
Adafruit PiOLED - 128x32 Mini OLED for Raspberry Pi
Created by lady ada

Last updated on 2019-04-05 04:32:18 PM UTC

Overview

If you're looking for the most compact lil' display for a Raspberry Pi (https://adafru.it/wF8) (most likely a Pi
Zero (https://adafru.it/vIa)) project, this might be just the thing you need!

The Adafruit PiOLED is your little OLED pal, ready to snap onto any and all Raspberry Pi computers, to give you a little
display. The PiOLED comes with a monochrome 128x32 OLED, with sharp white pixels. The OLED uses only the I2C
pins so you have plenty of GPIO connections available for buttons, LEDs, sensors, etc. It's also nice and compact so it
will fit into any case.

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 3 of 15

https://www.adafruit.com/category/361
https://www.adafruit.com/category/813

These displays are small, only about 1" diagonal, but very readable due to the high contrast of an OLED display. This
screen is made of 128x32 individual white OLED pixels and because the display makes its own light, no backlight is
required. This reduces the power required to run the OLED and is why the display has such high contrast; we really
like this miniature display for its crispness!

Using the display is very easy, we have a Python library for the SSD1306 chipset. Our example code allows you to draw
images, text, whatever you like, using the Python imaging library. Our tests showed 30 FPS update rates so you can do
animations or simple video.

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 4 of 15

Comes completely pre-assembled and tested so you don't need to do anything but plug it in and install our Python
code! Works with any Raspberry Pi computer, including the original Pi 1, B+, Pi 2, Pi 3 and Pi Zero.

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 5 of 15

Usage

Install CircuitPython

This guide assumes that you've gotten your Raspberry Pi up and running, and have CircuitPython installed. If not,
check out the guide:

https://adafru.it/Deo

https://adafru.it/Deo

To install the library for the Pi OLED (https://adafru.it/u1f), enter the following into the terminal:

If that complains about pip3 not being installed, then run this first to install it:

We also need PIL to allow using text with custom fonts. There are several system libraries that PIL relies on, so
installing via a package manager is the easiest way to bring in everything:

Enable I2C

To enable i2c, you can follow our detailed guide on configuring the Pi with I2C support here. (https://adafru.it/Deo)

After you've enabled I2C you will need to shutdown with sudo shutdown -h now

Once the Pi has halted, plug in the PiOLED. Now you can power the Pi back up, and log back in. Run the following
command from a terminal prompt to scan/detect the I2C devices

sudo i2cdetect -y 1

You should see the following, indicating that address 0x3c (the OLED display) was found

Verify I2C Device

sudo pip3 install adafruit-circuitpython-ssd1306

sudo apt-get install python3-pip

sudo apt-get install python3-pil

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 6 of 15

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi#enable-i2c-and-spi-3-5

You can run our stats example, which will query the Pi for details on CPU load, disk space, etc. and print it on the
OLED.

Create a new file with nano ~pi/stats.py and paste this code below in! Then save it.

Copyright (c) 2017 Adafruit Industries
Author: Tony DiCola & James DeVito
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

import time
import subprocess

from board import SCL, SDA
import busio
from PIL import Image, ImageDraw, ImageFont
import adafruit_ssd1306

Create the I2C interface.
i2c = busio.I2C(SCL, SDA)

Create the SSD1306 OLED class.
The first two parameters are the pixel width and pixel height. Change these
to the right size for your display!
disp = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c)

Clear display.
disp.fill(0)
disp.show()

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
width = disp.width
height = disp.height
image = Image.new('1', (width, height))

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 7 of 15

Run sudo python3 stats.py and you should see something like the following image:

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

Draw some shapes.
First define some constants to allow easy resizing of shapes.
padding = -2
top = padding
bottom = height-padding
Move left to right keeping track of the current x position for drawing shapes.
x = 0

Load default font.
font = ImageFont.load_default()

Alternatively load a TTF font. Make sure the .ttf font file is in the
same directory as the python script!
Some other nice fonts to try: http://www.dafont.com/bitmap.php
#font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 9)

while True:

 # Draw a black filled box to clear the image.
 draw.rectangle((0, 0, width, height), outline=0, fill=0)

 # Shell scripts for system monitoring from here:
 # https://unix.stackexchange.com/questions/119126/command-to-display-memory-usage-disk-usage-and-cpu-load
 cmd = "hostname -I | cut -d\' \' -f1"
 IP = subprocess.check_output(cmd, shell=True).decode("utf-8")
 cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
 CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")
 cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,$2,$3*100/$2 }'"
 MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")
 cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%d GB %s\", $3,$2,$5}'"
 Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")

 # Write four lines of text.

 draw.text((x, top+0), "IP: "+IP, font=font, fill=255)
 draw.text((x, top+8), CPU, font=font, fill=255)
 draw.text((x, top+16), MemUsage, font=font, fill=255)
 draw.text((x, top+25), Disk, font=font, fill=255)

 # Display image.
 disp.image(image)
 disp.show()
 time.sleep(.1)

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 8 of 15

Running Stats on Boot

You can pretty easily make it so this handy program runs every time you boot your Pi.

The fastest/easiest way is to put it in /etc/rc.local

Run sudo nano /etc/rc.local and add the line

sudo python /home/pi/stats.py &

on its own line right before exit 0

Then save and exit. Reboot to verify that the screen comes up on boot!

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 9 of 15

For more advanced usage, check out our linux system services guide (https://adafru.it/wFR)

Library Usage

In the examples subdirectory of the Adafruit_CircuitPython_SSD1306 repository (https://adafru.it/EsZ), you'll find
examples which demonstrate the usage of the library.

To help you get started, I'll walk you through the stats.py code you ran earlier, that way you can use this file as a basis
of a future project.

First, a few Python modules are imported. This includes the adafruit_ssd1306 module which contains the OLED driver

classes.

To draw images, shapes, and text/fonts, the code imports some of the Python Imaging Library's modules like Image ,

ImageDraw , and ImageFont .

import time
import subprocess

from board import SCL, SDA
import busio
from PIL import Image, ImageDraw, ImageFont
import adafruit_ssd1306

Create the I2C interface.
i2c = busio.I2C(SCL, SDA)

Create the SSD1306 OLED class.
The first two parameters are the pixel width and pixel height. Change these
to the right size for your display!
disp = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c)

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 10 of 15

file:///running-programs-automatically-on-your-tiny-computer/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/tree/master/examples

Since the PiOLED is a 128x32 I2C only device, the screen size and the i2c interface are passed to the
adafruit_ssd.SSD1306_I2C class.

The next chunk of code clears the display by inverting its fill with fill(0) and then writing to the display with show() .

Then it will configure a PIL drawing class to prepare for drawing graphics. Notice that the image buffer is created in 1-
bit mode with the '1' parameter, this is important because the display only supports black and white colors.

We then re-draw a large black rectangle to clear the screen. In theory we don't have to clear the screen again, but its a
good example of how to draw a shape!

Once the display is initialized and a drawing object is prepared, you can draw shapes, text and graphics using PIL's
drawing commands (https://adafru.it/dfH). We'll define some constraints based on the height and width of the display to
allow for easy resizing of shapes.

Then, the code loads the default font, which works fine, but there's other fonts you can load.

Next the code loads a built-in default font and draws a few lines of text. You can also load your own TrueType font and
use it to render fancy text in any style you like

Clear display.
disp.fill(0)
disp.show()

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
width = disp.width
height = disp.height
image = Image.new('1', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

Draw some shapes.
First define some constants to allow easy resizing of shapes.
padding = -2
top = padding
bottom = height-padding
Move left to right keeping track of the current x position for drawing shapes.
x = 0

Load default font.
font = ImageFont.load_default()

Alternatively load a TTF font. Make sure the .ttf font file is in the
same directory as the python script!
Some other nice fonts to try: http://www.dafont.com/bitmap.php
#font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 9)

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 11 of 15

http://effbot.org/imagingbook/imagedraw.htm

Using the subprocess class, python can utilize linux commands to access the Pi's system information. This
loop updates the screen at 10 times a second.

That's all there is to the stats.py code!

Speeding up the Display

For the best performance, especially if you are doing fast animations, you'll want to tweak the I2C core to run at 1MHz.
By default it may be 100KHz or 400KHz

To do this edit the config with sudo nano /boot/config.txt

and add to the end of the file

dtparam=i2c_baudrate=1000000

while True:

 # Draw a black filled box to clear the image.
 draw.rectangle((0, 0, width, height), outline=0, fill=0)

 # Shell scripts for system monitoring from here:
 # https://unix.stackexchange.com/questions/119126/command-to-display-memory-usage-disk-usage-and-cpu-load
 cmd = "hostname -I | cut -d\' \' -f1"
 IP = subprocess.check_output(cmd, shell=True).decode("utf-8")
 cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
 CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")
 cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,$2,$3*100/$2 }'"
 MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")
 cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%d GB %s\", $3,$2,$5}'"
 Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")

 # Write four lines of text.

 draw.text((x, top+0), "IP: "+IP, font=font, fill=255)
 draw.text((x, top+8), CPU, font=font, fill=255)
 draw.text((x, top+16), MemUsage, font=font, fill=255)
 draw.text((x, top+25), Disk, font=font, fill=255)

 # Display image.
 disp.image(image)
 disp.show()
 time.sleep(.1)

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 12 of 15

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 13 of 15

Downloads

Files

EagleCAD PCB files on GitHub (https://adafru.it/wFa)
UG-2832HSWEG02 (https://adafru.it/qrf) Datasheet
SSD1306 (https://adafru.it/aJK) Datasheet
Fritzing object in Adafruit Fritzing Library (https://adafru.it/c7M)

Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 14 of 15

https://github.com/adafruit/Adafruit-PiOLED-128x32-PCB
https://cdn-shop.adafruit.com/datasheets/UG-2832HSWEG02.pdf
http://www.adafruit.com/datasheets/SSD1306.pdf
https://github.com/adafruit/Fritzing-Library/

© Adafruit Industries Last Updated: 2019-04-05 04:32:18 PM UTC Page 15 of 15

	Guide Contents
	Overview
	Usage
	Install CircuitPython
	Enable I2C
	Verify I2C Device

	Running Stats on Boot
	Library Usage
	Speeding up the Display

	Downloads
	Files
	Schematic & Fabrication Print

