLER clock_configh & o
A Functional groups.
B BOARD_BootClockRUN
Teols et supported for the selected processor: TEE Claze and Update Code Close:

66

Create Applications

In our example we add a GPIOS initialization for the user button available
on the board:

File Edit Took Pins Views Help

| /. [Update Code ~ Functional Group BOARD. InitPins veBi@ ®m e EC
B Fonis 57 [Peripbieval Sprals) Fower Gran = [| §¥ Package [Fins Botiom] QAOCEEESE =0 #own. 3 Qoo [=]
[T i1t [iype Fite -~
BB v w (eeie| ¥ 1 emem | I e S — .
Pin Pinname Label Identiier a . Bk il . v Configuration - General Info
<|Fe VDDSOC NG VDD S0C_IN # Configuration - HW Info
[v]es WDBSBEINES | oD soc N € — == " m —{a
[“lHs yDD_SOCINZ VDD_SOC_IN ” . Processor. MINKRT 10520008
T vee.so paany D - R W - Pait nuimber: MINRTIOS0VESS
k¢ TESEMODE P, al— = == —F Core ConteM7F
B R co.riren SDPWREN LISE..| F— " wm = m — e Bosrd IMXKATIOSH-EVYE
[VIM6 GNDFF ONOFF CHOFF
[vIne SY_UsE 076 = LIS | L —:8 Dk vermen &
[lps 8y Us8_HS W= P S = ~ Project
ez ENET_MDC ENET_MDC
Cler SEMC DS SEMC_DOS fats St o L —=d # Pins
f5] ‘ ENET_MDIC ENET_MDIO © .. aw Sk | Contigures pin routing, ine
o7 LCDIF_CLK LCDIF CLK | tunctional clectrical pin pr
g i i ety "= "B] i | | voRagepower 1aRs, and i
‘T-E' 1 LCDIF_ENABLE LCDIF_ENABLE N | | configuistion,
é - i “ |
@«
3 Routed Pins =R "
[petierten i Gz >
RE— Probleme 1 Bi¥Y. - o
Routed P for BARD,|rtPing B &) Provieme v
= Periphersl Signal floute te Lebel identifier Powsrgroup Discion GO indalstate G | Peifertes
; il { paieal Level ssue
oio, 00 WAKEUP S0_PWREN USER BUTTON VDO_SNVEIN.. Input e
gp P
£ & < >

" Press Update Code button. Review the changes to be applied and press OK.

Generated file Status Lol
~ [] Pins
v [7] RTE\
v [] Board_Support!
W MIMXRT1032DVLERY

[pin_muxc [B change

[pin_muxh [Bl change
v [] Clocks
v [/ RTE,

w [4] Board_Suppartl.
~ [MIMXRT1052DVLEBY
[clock_config.c @ no change
clock_config.h @ no change

w [] Device Configuration & warnings
v [] board!,
B dedic ‘@ no change, not in project
dedh 17 no change, not in project
g Peripherals & warnings o
Options

A Always show details before Update Code | OK | ‘ Cancel |

This updates the necessary files in the Board Support group present in the
project.

Getting Started with MDK: Create Applications with pVision 67

Update Application Code the Device

= Update application code according to the new device configuration.

This may require including some header files, calling additional
initialization functions in main() and of course implementing application
logic itself.

In our example we just update the th»SGN thread in led blinky.c file so that the
signal for togging the LED is postponed as long as the user button is pressed:

thrSGN: Signal LED to change

__NO RETURN static void thrSGN(void *argument) {
(void) argument;
uint32 t last;

for (;;) {
osDelay (5000) ; // Run delay for 500 ticks
while (IGPIO_PinRead (BOARD_USER_BUTTON_GPIO,
BOARD USER BUTTON GPIO PIN))
osDelay (10) ; // Delay further while SW8 button is pressed

}
osThreadFlagsSet (tid thrLED, 1U); // Set flag to thrLED

}
}

Secure/non-secure programming

Embedded system programmers face demanding product requirements that
include cost sensitive hardware, deterministic real time behavior, low-power
operation, and secure asset protection.

Modern applications have a strong need for security. Assets that may require
protection are:

» device communication (using cryptography and authentication methods)
= secret data (such as keys and personal information)

» firmware (against IP theft and reverse engineering)

» operation (to maintain service and revenue)

The TrustZone® for Armv8-M security extension is a System on Chip (SoC) and
CPU system-wide approach to security and is optimized for ultra-low power
embedded applications. It enables multiple software security domains that restrict
access to secure memory and I/O to trusted software only.

TrustZone for Armv8-M architecture (Cortex-M23/M33/M35P/M55 cores):

68 Create Applications

= preserves low interrupt latencies for both secure and non-secure domains.
* does not impose code or cycle overhead.

= introduces efficient instructions for calls to the secure domain.

Create Armv8-M software projects

The steps to create a new software project for an Armv8-M core (Cortex-
M23/M33/M35P/M55) in MDK are:

* Define the overall system and memory configuration. This has impact on:
o Setup secure and non-secure projects
o Add startup code and 'main' module to secure and non-secure projects.
o Reflect this configuration in the CMSIS-Core file partition_<device>.h

» Define the API of the secure software part in a header file to allow usage
from the non-secure part

» (Create the application software for the secure and the non-secure part

Application note 291 describes the necessary steps in detail and contains example
projects and best practices for secure and non-secure programming using
Armv8-M targets. It is available at keil.com/appnotes/docs/apnt 291.asp

Getting Started with MDK: Create Applications with yVision 69

Debug Applications

The Arm CoreSight™ technology integrated into the Arm Cortex-M processor-
based devices provides powerful debug and trace capabilities. It enables run-
control to start and stop programs, breakpoints, memory access, and Flash
programming. Features like sampling, data trace, exceptions including program
counter (PC) interrupts, and instrumentation trace are available in most devices.
Devices offer instruction trace using Embedded Trace Macrocell (ETM),
Embedded Trace Buffer (ETB), or Micro Trace Buffer (MTB) to enable analysis
of the program execution. Refer to keil.com/coresight for a complete overview
of the debug and trace capabilities.

Debugger Connection

MDK contains the pVision Debugger that connects to various debug/trace
adapters and allows you to program the Flash memory. It supports traditional

features like simple and complex breakpoints, watch windows, and execution

» The ULINKpl/us and ULINK?2 debug = &‘a
Serial Wire Output (SWO). The : ‘é
code coverage and execution profiling. Refer to keil.com/ulink for more
debug interfaces are typically part of an

evaluation board or starter kit and offer

control. Using trace, additional features like event/exception viewers, logic
analyzer, execution profiler, and code coverage are supported.
adapters interface to JTAG/SWD debug
connectors and support trace with the
ULINKpro debug/trace adapter also interfaces to ETM trace connectors and
uses streaming trace technology to capture the complete instruction trace for
information.
= CMSIS-DAP based USB JTAG/SWD E
integrated debug features. MDK also Aﬂ
supports several proprietary interfaces that offer a similar technology.

uss

» Third-party debug solutions, such as Segger J-Link or J-Trace are supported
in MDK. Some starter kit boards provide the J-Link Lite technology as an on-
board solution.

70 Debug Applications

Using the Debugger

As an example, we will debug the Blinky application created in the previous
chapter on hardware. You need to configure the debug connection.

Select the debug adapter and configure debug options.

ﬁ'ﬁ From the toolbar, choose Options for Target, click the Debug tab, enable
Use, and select the applicable debug driver.

KA Options for Target ‘Target 1' >
Device] Target] Output] Listing] User] C:’C-v—r] Asm] Linker 1 Debug 'Util'rties]

" Use Simulator with restrictions Settings | | & LIse:UUUNK Pro Cortex Debugger :_N Settings ‘
[~ Limit Speed to Real-Time

The device selection already configures the Flash programming algorithm for on-
chip memory. Verify the configuration using the Settings button.

In our example we run the program out of RAM. But in cases when flash memory
is used, the program needs to be loaded into the Flash.

fﬁ From the toolbar, choose Download. The Build Output window shows

messages about the download progress.

Bufld Qutput x|
Load "C:\\Workspaces‘\‘\MDEN\\NXPYW\Blinky'\Objects4\\Blinky.axf"
Erase Done.

Programming Done.

Verify OH.

Flash Load finished at 14:28:38

Getting Started with MDK: Create Applications with yVision

7

@ Start debugging on hardware. From the toolbar, select Start/Stop Debug

Session
3 CA\Workspaces\MDK\NXP\Blinky\Blinky.uvprojx - pVision - El x
File Edit View Project Flash Debug Peripherals Tools SWCS Window Help
M@ % @ [| | £ = ik o da®| gl eoc s d|B-| A
HEe wrEy | dRABEa R 028 8-@8- %
Registers 3 Ed Disassembly 0 |
Register]Va\ue l_:- Ox1A001280 FOOOBC6A B.W rt_psh_req (0x1AO01B58) A
B Cx 14: osKer: ize (): // Initialize CMSIS-RTOS
: RO 000000000 15: rad peripherals here
i priesaasi chox1A001284 FOOO osKernelInitialize (Ox1A0012B0)
i - R2 00000000 : i6: LED Initiali // Initialize LEDs
[t <00000000 e .))
[y 00000000 ig8: // create 'thread' functions that start executing,
Pl i 19: // example: tid name = osThreadCreate (osThread(name), NULL): v
T <00000000 pl =
. E; (<00000000] leDh) LEDc] RDCConf M |] osObjectsh | mainc |] startup LPCi8ics v X
! R 00000000 oL/ ; s
i R1D 00000000 11 * main: initialize and start the system
! Rl 000000000 g
| R12 000000000 13 Hint main (void) {
i R13 (5F) 010000823 By 14 osKernelInitialize (); i I alize CMSIS-RICS
| RN(LE“ Dc1AD01385 15 // initialize peripherals here
i RI5(FC) Ck‘lﬂmﬂ&l. 16 LED Initialize ()
. E PSR Gc1000000 2
- Banked i
&) - System 13 TULL)
E - Intemal a1 i
Mode Thread | 21 osKernelStart ():
Frivilege Privileged = -
Sk 5P 23 while (1}:
- IRLARD =i 24 |} v
= Registers < >
Command n [call stack - Locals 5 x|
Load "C:\\Workspaces \\MDEA\\NXP\\Blinkw\\Cbjects\\Blinky.axf" Mame Location/Value Type
@ -# osTimerThread: 1 0x1ADD13AC Task I
= o w0 o
i % main 0:00000000 intf() i
£ > | @@ osidie.demon:255 |0xIAOD13FA Task
> =~
ASS5IGN BreakDisable BreakEnable BreakKill BreakList BreakSet I .;-'jcall Stack = Locals @T\ac—: Exceptions {aE.-':.-i Counters | [EMemory 1
ULINK Pro Cortex Debugger t1: 0.03560590 sec L4 C

During the start of a debugging session, pVision loads the application, executes

the startup code, and stops at the main C function.

Click Run on the toolbar. The LED flashes with a frequency of one second.

Debug Toolbar

The debug toolbar provides quick access to many debugging commands such

1 Step steps through the program and into function calls.

o Step Over steps through the program and over function calls.
{¥* Step Out steps out of the current function.

& Stop halts program execution.

ST Reset performs a CPU reset.

=> Show to the next statement to be executed (current PC location).

as:

72

Debug Applications

Command Window

You may also enter debug commands in the Command window.

Command

BS \\Blinky\main.c\32
B5 \\Blinky\main.c\23

B5 Write msTicks=—100, 1, "printf(\"Write Access Breakpoint:

W5 1, "msTicks, 0x0A

W5 1, "CORE CLK/1000000,0x0R

WS 1, ((SysTick Tvpe *) ((0xECOOEC0OUL) + Ox0010UL)),0x0R
WS 1, "SystemCoreClock,O0O=x0RA

Write Access Breakpoint: 100 ticks reached :
Write Access Breakpoint: 100 ticks reached Comamnd Line
Write Access Breakpoint: 100 ticks reached

4 | n

»

100 ticks reachedi\n\");"

Dynamic Command List

- 1

AS5IGN BreakDisable BreakEnable BreakKill BreakList Break3et Breamccels COVERAGE DEFINE ‘

On the Command Line enter debug commands or press F1 to access detailed

help information.

Disassembly Window

The Disassembly BEOS O -8 -2 -] -
WlIldOW ShOWS the Disassembly
program execution in Daxoai;ézzzlj'rzglay (?;;dj ir
assembly code - ?_\;o aroo w‘:‘.;'_'emérpr.s‘rlcks < 433);
. . . x08000286 BFD ¥
1nterm1xed Wlth the W oxos000288 480E LDR r0, [pc, #56] ; @0x0B0002C4
d h 0x0200028A €800 LDR r0, [r0, #0x00]

source codce (W cn 0x0800028C FS5BOTFFS CMP 0, $0x1F2

: e s 0x08000290 DDFA BLE 0x08000288
avallable). When this is SRR S -
the active window, then 0x028000282 2000 MOVS 0, $0x00

. 4
all debug steppin _
g pping [#] tepic [¥] maine =[] LED.A

commands work at the e — —
assembly level. 2-[* CMSIS-RT0S 'main' function template
The window margin

shows markers for

breakpoints, bookmarks, and for the next execution statement.

Getting Started with MDK: Create Applications with pVision

73

Component Viewer

The Component Viewer shows information about:

» Software components that are provided in static memory variables or

structures.

* Objects that are addressed by an object handle.

Component Viewer windows containing objects are listed in the menu View —

Watch Windows.

The picture below is an example showing static component information for a

USB HID example project:

USB Device and Host
Property

hd

Library Version
= Device 0
Y Vendor ID

“ ProductID

? Speed

? Endpoint 0 Maximum Packet Size
Y Number of Interfaces

¥ Assigned Address
¥ Configuration Status
- Endpoint Activity
Human Interface Device 0
=-Device 1
? Vendor ID
? ProductID
Speed
? Endpoint 0 Maximum Packet Size
Number of Interfaces
Assigned Address
? Configuration Status

& -Endpoint Activity

? Human Interface Device 1

1 &

Value
6.9.6

0xC251

0x2501
Low/Full/High Speed
o4

1

10

Configured

In reports 1, Out reports 1, EP INT IN: 1, EP INT OUT: 1

OxC251
0x2511
Low/Full Speed
8

1

0

Unconfigured

Inreports 1, Out reports 1, EP INTIN: 1, EP INT OUT: 1

For more information refer to

keil.com/pack/doc/compiler/EventRecorder/html/cv use.html.

74

Debug Applications

Event Recorder

The Event Recorder shows execution status and event information and helps to
analyze the operation of software components. MDK-Middleware and the Keil
RTXS already offer the required description files.

The Event Recorder:

increases the visibility to the dynamic execution of an application program.
provides filter capabilities for the different event types.

allows unrestricted calls to event recorder functions from threads, RTOS
kernel, and ISRs.

implements recording functions that do not disable ISR on Armv7-M.

supplies fast time-deterministic execution of event recorder functions with
minimal code and timing overhead. Thus, event annotations can remain in
production code without the need to create a debug or release build.

To add the Event Recorder to the example from section Project with CMSIS-
RTOS?2 on page 52, do the following:

In the Manage Run-Time Environment window, select the component
Compiler:Event Recorder and also verify that the component
CMSIS:RTOS2 (API):Keil RTXS is selected in Source variant. Press OK.

In the Project window under CMSIS component open RTX Config.h file,
switch to the Configuration Wizard view, expand Event Recorder
Configuration group and enable Global Initialization.

|| RTX Config.h

Expand All | Collapse Al I Help 1 |

Cption Value

+-Systern Configuration

+-Thread Configuration
+-Tirmer Configuration

+-Event Flags Configuration
+-Mutex Configuration

|- Semaphore Configuration

E-E

Mermory Pool Configuration

| -Message Queue Configuration

T

1-Event Recorder Configuration
el Global Initialization
[#-RTOS Event Generation

Global Initialization
Initialize Event Recorder during 'osKernelinitialize’.

_TextEditor [Configuration Wizard

Getting Started with MDK: Create Applications with pVision

75

In the Project window under Compiler component open
EventRecorderConf.h file, switch to the Configuration Wizard view,
expand Event Recorder group and specify 6000000000 as the Time Stamp
Clock Frequency [Hz]. This ensures correct timestamping for this project.

|] EventRecorderConfh

Expand Al I Collapse All I Help [T Show
Option Yalue
Murnber of Records a4
Time Stamp Source DWT Cycle Counter

Time Stamp Clock Frequency [Hz]

Event Recorder

TextEditor), Configuration Wizard |/

Rebuild the project, download the code to the target and start a debug session.

Open the event recorder window from the toolbar or the menu using

View — Analysis Windows — Event Recorder.

While debugging, events issued by Keil RTXS are displayed in this window.
Event Recorder Configuration group in the RTX Config.h file allows further
to configure the events to be generated by RTX and captured by Event Recorder.

Event Recorder a
Enable Recorder: v | R | 'd ‘ Mark: |T| All Operations |TH Stopped
Event Time (sec) Component Event Property Value
0 U | Init Event Restart Count=0x00000001 i)
1 0.03997310 |RTX Kernel Kernellnitialize
2 004001890 RTX Kemel KernellnitializeCompleted
3 004006410 |RTX Thread |ThreadNew func=app_main, argument=0x00000000, attr=0x000...
4 |0.04014510 RTX Memory .MemogAlioc mem=0x10000000, size=80, type=1, block=0x10000...
5 004021760 RTX Memory .Memog\,jAlloc mem=0x10000000, size=208, type=0, block=0x1000...
6 |0.04029790 RTX Thread |ThreadCreated thread_id=0x10000010
7 0.04035480 RTX Kernel KernelStart |
8 |0.04043350 RTX Thread |ThreadCreated thread id=0x100012B4
9 0.04049430 .RTX Thread .ThreadSwitch thread id=0x10000010
10 004054020 RTXKenel KemelStarted
11 |0.04058720 |RTX Thread |ThreadNew func=blink_LED, argument=0x00000000, attr=0x0000...
12 |0.04067020 RTX Memory .Memog\,jAlioc mem=0x10000000, size=80, type=1, block=0x10000...
13 0.04074650 RTX Memory MemoryAlloc mem=0x10000000, size=208, type=0, block=0x1000...
14 |0.04082680 |RTX Thread ThreadCreated thread_id=0x10000130
15 |0.14857680 RTX Thread |ThreadSwitch thread id=0x10000130
16 014862670 RTX Thread ThreadDelay ticks=500
17 0.14867520 .RT)(Thread .ThreadBiocked thread id=0x10000130, timeout=500
10 N1AOT7TICEN .DTV Theand .TL.rnn.lC...H»nln T I P o O WA TATATATAN KA ﬂ

RTX RTOS Event Recorder

The documentation explains how to use Event Recorder in a user application:
keil.com/pack/doc/compiler/EventRecorder/html/index.html

76 Debug Applications

System Analyzer

The System Analyzer window provides a graphical analysis tool that can be used
with any Arm Cortex-M based device. It shows:

* Incoming events from Compiler:Event Recorder.

RTX5 RTOS thread events and status.

»= Power measurement data (requires ULINKp/us debug adapter).

Exceptions (requires SWO trace and ULINKpro or ULINKpl/us).

» Value changes of VTREGs or variables (requires SWO trace).

2 Open the System Analyzer from the toolbar or via the menu View -
Analysis Windows - System Analyzer.

System Analyzer B
HO S G| | | g @ $ LA @
4 System | | -
168.03 MH
Core Clock i |
15.856 MHz 168.01 MHz 168,91 MHz, Deha; 0 Hz
4 Consumption |
57.379mA | |
Curment I I
44144 mA 794 mA 45 164 mA, Delta: 369,19 A, Ava: 45543 mA Q- 15,16 uhs
33078V
Voltage | |
v |[33085V [3.3033V. Delta- 239,99 uV, Avg 33035V
4 Exceptions Thread Mode {Thread Mod Thread Mode
Thread Mode
SVCall (17) | |
SysTick {15} 1
Event Recorder [ThreadSwitched - BT% Thread | D:lThrea ThreadSwitched - R1A Thread |
, Data Watch |
252 | |
value
0 103 102, Detta. 0
4 RTX5 RTOS | |
4 Thread Events app_main (200000 Running ha app_main {5200 Bunning hnin
app_main {le20000010) Running mﬁ_
osPitxldleThread {2000 Ready N Ready
osRbeTimer Thread (201,
thrADC ((20000310)
thrBUT {(20000060) , m :
thrLED {0x200001b8) ! !
Grid: 50 us 2535035 23506 s 755085, d: 3296us] T
l o[l

For more details refer to documentation:
keil.com/support/man/docs/uv4/uv4 db dbg systemanalyzer.htm

Getting Started with MDK: Create Applications with pVision 77

Breakpoints

You can set breakpoints

* While creating or editing your program source code. Click in the grey margin
of the editor or Disassembly window to set a breakpoint.

= Using the breakpoint buttons in the toolbar.
» Using the menu Debug — Breakpoints.
* Entering commands in the Command window.

» Using the context menu of the Disassembly window or editor.

Breakpoints Window

You can define complex Breakpoints x
breakpoints using the Curert Breakpoirts:
Breakpoints window. :

Open the Breakpoints
window from the menu
Debug.

Enable or disable Access
breakpoints using the Boressin: | [Read [Vine
checkbox in the field e | 5 —
Current Breakpoints. o ™ Otiects
Double-click on an
existing breakpoint to
modify the definition.

=
‘ KiIISeIected‘ Kil Al | Close | Help

Enter an Expression to add a new breakpoint. Depending on the expression, one
of the following breakpoint types is defined:

= Execution Breakpoint (E): is created when the expression specifies a code
address and triggers when the code address is reached.

" Access Breakpoint (A): is created when the expression specifies a memory
access (read, write, or both) and triggers on the access to this memory
address. Use a compare (==) operator to compare for a specified value.

If a Command is specified for a breakpoint, pVision executes the command and
resumes executing the target program.

The Count value specifies the number of times the breakpoint expression is true
before the breakpoint halts program execution.

78

Debug Applications

Watch Window

The Watch window allows you to observe
program symbols, registers, memory areas,
and expressions.

ﬁﬂ Open a Watch window from the
toolbar or the menu using
View — Watch Windows.

Add variables to the Watch window with:

Watch 1 =
Mame Value Type
msTicks _ int
¥ CORE_CLK/1000000 158 ulong
=1 SysTick 0xEQ00EQLO .pcinter
¥ CTRL (000010007 'unsigned int
¥ LOAD 0:0002903F .unsigned int
¥ VAL _ unsigned int
¥ CALIB 0:4000493E unsigned int
SystemCoreClock | 168000000 .unsigned int

* C(Click on the field <Enter expression> and double-click or press F2.

= In the Editor when the cursor is located on a variable, use the context menu

select Add <item name> to...

* Drag and drop a variable into a Watch window.

* Inthe Command window, use the WATCHSET command.

The window content is updated when program execution is halted, or during
program execution when View — Periodic Window Update is enabled.

Call Stack and Locals Window

The Call Stack + Locals window |caitStack = Locais =]
shows the function nesting and Rane LocationVolie | hype
. % osTimerThread:1 0s0B000A2C Tazk
variables of the current program g =
location. 9 rmain 0+080003CE lint)
=@ blink LED:3 | Task
i 2% osDelay 0:080008E4 enum (int) flunsigned int}
;&."'_-l] Open the Call StaCk + Locals ¢ millisec <not in scope> .param - unsigned int
window from the toolbar or 5 % blink LED 0:08000410 |vaid f{void)
. . _ [argument <not in scope> param - void *
the menu.uSIHg Vlew Call 1% os idle_ demon: 255 | 0x08000438 Task
Stack Window.

When program execution stops, the Call Stack

+ Locals window automatically

shows the current function nesting along with local variables. Threads are shown
for applications that use the CMSIS-RTOS RTX.

Getting Started with MDK: Create Applications with yVision

79

Register Window

The Register window shows the content of the
microcontroller registers.

== Open the Registers window
from the toolbar or the menu
View — Registers Window.

You can modify the content of a register by double-
clicking on the value of a register, or pressing F2 to
edit the selected value. Currently modified registers are
highlighted in blue. The window updates the values
when program execution halts.

Memory Window

Monitor memory areas using —

T
Register Value I
=l Core

- RO 00000000

R12 (20000058

R13 (SP)

C2000067E

(LR)

[=I Banked

MSP (20000672
PSP (00000000
[=]- System
BASEPRI <00
PRIMASK 0
FAULTMASK 0
CONTROL (04
= Intemal
Mode Thread
Privilege Privileged
Stack MSP
States 52395004952
Sec 311.37502548
[#--FPU

B

Memory Windows. Address: [t Tioks

0x20000000:

b5

FTiE| 0R037A00 00000000 00000000

Open a Memory window
from the toolbar or the
menu using View —
Memory Windows.

Enter an expression in the
Address field to monitor the
memory area.

i0x20000010:
0x20000020:
0x20000030:
0x20000040:
Dx20000050:
0Ox20000060:
Ox20000070:
Ox20000080:
Dx20000090:
Ow 200000580

04030201
00000000
00000000
00000000
00000000
00000000
20000018
00000000
00000000
TATaTatatalatalal

09080706
00000000
00000000
00000000
00000000
00000000
08000200
00000000
00000000
nooonnnn

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
TATaTatatalatalal

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
noooanon

To modify memory content, use the Modify Memory at ... command from
context menu of the Memory window double-click on the value.

The Context Menu allows you to select the output format.

To update the Memory Window periodically, enable View — Periodic
Window Update. Use Update Windows in the Toolbox to refresh the

windows manually.

' Stop refreshing the Memory window by clicking the Lock button. You can

use the Lock feature to compare values of the same address space by
viewing the same section in a second Memory window.

80 Debug Applications

Peripheral Registers

Peripheral registers are memory mapped registers to which a processor can write
to and read from to control a peripheral. The menu Peripherals provides access
to Core Peripherals, such as the Nested Vector Interrupt Controller or the
System Tick Timer. You can access device peripheral registers using the System
Viewer.

NOTE
The content of the menu Peripherals changes with the selected microcontroller.

System Viewer

System Viewer windows display information GPIoD
about device peripheral registers. i) [=]
Property Value

ﬁ Open a peripheral register from the toolbar
or the menu Peripherals — System

Viewer.

& MODER
MODERIS

© OTYPER

& GPIOB_OSPEEDR

R -

001

= PUPDR
= IR

]
i)
]
000008020
-IDR15 I¥
0 =
I—

With the System Viewer, you can:

[-ODR

* View peripheral register properties and o
values. Values are updated periodically @ LCKR
when View — Periodic Window Update e

: IDR
1S enabled' [Bits 31..0] RO (@ 0:40020C10) GPIO port input data

register

* (Change property values while debugging.

= Search for specific properties using TR1 Regular Expressions in the search
field. The appendix of the uVision User’s Guide describes the syntax of
regular expressions.

For details about accessing and using peripheral registers, refer to the online
documentation.

Getting Started with MDK: Create Applications with yVision 81

Trace

Run/stop debugging, as described previously, has some limitations that become
apparent when testing time-critical programs, such as motor control or complex
communication applications. As an example, breakpoints and single stepping
commands change the dynamic behavior of the system. As an alternative, use the
trace features explained in this section to analyze running systems.

Arm Cortex-M processors integrate CoreSight logic that is able to generate the

following trace information using:
Cortex-M Debug & Trace IP

= Data Watchpoints record

memory accesses with data Breakpoint Unit Debug
value and program address and, Access Port
optionally, stop program Memory Access (DAP)
execution.

* Exception Trace outputs Data Watchpoints
details about interrupts and Exception & Trace Port
exceptions. Instrumented Trace interiace

Unit (TPIU)

* Instrumented Trace
communicates program events
and enables printf-style debug
messages and the RTOS Event Viewer.

Instruction Trace

» Instruction Trace streams the complete program execution for recording and
analysis.

The Trace Port Interface Unit (TPIU) is available on most Cortex-M3, Cortex-
M4, and Cortex-M7 processor-based microcontrollers and outputs above trace
information via:

= Serial Wire Trace Output (SWO) works only in combination with the
Serial Wire Debug mode (not with JTAG) and does not support Instruction
Trace.

* 4-Pin Trace Output is available on high-end microcontrollers and has the
high bandwidth required for Instruction Trace.

* On some microcontrollers, the trace information can be stored in an on-chip
Trace Buffer that can be read using the standard debug interface.

= Cortex-M3, Cortex-M4, and Cortex-M7 has an optional Embedded Trace
Buffer (ETB) that stores all trace data described above.

» Cortex-MO+ has an optional Micro Trace Buffer (MTB) that supports
instruction trace only.

82

Debug Applications

The required trace interface needs to be supported by both the microcontroller
and the debug adapter. The following table shows supported trace methods of

various debug adapters.

Feature ULINKpro ULINKplus
Serial Wire Output (SWQ) v v
Maximum SWO Clock Frequency 200 MHz 60 MHz
4-Pin Trace Output for Streaming Trace v

Embedded Trace Buffer (ETB) Support v v
Micro Trace Buffer (MTB) Support v v

ULINK2
v
3.75 MHz

v
v

Trace with Serial Wire Output

To use the serial wire trace output (SWO), use the following steps:

#% Click Options for Target on the toolbar and select the Debug tab. Verify
that you have selected and enabled the correct debug adapter.

Options for Target ‘Target 1' .
Detricei Target i Output i Listing ! User I C.-"C-i-:-i Asm i Linker ' Debug lUtili'ties I
" Use Simulator with restrictions Settings | & se: |LILINK Pro Cortex Debuager _':J Settings
[Limit Speed to Real-Time
== Click the Settings button. In the Debug dialog, select the debug Port: SW
and set the Max Clock frequency for communicating with the debug unit of
the device.
Cortex-M Target Driver Setup x

Trace i Fash Download I
— LILINK USE - JTAG/SW Adapter—
Serial Nn.‘
ULINK Version: [ULINKpro
Device Famiby: W
Firmware Version: W
Maxe Clack: m

—5W Device

IDCODE | Device Name I

SWIDIO | (3 0x?BA01477 ARM CoraSight SW-DP

= Automatic Detechon | LHDE

€ Manwal Configuration Device Marme

fdd ! L':e!c-iz:! I_Ir.ci:-.iz:l

Getting Started with MDK: Create Applications with yVision 83

25 Click the Trace tab. Ensure the Core Clock matches the System Core Clock

the MCU is running at. Set Trace Enable and select the Trace Events you
want to monitor.

Enable ITM Stimulus Port 0 for print f-style debugging when using ITM

as the ouiut channel.

Debug Flash Download | Pack I

[Care Clock: Im MHz V¥ Trace Enable] [T UnlmitedTrace. T ETM Trace Enable
Trace Clock: | 180.000000 MHz ¥ Use Core Clock
— Trace Port — Timestamps ————————— ~ Itace Events
ISeriaI Wire Output - Manchester ;I ¥ Enzble Prescaler m [ICPL: Cydles per Instruction
SWO Clock Presealer: | 1 PCSampling ———————— :: ’ E;’_‘Z‘Tgx'&;’:l:ead
v Atodetect Prescaler: m -

U: Load Stere Unit Cycles
[~ |FOLD: Folded Instructions

TRC: Exception Tracing

SWO Clock: | 130.000000 MHz

™ Periodic Pen’ud:l <Disabled:

[on Data R/W Sample

M Stimulus Ports
K Port 2423 Port 16 15 Port gF Port
Eﬁab|ei|{b(8ﬂﬂﬂﬂﬂﬂ1 v TTTTTTTT

Pﬂvi]ege;lthﬂﬂﬂﬂ-ﬂﬂﬂﬂ Port 31.24 [Pot23.76 [Port 15.8 [Port 7.0
O I Cancel Help

NOTE

When many trace features are enabled, the Serial Wire Output communication
can overflow. The uVision Status Bar displays such connection errors.

The ULINKpro debug/trace adapter has high trace bandwidth and such
communication overflows are rare. Enable only the trace features that are
currently required to avoid overflows in the trace communication.

84 Debug Applications

Trace Exceptions

The Exception Trace window displays statistical data about exceptions and
interrupts.

=] Click on Trace Windows and select Trace Exceptions from the toolbar or
use the menu View — Trace — Trace Exceptions to open the window.

= | | 71 | ¥ EXCTRC: Exception Tracing | ¥ Timestamps Enable
Mum Mame Count Total Time MinTimeln MaxTime.. Min Time Out Max Time Out First Time [s] Last Time [s]
[UsageFault 0 Os _f_j
1 svCal 0 0= ' ' ' ' ' | i
12 DebugMonitor 0 0s
14 | PendsV o o= ' ' ' ' ' ' '
5 Seficc 16 e 9spies so5ins Doses [LM0ms 00 1ol |
16 WWDG 0 0=
= e t o= ! | | | | | |
18 | TAMPSTAMP |0 o=
1 RTC_WKUP 0 :0 s 5]

To retrieve data in the Trace Exceptions window:
= Set Trace Enable in the Debug Settings Trace dialog as described above.
* Enable EXCTRC: Exception Tracing.

= Set Timestamps Enable.

NOTE
The variable accesses configured in the Logic Analyzer are also shown in the
Trace Data Window.

Getting Started with MDK: Create Applications with yVision

85

Logic Analyzer

The Logic Analyzer window displays changes of up to four variable values over

time. To add a variable to the Logic Analyzer, right click it in while in debug
mode and select Add <variable> to... - Logic Analyzer. Open the Logic
Analyzer window by choosing View - Analysis Windows - Logic Analyzer.

Grid - Zoom Min/Max, Llpdds Scmm_-x Tmn_dacn_ ! Jump to [Signal Info | Ampltude
04765545 [05me | op || Clear | [Prev [Mest]| [Code |[Trace] | ™ Stow Cycles ¥ Curser

filtered

Mouse Pos Reference Point Delta

re !] | Time 0458738 5 0.457832 5 0.90541 ms = 1104.47
i : 15254 5 15517 | vatue 14629 15512 283

PCS: 0:3b0 Ox3bg

Ar—t— .—'-—-—|I e —] ‘—--—| e b e

To retrieve data in the Logic Analyzer window:
= Set Trace Enable in the Debug Settings Trace dialog as described above.

» Set Timestamps Enable.

NOTE

The variable accesses monitored in the Logic Analyzer are also shown in the
Trace Data Window. Refer to the uVision User’s Guide — Debugging for more
information.

86 Debug Applications

Debug (printf) Viewer

The Debug (printf) Viewer window displays data streams that are transmitted
sequentially through the ITM Stimulus Port 0. To enable printf() debugging, use
the

Compiler:1/0 software component as described on page 40.

This fputc() function redirects any printf() messages (as shown below) to the
Debug (printf) Viewer.

int seconds; // Second counter

while (1) {

LED On (); // Switch on
delay () // Delay

LED Off () // Switch off
delay () // Delay
printf ("Seconds=%d\n", seconds++) ; // Debug output

_::; Click on Serial Windows and select Debug (printf) it i d 1

Seconds=0 -

Viewer from the toolbar or use the menu View — Serial [s.cona==:
Windows — Debug (printf) Viewer to open the Reooals 2

(-m

Seconds=3

WlndOW Seconds=4 -
¢la. C#be. |EM

To retrieve data in the Debug (printf) Viewer window:

= Set Trace Enable in the Debug Settings Trace dialog as described above.
» Set Timestamps Enable.

* Enable ITM Stimulus Port 0.

» Alternatively, on targets that do not support ITM (such as Arm Cortex-
MO0/MO0+), you can use the event recorder to display printf messages. The
Compiler component documentation explains how to enable this feature:
keil.com/pack/doc/compiler/RetargetlOQ/html/ retarget examples er.html

Getting Started with MDK: Create Applications with pVision 87

Event Counters

Event Counters displays cumulative T~ &
numbers, which show how often an event is H| ®| @
triggered, Mame Value Enable
CPICNT 698857 ¥
=] From toolbar use Trace Windows — EXCCNT 540 iz

SLEEPCNT 256
LSUCNT 698580
FOLDCNT 0

?

Event Counters

113

Y

From menu View — Trace — Event
Counters

To retrieve data in this window:

Set Trace Enable in the Debug Settings Trace dialog as described above.

Enable Event Counters as needed in the dialog.

Event counters are performance indicators:

CPICNT: Exception overhead cycle: indicates Flash wait states.
EXCCNT: Extra Cycle per Instruction: indicates exception frequency.
SLEEPCNT: Sleep Cycle: indicates the time spend in sleep mode.

LSUCNT: Load Store Unit Cycle: indicates additional cycles required to
execute a multi-cycle load-store instruction.

FOLDCNT: Folded Instructions: indicates instructions that execute in zero
cycles.

88 Debug Applications

Trace with 4-Pin Output

Using the 4-pin trace output provides all the features described in the section
Trace with Serial Wire Output, but has a higher trace communication
bandwidth. Instruction trace is also possible.

The ULINKpro debug/trace adapter supports this parallel 4-pin trace output
(also called ETM Trace) which gives detailed insight into program execution.

NOTE
Refer to the uVision User’s Guide — Debugging for more information about the
features described below.

When used with ULINKpro, MDK can stream the instruction trace data for the
following advanced analysis features:

= Code Coverage marks code that has been executed and gives statistics on
code execution. This helps to identify sporadic execution errors and is
frequently a requirement for software certification.

* The Performance Analyzer records and displays execution times for
functions and program blocks. It shows the processor cycle usage and enables
you to find hotspots in algorithms for optimization.

» The Trace Data Window shows the history of executed instructions for
Cortex-M devices.

Trace with On-Chip Trace Buffer

» In some cases, trace output pins are not available on the microcontroller or
target hardware. As an alternative, an on-chip Trace Buffer can be used that
supports the Trace Data Window.

Getting Started with MDK: Create Applications with yVision

89

MDK-Middleware

Today’s microcontroller devices offer a wide range of communication peripherals
to meet many embedded design requirements. Middleware is essential to make
efficient use of these complex on-chip peripherals.

NOTE

This chapter describes the middleware that is part of MDK-Professional and
MDK-Plus. MDK also works with some third-party middleware stacks. Refer to
keil.com/pack for a list of public software packs.

The MDK-Middleware software pack includes royalty-free middleware with
components for TCP/IP networking, USB Host and USB Device
communication, File System for data storage, and a graphical user interface.

Refer to keil.com/middleware for more information.

B EII [3] MDK Middlewars b |+ v = O x

<~ =7 () fur 0 www2 keil.com/mdkS/middlewars 0o % e 3’; =3

ArmkeElL

A Products Download Events Support

Home / MDK / MDK Middlewars ' Learning
- &® Platform
MDK Middleware
Microcontrollers offer a wide range of peripherals to meet o i

Network Component) deaipanp &’ Quick Links
O i el Wl today's embedded design requirements. However,
== L= 15) cone implementing applications that efficiently utilize these interfaces = MDK Overview
F i = = presents software developers with real challenges. Flexible and = Online manuals for MDK

] S — easy-to-use middleware components are essential to unleash

Middleware Application Templates

o
‘ the power of communication and interface peripherals in

= Knowledgebase
modern microcontrollers.

= Compare MDK Editions

Middleware Components

MDK Middleware provides royalty-free, tightly-coupled software components that are specifically designed for communication peripherals in

micrnrontrallers [t is nrovided 2= nart of the MNDK_Prafescinnal ar MNK-Plns editinns in hinane farmat The Middleware Software Park inclides the

This web page provides an overview of the middleware and links to:

» MDK-Middleware User’s Guide
= Device List along with information about device-specific drivers
» Information about Example Projects with usage instructions

The Middleware interfaces to the device peripherals using device-specific
CMSIS-Drivers. Refer to CMSIS-Driver on page 32 for more information.

90 MDK-Middleware

Combining several components is common for a microcontroller application. The
Manage Run-Time Environment dialog makes it easy to select and combine
different MDK-Middleware components. It is even possible to expand the
middleware component list with third-party components that are supplied as a
software pack.

Typical examples for the usage of MDK-Middleware are:
= Web server with storage capabilities: Network and File System Component
» USB memory stick: USB Device and File System Component

* Industrial control unit with display and logging functionality: Graphics, USB
Host, and File System Component

= Refer to the FTP Server Example on page 96 that exemplifies a combination
of several middleware components.

The following sections give an overview for each software component of the
MDK-Middleware.

NOTE
A thirty days evaluation license for MDK-Professional is delivered with each
installation. Refer to the Installation chapter on page 9 for more information.

Getting Started with MDK: Create Applications with yVision 91

Network Component

The Network Component uses TCP/IP communication protocols and contains
support for services, protocol sockets, and physical communication interfaces. It
supports [Pv4 and IPv6 connections.

Network Component
Compact Full Web Server FTP TFTP Telnet
Web Server Using File System Server Server Server
SNMP SNTP FTP TFTP SMTP
Agent Client Client Client Client
with

IPv4/IPvé
Dual-
— T

CMSIS-Driver

The various services provide program templates for common networking tasks.

Service

Socket

Interface

* Compact Web Server stores web pages in ROM whereas the Full Web
Server uses the File System component for page data storage. Both servers
support dynamic page content using CGI scripting, AJAX, and SOAP
technologies.

* FTP or TFTP support file transfer. FTP provides full file manipulation
commands, whereas TFTP can boot load remote devices. Both are available
for the client and server.

* Telnet Server provides a command line interface over an IP network.

= SNMP Agent reports device information to a network manager using the
Simple Network Management Protocol.

= DNS Client resolves domain names to the respective IP address. It makes use
of a freely configurable name server.

= SNTP Client synchronizes clocks and enables a device to get an accurate
time signal over the data network.

= SMTP Client sends status emails using the Simple Mail Transfer Protocol.

92 MDK-Middleware

All Services rely on a communication socket that can be either TCP (a
connection-oriented, reliable full-duplex protocol), UDP (transaction-oriented
protocol for data streaming), or BSD (Berkeley Sockets interface).

The physical interface can be either Ethernet (for LAN connections) or a serial
connection such as PPP (for a direct connection between two devices) or SLIP
(Internet Protocol over a serial connection).

Depending on the interface, the Network Component relies on a CMSIS-Driver
to be present for providing the device-specific hardware interface. Ethernet
requires an Ethernet MAC and PHY driver, whereas serial connections
(PPP/SLIP) require a UART or a Modem driver.

The Network Core is available in a Debug variant with extensive diagnostic
messages and a Release variant that omits these diagnostics. It supports IP
communication using IPv4 and IPv6. To see events coming from the network
component in the event recorder, you need to enable a debug variant.

Getting Started with MDK: Create Applications with yVision 93

File System Component

The File System Component allows your embedded applications to create, save,
read, and modify files in storage devices such as RAM, NAND or NOR Flash,
memory cards, or USB memory sticks.

File Systemm Component

USB MSC SD/MMC
Mass Storage Class Memory Card File System
“ m m N

CMSIS-Driver

I = T =T

Each storage device is accessed and referenced as a Drive. The File System
Component supports multiple drives of the same type. For example, you might
have more than one memory card in your system.

>
£
a

The File System Core is thread-safe, supports simultaneous access to multiple
drives, and uses a FAT system available in two file name variants: Short File
Name (SFN) and Long File Name (LFN) with up to 255 characters. It also
provides a Debug variant with extensive diagnostic messages and a Release
variant that omits these diagnostics. To see events coming from the file system
component in the event recorder, you need to enable a debug variant.

To access the physical media, for example NAND and NOR Flash chips, or
memory cards using MCI or SPI, CMSIS-Driver have to be present.

94 MDK-Middleware

USB Component

The USB Device component implements USB Host and Device functionality
and uses standard device driver classes that are available on most computer
systems, avoiding host driver development.

USB Component

HID CcDC
Human Interface Device USB Host Core
MSC Custom
Mass Storage Class Custom Device Class

HID CcDC +
MsSC Custom ADC
Mass Storage Class Custom Device Class Audio Device Class

CMSIS-Driver

USB Host USB Device

* Human Interface Device Class (HID) implements a keyboard, joystick or
mouse. However, HID can also be used for simple data exchange.

USB Host

USB Device

= Use the Mass Storage Class (MSC) for file exchange (for example a USB
memory stick).

* Communication Device Class (CDC) implements a virtual serial port (using
the sub-class ACM) or a network connection (using the sub-class NCM).

= Audio Device Class (ADC) performs audio streaming.
= Use the Custom Class for new or unsupported USB classes.

The USB Component supports Composite USB devices that implement multiple
device classes.

This component requires a USB CMSIS-Driver to be present. Depending on the
application, it has to comply with the USB 1.1 (Full-Speed USB) and/or the USB
2.0 (High-Speed USB) specification.

The USB Core is available in a Debug variant with extensive diagnostic

messages and a Release variant that omits these diagnostics. To see events
coming from the USB component in the event recorder, you need to enable the

debug variant.

Getting Started with MDK: Create Applications with yVision

95

Graphics Component

The Graphics Component is a comprehensive library that includes everything
you need to build graphical user interfaces.

Graphics Component

Bitmap Support Window Manager

Dialogs

Antialiasing

LCD Configuration GUI Configuration

N T

Input

Display

Interface Template Preconfigured Interfaces

Core functions include:

A Window Manager to manipulate any number of windows or dialogs.
Ready-to-use Fonts and window elements, called Widgets, and Dialogs.
Bitmap Support including JPEG and other common formats.
Anti-Aliasing for smooth display.

Flexible, configurable Display and User Interface parameters.

The user interface can be controlled using input devices like a Touch Screen
or a Joystick.

The Graphics Component interfaces to a wide range of display controllers using
preconfigured interfaces for popular displays. Adapt the interface template to
add support for new displays.

The VNC Server allows remote control of your graphical user interface via
TCP/IP using the Network Component.

Demo shows all main features and is a rich source of code snippets for the GUI.

96 MDK-Middleware

Mbed IoT Componentes

Keil MDK provides interfaces to Mbed software components that enable secure
communication and Internet of Things (IoT) connectivity.

Mbed TLS adds cryptographic and SSL/TLS capabilities with a library
collection optimized for embedded systems.

Mbed Crypto supports a wide range of cryptographic operations and

provides a reference implementation of the cryptography interface of the Arm
Platform Security Architecture (PSA).

FTP Server Example

The FTP server example is a reference application that shows a combination of
several middleware components. Refer to Verify Installation using Example

Projects on page 14 for more information on the various example projects that
are available.

When using an FTP Server, you can exchange and manipulate files over a TCP/IP

network. The middleware documentation has more details about the FTP Server
and the reference application:

5‘[2 FTP Sarver bl - =} X
& = 0 MW > hitpsy/fea kil com/pack/doc/mw/Network/html/f £ p_server_example.htm|

o sr = L =&

armkell Network Component version7.14.0

MDK Middleware for TPv4 and IPv6 Networking
e

Board Support

Main Page Usage and Description Reference 3 o
Network Component
Revision History FTP Server

> Creating a Network Application

Troubleshosting a Netwark Application | THIS tutorial creates a FTP server that allows you to manage files from any maching using a FTP client. The following

T picture shows an exemplary connection of the development board and a Computer.

Cyber Security

4 y Local Area Network

Network Examples
HTTP Server
HTTPS Server Ethernet Ethernet
HTTP Upload

Telnet Server
SMTP Client
SNMP Agent
BSD Client/Server

Migration

Resource Requirements
Funclion Overview

Reference

Data Struciures
Data Structure Index
Data Fields

Build the "FTP Server" Project

Open the exampfe project in MDK (the Pack Installer web page explains how to do this). The pVision Project window
should disnlav A similar nroiect strictire-
Network Examples | Generated on Wed Jul 1 2020 16:03:51 for Network Component by ARM Ltd. All rights reserved.

Getting Started with MDK: Create Applications with yVision

Several middleware components are the building blocks of this FTP server. A
File System is required to handle the file manipulation. Various parts of the
Network component build up the networking interface.

The following software components from the MDK-Middleware are required to
create the FTP Server example:

Network File System

@
Wiﬂl emory Lal
CMSIS-Driver

As explained before, CMSIS-Driver provides the interface between the
microcontroller peripherals and the MDK-Middleware.

ket

Socl

IPv4/IPvé
Dual-
Stack

o File System Core

Interface
Service

Server

The Manage Run-Time Environment dialog shows the software components
selected for the FTP Server example:

Software Component Sel. Variant Version Description | Software Component Sel. Variant Version Description
-4 CMSIS Driver Unified Device Drivers compliant to CM¢ o File System MDK-Pro 6.24 File Access on various storage devices
@ € Ethemet (AP) | {201 | Ethemet MAC and PHY Driver API for Ce I @ CoRE 7 LFN [¥]6:24 File System with Long Filename support for
= 4 Ethemet MAC (APD) 201 Ethemet MAC Driver API for Cortex-M | -4 Drive Storage Devices and Media Types
@ EthemetMAC [© 202 Ethemet MAC Driver for LPCLB00 Series 5 4 Graphics MDK-Pro |5.261 | UserInterface on graphical LCD displays
= ¥ Ethemnet PHY (AP [1200 | Ethemet PHY Driver APl for Cortex-M | 24 Network MDK-Pro 620 | ing using Ethemet or Serial protc
i ¥ DP83848C e 6.00 Ethernet PHY DP83848C Driver ¥ CORE I7 Release E 620 Networking Core for Cortex-M (Release)
|- @ KSIBOBIRNA T 600 | Ethemet PHY KSZ80B1RNA Driver | 5 Interface Connection Mechanism
@ Langr20 T | [600 | Ethemet PHY LANB720 Driver e ETH 1 620 | MetworkEthernet Interface
@ STBO2RTL r 600 Ethemet PHY STS02RTI Driver | @ PP I Standard M= [6.20 Metwork PP over Serial Interface - Standar
[€ Flash (aPD) 200 | Flash Driver API for Cortex-M | @ sup I~ Standard ME 620 | Metwork SLIP Interface - Standard Modem
@ BC (AP | 1202 | 2C Driver APl for Cortex-h 2@ Serice Network Services
= @ McIeP) 202 | MCI Driver API for Cortex-M | @ DNS Client r 620 | DNS Client
v ma i 201 MCI Driver for LPC1800 Series @ FTP Client {mj 5.2.‘0 ETP Client
= € NAND (APD | 1201 | NAND Flash Driver A1 or Cortex-h | @ FTP Server I 620 | ETP Server
=] 0 SP1 (APT) 201 SPI Driver API for Cortex-M - @ SMTP Client { i 6.20 SMTP Client
v ssp i 203 SPL(S5P) Driver for LPC1800 Series | @ SNMP Agent E 620 SNMP Agent
@4 USART (APT) | 1201 | USART Driver APl for Cortex-M @ SNTP Client O 620 | SNTP Client
B 0 USB Device (AP]) 201 USB Device Driver AP for Cortex-M | @ TFTP Client E 6.20 TETP Client
i 4 USB Host (4PT) 201 | USB Host Driver APLfor Cortex-M | - @ TFTP Server (] 620 | TFIP Semver
@ € Compiler | | @ TelnetSever | 620 Telnet Server
(=} 0 Device Startup, System Setup | @ Web Server Co.. ([T 6.20 Web Server (HTTP) with Read-only Web Re
@ GPDMA i 101 GPDMA driver used by RTE Drivers for L @ Web Server B 620 Web Server (HTTP) with Web Recources on
-9 GPIO | [100 | GPIO driver used by RTE Drivers for LPC1 I 2.4 Socket Network protocal
¢ scu r 1.00 SCU driver used by RTE Drivers for LPC1¢ I ¥ BSD = B.ZI.U BSD Socket
¥ Startup ich 100 System Startup for NXP LPC1800 Series - @ TCP I~ 620 TCP Socket
£ _File Svstem [MDKPro __ (624 _ | Fle Access onvariows storsgs devices ___| @ _uop e 620 _ | UDP Socket

Using Middleware

Create your own applications using MDK-Middleware components. For more
information, refer to the MDK-Middleware User’s Guide that has sections for
every component describing:

98

MDK-Middleware
= Example projects outline key product features of software components. The
examples are tested, implemented, and proven on several evaluation boards.
* Resource Requirements describe the thread and stack resources for CMSIS-
RTOS and the memory footprint.
* Create an Application contains the required steps for using the components
in an embedded application.

Reference contains the API and file documentation.

B +§|| 1] File System Examples X l+ v

= (=] X
L S D) oAy & Arm Ltd [GB] | httpsy/www.keil com/pack/doc/mw/FileSystem/htmi/fs_examples.html m st = I =
armekegl. File System Component versione.13.8
MDK Middleware for Devices with Flash File System
General File System Graphic Network uss Board Support
| I | |
Main Page Usage and Description Reference G
File System Component =
bt sty File System Examples
Create an Application Using the File Sys|
» File System Examples The File System Component is used in many different applications and examples. One stand-alone example is available
Theory of Operati to demonstrate the usage of the File System. Other examples use the File System Component in conjunction with other
HEORy.oh S pEmion Components (such as USB or Network for example).
Function Overview
Differences fo RL-FlashFS + The File System Example shows the basic functionality of the File System.
X + The USB Device Mass Storage Example shows how to create an USB MSC Device that is recognized by an
Resource Requirements USB Host controller.
» Reference + The USB Host Mass Storage Example explains how to access file system data from an attached USB memory
Data Structures device.
. + The FTP Server Example accesses the device's file system via a network connection.
Data Structure Index

Data Fields These examples are available through the Pack Installer; select the related board and copy the example.

File System Example

This example shows how to manipulate files on a given drive using the File System Component. You can create, read,
canv_and delate files an Aanv anahled drive fmemare Card NOR/NAND Flash) and farmat each driveTa kean it simnle

Generated on Wed Jul 1 2020 16:03:38 for File System Component by ARM Ltd. All rights reserved.

The learning platform keil.com/learn offers several tutorials and videos that

exemplify typical use cases of the middleware. Refer also to these application
notes:

USB Host Application with File System and Graphical User Interface:
keil.com/appnotes/docs/apnt 268.asp

= Web-Enabled MEMS Sensor Platform:
keil.com/appnotes/docs/apnt 271.asp

= Web-Enabled Voice Recorder:
keil.com/appnotes/docs/apnt 272.asp

Analog/Digital Data Logger with USB Device Interface:
keil.com/appnotes/docs/apnt 273.asp

The generic steps to use the various middleware components are:

Add Software Components: in the Manage Run-Time Environment
dialog select the software components that are required for your application.

Getting Started with MDK: Create Applications with yVision 99

= Configure Middleware: adjust the parameters of the software components in
the related configuration files.

= Configure Drivers: identify and configure the peripheral interfaces that
connect the middleware components to physical I/O pins of the
microcontroller.

* Implement Application Features: use the API functions of the selected
components to implement the application specific behaviour. Code templates
help you to create the related source code.

* Build and Download: after compiling and linking of the application use the
steps described in the chapter Using the Debugger to download the image to
your target hardware.

* Verify and Debug: test utilities along with debug and trace features are
described in the chapter Create Applications.

USB Device HID Example

While above steps are generic and apply to all components of the MDK-
Middleware, the following USB Device HID example shows these steps in
practice. This example creates a USB HID Device application that connects a
microcontroller to a host computer via USB. On the PC the utility program
HIDClient.exe is used to control LEDs on the development board.

This USB Device HID example uses the MIMXRT1050-EVK development board
populated with a MIMXRT1052DVL6B microcontroller. It is based on the
project created in section Project with CMSIS-RTOS2 along with the source
files main.c, led blinky.c and the configuration files.

NOTE

You must adapt the code and configurations when using this example on other
starter kits or evaluation boards.

The HID USB example is also available as a pre-built project in Pack Installer
for many microcontroller device families supporting USB CMSIS Driver.

Add Software Components
To create the USB Device HID example, start with the project described in
section Project with CMSIS-RTOS?2.

4 Use the Manage Run-Time Environment dialog to add specific software
components.

100 MDK-Middleware

From CMSIS-Driver component:

» Select from ::CMSIS Driver:USB Device (API) an appropriate driver
suitable for your application. Some devices may have specific drivers for
USB full-speed and high-speed whereas other microcontrollers may have a
combined driver. Here, select USBI1.

Software Component Sel. Variant Versi... Description
2] @ Board Support . . v | Generic Interfaces for Evaluation and Ile\.fEIoment Boards
ex] @ CIMSIS | | .CDITEX Microcontroller Software Interface Coﬁwonentz
=€ CMSIS Driver ' ' | NXP MCUspressa SDK Peripheral CMSIS Drivers
w4 CAN (AP | 1130 | CAN Driver AP for Cortex-I1
€ Ethernet (AP)) [220 | Ethernet MAC and PHY Driver API for Cortex-hd
e} @ Ethernet MAC (AP .2.2.\') .Ethernet IMAC Driver AP for Cortex-M
@ @ Ethernet PHY (AP)) [2.20 | Ethernet PHY Driver APl for Cortex-1M
& Flash (4P]) |23.0 | Flash Driver API for Cortes-hd
w4 12C (APN) (240 | 12C Driver API for Cortex-h
- MCI (AP |2.40 | MCI Driver AP for Cortex-1M
w @ NAND (APl [2.40 | MAND Flash Driver APl for Cortex-h
w4 SAl (A1) [1.20 | 541 Driver APl for Cortex-I
w4 5Pl (API) [230 | 5Pl Driver APl for Cortex-ld
[USART (4P1) [240 | USART Driver APIfor Cortex-i
= € USB Device (API) [230 | USE Device Driver AP for Cortex-I
@ Custom f— .1.-3'.0 .Accen to Finclude Driver_USED.h file and code template for c
@ USB1 v [11.0 | USBO Device Driver for NXP i.MX RT 105x Series
@ UsB2 ’_ .1.1.0 .USB'I Device Driver for MNXP i.MX RT 105x Series
€ USE Host (AP1) [230 | USE Host Driver API for Cortex-hd

From Device component:

* Implementation of the USB CMSIS-Driver often relies on the vendor-specific
HAL functions that also need to be added to the project.

In our case in ::Device:SDK Drivers add osa_bm component to expose
operating system abstraction used by the CMSIS-Driver. Other required
HAL components are already selected in the initial CMSIS-RTOS2 example.

@ o:a r. 1.0.0
- pza_bm]7 100
@ panic K 1.0.0
@ nhukerANRT = 1400

From USB Component:

» Select ::USB:CORE to include the basic functionality required for USB
communication.

m Set ::USB:Device to 'l' to create one USB Device instance.

» Set ::USB:Device:HID to 'l' to create a HID Device Class instance. If you
select multiple instances of the same class or include other device classes,
you will create a Composite USB Device.

Getting Started with MDK: Create Applications with yVision 101

(=] @ UsE MDK-Plus] 6,141 -USB Communication with various device classes
L@ CORE]7 Release ~ 16,141 .USB Core for Cortesx-IM iREIEE:e}
s Device T [6.14.1 | USE Device
= @ m -USB Device Classes
% ADC 0 B |6.14.1 | USB Device: Ausio Device Class (ADC)
W CDC 0 = 6.14.1 -USB Device: Communication Device Class (COCY
W% Custom Class 0 = .5.14.1 -USB Device: Custom Class
W% HID 1 = 6.14:1 -USB Device: Human Interface Device (HID) Class
% MsC 0 2 6141 |USB Device: Mass Starage Class (MSC)
= @ Wireless Clarinox 200 -Clarinox Wireless Libraries

T1P: Click on the hyperlinks in the Description column to view detailed
documentation for each software component.

NOTE

For MDK-Middleware version older than v7.4.0, you also need to add the Keil
RTXS5 compatibility layer. Please select ::CMSIS:RTOS (API):Keil RTXS if not
present in the project yet.

Configure Middleware

Every MDK-Middleware component has a set of configuration files that adjusts
application specific parameters and determines the driver interfaces. Access these
configuration files from the Project window in the component class group. They
usually have names like <Component>_Config 0.c or

<Component>_Config 0.h.

Some of the settings in these files require corresponding settings in the driver and
device configuration file (RTE Device.h) that is subject of the next section.

For the USB HID Device example, there are two configuration files available:
USBD_Config 0.c and USBD_Config HID 0.h.

102 MDK-Middleware

] uskp config 0
Expand All J Collzpse Al] Help | I~ Show Grd
Option Value
Connect to hardware via Driver_USED= il
High-speed 2
= Device Settings
IMax Endpoint & Packet Size 54 Bytes
Vendor ID xC251
Product 1D %5601
Device Release Mumber 0100

= Configuration Settings
Power Bus-powered
Remote Wakeup B
Maxirnum Power Consumption (in ma) 500

= 5tring Settings

Lznguage 1D D408
Manufacturer String Keil Software
Product String Keil USE Device O
[Serial Mumber String 2
= Microsoft OS5 Descriptors Settings
(=05 String v
Vendor Code 1
Control Transfer Buffer Size 128
i=- 05 Resources Settings
Core Thread Stack Size 512
USB Device 0

[\ TextEditor }\ Configuration Wizard

The file USBD_Config 0.c contains a number of important settings for the

specific USB Device:

» The setting Connect to Hardware via Driver _USBD# specifies the control
struct that reflects the peripheral interface, in this case, the USB controller
used as device interface. For microcontrollers with only one USB controller
the number is ‘1°. Refer to CMSIS-Driver section for more information.

= Select High-Speed if supported by the USB controller. Using this setting
requires a driver that supports USB high-speed communication.

» Set the Max Endpoint 0 Packet Size to 64.

» Set the Vendor ID (VID) to a private VID. The USB Implementer’s Forum
www.usb.org/developers/vendor provides more information on how to
apply for a valid vendor ID.

* Every device needs a unique Product ID. The host computer's operating
system uses it together with the VID to find a suitable driver for your device.

» Set the Manufacturer and the Product String to identify the USB device in
PC operating systems.

The file USBD_Config HID 0.h contains device class specific Endpoint settings.
In our example, no changes are required.

Getting Started with MDK: Create Applications with yVision 103

Configure Drivers

Drivers have certain properties that define attributes such as 1/O pin assignments,
clock configuration, or usage of DMA channels. For many devices, the

RTE Device.h configuration file contains these driver properties. It typically
requires configuration of the actual peripheral interfaces used by the application.
Depending on the microcontroller device, you can enable different hardware
peripherals, specify pin settings, or change the clock settings for your
implementation.

In our example no changes from default driver configuration are required.

Implement Application Features
Now, create the code that implements the application specific features.
The middleware provides User Code Templates as starting point for the

application software.

=" In the Project window, right-click Source Group 1 and open the dialog
Add New Item to Group. Select the user code template from
::USB:Device:HID - USB Device HID (Human Interface Device) and

click Add.
@ CRi Add template file(s) to the project.
C Hie (.c)

i Component Name

lc‘ C++ File (.cpp) 7@ CMSIS

M Asm File (s} o 0 UsB

Device USB Device

\ﬂ Header File (R} Device USB Device Serial Number
= Device:HID USB Device HID (Human Interface Device)
|§ Text Fle (1) Device:HID USB Device HID Mouse
% Image File {)

=l

&' User Code Template

Type: | User Code Template
Name: | USBD_User_HID_0.c
Location: | C:\MyPrograms\jled_blinky_RTOS\demo_appsVed_blinky\mdk

Add Close | Help

To connect the PC USB application to the microcontroller device, modify the
function USBD _HIDO SetReport(), which handles data coming from the USB
Host. For this example, the data will be created with the utility HIDClient.exe.

104 MDK-Middleware

= Open the file USBD User HID 0.c in the editor and modify the code as
shown below. This will control the LED on the evaluation board.

#include "fsl gpio.h" // Access to GPIO functions
#include "board.h" // Access to board LED defines

bool USBD HIDO SetReport (uint8 t rtype, uint8 t req, uint8 t rid,
const uint8 t *buf, int32 t len) {

void) reqg;

void) rid;

void)buf;

void) len;

switch (rtype) ({
case HID REPORT OUTPUT:
GPIO PinWrite (BOARD USER LED GPIO, BOARD USER LED GPIO PIN, *buf);
break;
case HID REPORT FEATURE:
break;
default:
break;
}
return true;

}

In the file led blinky.c we need to turn off the periodic LED blinking since the
LED will be now controlled from the PC via USB. Also an additional RTOS
thread is created to initialize the USB, read the button state and report it via the
USB.

= Open the file led_blinky.c in the editor and modify the code as shown below.

#include "cmsis os2.h"
#include "fsl gpio.h"
#include "pin mux.h"
#include "board.h"
#include "rl usb.h"

static osThreadId t tid thrLED; // Thread id of thread: LED
static osThreadId t tid thrSGN; // Thread id of thread: SGN
static osThreadId t tid thrUSB; // Thread id of thread: USB

__NO RETURN static void thrLED(void *argument) {
(void) argument;
uint32 t active flag = 1U;

for (;7;) {
osThreadFlagsWait (1U, osFlagsWaitAny, osWaitForever);

// GPIO PinWrite (BOARD USER LED GPIO, BOARD USER LED PIN, active flag);
active flag=l!active flag;

thrSGN: Signal LED to change

Getting Started with MDK: Create Applications with yVision 105

Build and Download

Build the project and download it to the target as explained in chapters Create
Applications and Using the Debugger.

106 MDK-Middleware

Verify and Debug

Connect the development board to your PC using another USB cable. This
provides the connection to the USB device peripheral of the microcontroller.

Once the board is connected, a notification appears |gh HID Client %
that indicates the installation of the device driver Human Interface Device

for the USB HID Device. Device|Keil LISE Device 0 ~
The utility program HIDClient.exe that is part of i [Buu?sls R
MDK enables testing of the connection between S22 i i
the PC and the development board. This utility is D —
located the MDK installation folder T]—H

\Keil\ARM\Utilities\HID Client\Release.

To test the functionality of the USB HID device run the HIDClient.exe utility
and follow these steps:

= Select the Device to establish the communication channel. In our example, it
is “Keil USB Device 0.

= Test the application by changing the Outputs (LEDs) checkboxes. The
respective LEDs shall switch accordingly on the development board.

If you are having problems connecting to the development board, you can use the
debugger to find the root cause.

@ From the toolbar, select Start/Stop Debug Session.

Use debug windows to narrow down the problem. Breakpoints help you to stop at
certain lines of code so that you can examine the variable contents.

NOTE

Debugging of communication protocols can be difficult. When starting the
debugger or using breakpoints, communication protocol timeouts may exceed
making it hard to debug the application. Therefore, use breakpoints carefully.

In case that the USB communication fails, disconnect USB, reset your target
hardware, run the application, and reconnect it to the PC.

Getting Started with MDK: Create Applications with pVision 107
Index
A Watch Windowccooeevecivecireiiniens 78
Debug (printf) Viewer...........cccccceene. 42, 86
Add New Item to Group........ccocceveeveeneenn 103 Debug tab.......ccooeeveverevecieeeeeeeeee, 16,70
Applications Device Database.........ccooveveeriiereeirineennnn. 10
Build....cooieiieie e, 52 Device Startup Variations
Configure Device Clock Frequency47 Setup the Projectcccoeveveveuennnee. 59,61
Createoooveeeieeeieeniee e 44 STM32CUDE.....ooeieeiiiieiicieeeeeeeee, 59
DEbUg ...t 69 Documentation............ocveveveeereeereeeeenenennn. 18
Manage Run-Time Environment.......... 46
User Code Templatescccoeeeuveeennee. 56 E
B Example Code
Clock setup for STM32Cube................ 60
Board Supportccceeeeeiieiiieins 39,42,43 Example Code
Breakpoints CMSIS-CORE layer........cccceevevienenneenn 21
ACCESS ..o 77 CMSIS-DSP library functions.............. 30
Command.......ccccceeveeiieiiiiiiiiiiieieeeeeee 77 Example Projectsccccceeviereencenicne 14, 89
EXecution........cooeeveeneiniceiceienceee 77
Build OUtpUL..veceoeeveeeeeeveeennn, 16, 17, 52,70 F
File
¢ emsiS_0S.h..coiiiniiiiic 25
CMSIS...eeee e 19 device ..o, 20
CORE ... 20 RTE_Device.h......... 32,33, 59,101, 103
DSP e 30 RTX _<core>lib....cccooveievennrinriareannn. 25
Software Componentscccccu..... 19 RTX Conf CM.c....ccoeevevreen. 25,26,29
RTOS .o 23 startup_<device>.s............ccoeuvriinin. 20
User code template..........ccocoeevcieenees 27 system_<device>.C........................ 20, 49
CMSIS-DAP ..ottt 69 File System
Code CoVerage........ccoeueeerceruceeeeuienenenne 88 FAT e 93
Compare memory areas............c.co.ceeveuenee. 79 Flash.....ooooiiiieiccieeeeeee 93
CoreSightoeuieiiieiieeeeee 81
b G
Graphics Component
Debug Anti-AlIaSING...ooveveeierinenceeneeee 95
Breakpointsc.coeveeeenineneenienennee. 77 Bitmap Supportc.ccoeveveeevereereennnns 95
Breakpoints Window ... 77 DEMO....ecvveeeeeeeeeeeeeeeeee e 95
Command Windowccccoorieiinne. 72 DiIAlOES ... 95
Component VIEWeT...........cooovururirininns 73 DiSPIAY v 95
Connectioncoeviriniiiiiinicinicininns 69 FONLS..c..ooivieiiicieiiccee e 95
Disassembly Window...........ccccocoeunnnn. 72 JOYSHCK oovveieiciecieeeees 95
Event Recorder.........ccccoeueiiiiiiiiinininnnn. 74 Touch Screen.......ccveieeeniiecienicieenn. 95
Memory Windowccooeveiinnnnn 79 User Interface........oevvveveveverereineninnns 95
Peripheral Registers...........cccccccouvvrnnnne. 80 VNC SEIVET...ovvieiriveiriieieiereieeeserenenns 95
Register Window..........ccocovriininininnnnn. 79 WAAZELS oo 95
Stack and Locals Window 78 Window Manager..........c.ccccoveveeevennnnn. 95
Start SeSSIONcovveereereenierieiieeieeeene 71
System Viewer Window....................... 80 H
TooIbar.......coevieieiiieeeee e 71 HIDClient.exe ... 106

Using Debugger.........ccocevvvivvenencnnen. 70

108 Index
L o)
Learning Platformccccoociniiniinnnnnne 18 Options for Target........cccoceveereeennne 16,70
M P
MDK Pack Installer........ccoeeeevenenenceneneeeenn 10
Core Install ...c..coovererieieniniciccieen, 9 Performance Analyzer............ccccceviennennne. 88
Editions ...ccceeeeniiniiniinicneeeececeee, 8
Installation Requirements....................... 9 R
Inftroductmn .. 7 e —— 40
License Types.....ccccevvveeeveeeniieniiecenieens 8 RTOS
TOOIS ... 7 System and Thread Viewer 29
Trial licenSe.....covveeeeeveiieieeiieieeeeeene 12 RTX
Middlewareccocoeeiienienienienieeee 89 API functions ..o 26
Add.SOftware Components.................. 99 CONCEPLS..eeeeeiieieieriie et 23
Adding Software Components........ 21,25 Configurationcceceeeeeeueeieeiecenenn. 26
Conﬁgure AR 9 9, 101 RTOS Kernel advantages 24
Configure Dr1v§rs T T 99,103 Using RTX ..o 24
Create an Application.........cccceveeneenne. 98
DEbUZ ... 99 S
Example projects........cccoevveeeiveeneennnen. 98 -
File System Component 93 Selecting Software Packs...........ccceeeeneee. 38
FTP Server Examplecccccoeveuvnee.... 96 Software Component
Graphics COmpONeNt................oooovveee... 95 Compilerooceviiiiiiieeec e, 40
Implement Application Features ..99, 103 Software Components
10T CONNECHVILY «.veoeveeeveeereeereeeeeenen. 96 OVEIVIEW ...t 36
Network COmponentooo..... 91 Software Packs......c..ccocevvericniiiiiiniineene 8
Resource Requirements........................ 98 Install......c.ooeeiiiieiiiiiiiceee e, 10
USB Device Component 94 Install manua}lly 10
USING .ottt 97 Manage VErsions..........oooceeveeiniicnnnns 38
Using Componentscc.coeeevevenenens 98 Product Lifecyclecocceeeenenincnnenn 37
NS [o] SURURR 38
N USE covneemeireeieeseeseese s 35
Verify Installationcccceoeeieeneennen. 14
Network Component Start/Stop Debug Session............ 17,71, 106
BSD..... ST 92 SUPPOTLt..eeeiiiieeiiieeiie et 18
DNS Client.....ccccoeveeveeveeiieieieeneene 91
Ethernetocovoveviecieeicieececeeee 92 T
FTP oot 91
Modem oo 92 TIACE .eeoeeeeiiieeieceeee e 81
13 92 4-Pin Trace Output........cccccovvvvvveeen 81, 88
SLIP oooooeoeeeeeeeeeeeeeeeeee e 92 Data Watchpoints..........ooooccoovvvcvicccccs 81
SMTP CleNt ... 91 Debug (printf) VIewer...............o.......... 86
SNMP AGENt ..o 91 ETB..ooiiiiiiececeeceee 81
NI N @ 91 Event Counters.............ccoceevvvvvvvvvvvnenenn 87
TCP c.ooooooooeeeeeoeveeesveeeseeeeneseeeneneereeeneeeee 92 Exception Trace ... 81
Telnet SErver.....covovvvevevevevieieeverereeeeens 91 Instruction Tracecooooiiiiiiinnniinss 81
TETP e 91 Instrumented Trace...........ooooovvvinnrnnens 81
(67N 92 ITM SHMUIS oo 83, 86
UDP..oiiiieeeseeeeeeee e 92 Logic Analyzer..........cooooovviiiniiiinn 85
Web ServVer oo 91 MTB ..ottt 81
SWO...coiiiieieeeeeeee e 81, 82

Getting Started with MDK: Create Applications with pVision 109

Trace Buffercccoceeveniniiicncnennn. 81 CDC it 94
Trace Buffercooovevvevveiiiieiee, 88 Composite DEeVICecoccvrerrerieriannanns 94
Trace Data Window........ccccceevevieeennnee. 88 HID oo 94
Trace EXceptions........cccceeveereeneenecenne. 84 MSC e 94
U User Code Templates..........cccceeneennee 27,103
ULINK ..o 69 v
ULINKDPIO.c.eeeriieriieiccieeeceeeecee 83, 88 Version Control........c.eeeeeverercienencnecnnens 39
USB Device Versioning Software Packsc..ccc.e.. 38

