
1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

1.2.8

1.2.9

1.2.10

1.2.11

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.4

1.4.1

1.4.2

1.4.3

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.6

1.6.1

1.6.2

Table of Contents
Introduction

1 Motion Commands

1.1 Point to point, the target point is Cartesian point

1.2 Linear Movement

1.3 Point to point, the target point is Joint point

1.4 Jump Movement, Jump parameters can be set in this command

1.5 Jump Movement, Jump parameters are called by Arch index

1.6 Move to the Cartesian offset position in a point to point mode

1.7 Move to the Cartesian offset position in a straight line

1.8 Linear movement in parallel with output

1.9 Point to point movement in parallel with output

1.10 Arc Movement

1.11 Circle Movement

2 Motion Parameters

2.1 Joint Acceleration

2.2 Cartesian Acceleration

2.3 Joint Speed

2.4 Cartesian Speed

2.5 CP

2.6 Synchronization

2.7 Set Load Parameters

3 IO

3.1 DI

3.2 DO

3.3 DOInstant

4 Program Managing Commands

4.1 Motion command waiting

4.2 Blocking instruction issuance

4.3 Pause program operation

4.4 Start timing

4.5 Stop timing

4.6 Get current time

5 Pose

5.1 Get Cartesian coordinates

5.2 Get Joint coordinates

1

1.6.3

1.6.4

1.6.5

1.6.6

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.8

1.8.1

1.8.2

1.8.3

1.9

1.9.1

1.9.2

1.9.3

1.9.4

1.9.5

1.9.6

1.9.7

1.9.8

1.10

1.10.1

1.10.2

1.10.3

1.10.4

1.10.5

1.10.6

1.11

1.11.1

1.11.2

1.11.3

1.11.4

1.11.5

1.11.6

1.11.7

1.11.8

5.3 Cartesian point offset

5.4 Joint point offset

5.5 Cartesian point

5.6 Joint point

6 TCP

6.1 Create TCP

6.2 Establish TCP connection

6.3 Receive TCP data

6.4 Send TCP data

6.5 Close TCP

7 UDP

7.1 Create UDP

7.2 Receive UDP data

7.3 Send UDP data

8 Modbus

8.1 Create Modbus master station

8.2 Disconnect with Modbus slave

8.3 Read the value from the Modbus slave coil register address

8.4 Set the coil register in the Modbus slave

8.5 Read the value from the Modbus slave discrete register address

8.6 Read the value from the Modbus slave input register address

8.7 Read the value from the Modbus slave holding register address

8.8 Set the holding register in the Modbus slave

9 Conveyor Tracking

9.1 Set conveyor number to create a tracing queue

9.2 Obtain status of the object

9.3 Set X,Y axes offset under the set User coordinate system

9.4 Set time compensation

9.5 Synchronize the specified conveyor

9.6 Stop synchronous conveyor

10 Pallet

10.1 Instantiate matrix pallet

10.2 Instantiate teaching pallet

10.3 Set the next stack index which is to be operated

10.4 Get the current operated stack index

10.5 Set the next pallet layer index which is to be operated

10.6 Get the current pallet layer index

10.7 Reset pallet

10.8 Check whether the stack assembly or dismantling is complete

2

1.11.9

1.11.10

1.11.11

1.12

1.12.1

1.12.2

1.12.3

1.12.4

1.12.5

10.9 Release palletizing instance

10.10 The robot moves from the current position to the first stack position as the configured stack
assembly path

10.11 The robot moves from the current position to the transition point as the configured stack
dismantling path

11 Vision

11.1 Initialize the connection to the camera

11.2 Trigger the camera to take a picture

11.3 Send data

11.4 Receive data

11.5 Close the camera

3

Program Guide
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 15:03:14

4

1 Motion Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

5

Point to Point, the target point is Cartesian point
Function:

MovJ(P)

Or:

local Option={CP=1, SpeedJ=50, AccJ=20}
MovJ(P, Option)

Description: Point to Point, the target point is Cartesian point.

Required parameter: P，Indicate target point, which is user-defined or obtained from the points list. Only
Cartesian point is supported.

Optional parameter: {CP=1, SpeedJ=50, AccJ=20}. You can double-click to insert the command with
optional parameters.

CP: Continuous path rate. Value range: 0-100

SpeedJ: Velocity rate. Value range: 1 - 100

AccJ: Acceleration rate. Value range: 1 -100

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

6

Linear Movement
Function:

MovL(P)

Or:

local Option={CP=1, SpeedL=50, AccL=20}
MovL(P, Option)

Description: Linear Movement, the target point is Cartesian point.

Required parameter: P, Indicate the target point, which is user-defined or obtained from the points list. Only
Cartesian point is supported.

Optional parameter: {CP=1, SpeedL=50, AccL=20}. You can double-click to insert the command with
optional parameters.

CP: Continuous path rate. Value range: 0-100
SpeedL: Velocity rate. Value range: 1 - 100
AccL: Acceleration rate. Value range: 1 -100

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

7

Point to point, the target point is Joint point
Function:

JointMovJ(P)

Or:

local Option={CP=1, SpeedJ=50, AccJ=20}
local P={joint={J1,J2,J3,J4}}
JointMovJ(P, Option)

Description: Point to point, the target point is Joint point.

Required parameter: P,Indicate the target point, which is user-defined or obtained from the points list. Only
joint point is supported.

Optional parameter:{CP=1, SpeedJ=50, AccJ=20}. You can double-click to insert the command with
optional parameters.

CP: Continuous path rate. Value range: 0-100
SpeedJ: Velocity rate. Value range: 1 - 100
AccJ: Acceleration rate. Value range: 1 -100

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-03-03 17:41:10

8

Jump Movement, Jump parameters can be set in
this command

Function:

local Option={SpeedL=50, AccL=20, Start=10, ZLimit=100, End=20}
Jump(P, Option)

Description: Jump Movement. The jump parameters can be set in this command.

Required parameter: P, Indicate the target point, which is user-defined or obtained from the points list. Only
Cartesian point is supported.

Optional parameter: {SpeedL=50, AccL=20, Start=10, ZLimit=100, End=20}

SpeedL: Velocity rate. Value range: 1 - 100
AccL: Acceleration rate. Value range: 1 -100
Start: Lifting height(h1).
ZLimit: Maximum lifting height(z_limit).
End: Dropping height(h2).

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 17:21:39

9

1.5 Jump Movement, Jump parameters are called by
Arch index

Function:

local Option={SpeedL=50, AccL=20, Arch=1}
Jump(P, Option)

Description: Jump Movement. The jump parameters are called by Arch index.

Required parameter: P, Indicate the target point, which is user-defined or obtained from the points list. Only
Cartesian point is supported.

Optional parameter: {SpeedL=50, AccL=20, Start=10, Arch=1}

SpeedL: Velocity rate. Value range: 1 - 100
AccL: Acceleration rate. Value range: 1 -100
Arch: Arch index. Value range: 0 - 9. Please set Jump parameters on the System > Parameters >
RobotParams > PlayBackArch page.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-08-11 15:27:01

10

Move to the Cartesian offset position in a point to
point mode

Function:

local Offset = {OffsetX, OffsetY, OffsetZ, OffsetR}
RelMovJ(Offset)

Or:

local Offset = {OffsetX, OffsetY, OffsetZ, OffsetR}
local Option={CP=1, SpeedJ=50, AccJ=20}
RelMovJ(Offset, Option)

Description: Move to the Cartesian offset position in a point to point mode.

Required parameter: {OffsetX, OffsetY, OffsetZ, OffsetR}, X, Y, Z, R axes offset in the Cartesian coordinate
system.

Optional parameter: {CP=1, SpeedJ=50, AccJ=20}. You can double-click to inset the command with
optional parameters.

CP: Continuous path rate. Value range: 0-100
SpeedJ: Velocity rate. Value range: 1 - 100
AccJ: Acceleration rate. Value range: 1 -100

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

11

Move to the Cartesian offset position in a straight
line

Function:

local Offset = {OffsetX, OffsetY, OffsetZ, OffsetR}
RelMovL(Offset)

Or:

local Offset = {OffsetX, OffsetY, OffsetZ, OffsetR}
local Option={CP=1, SpeedL=50, AccL=20}
RelMovL(Offset, Option)

Description: Move to the Cartesian offset position in a straight line.

Required parameter: {OffsetX, OffsetY, OffsetZ, OffsetR} , X, Y, Z ,R axes offset in the Cartesian coordinate
system.

Optional parameter: {CP=1, SpeedL=50, AccL=20}. You can double-click to inset the command with
optional parameters.

CP: Continuous path rate. Value range: 0-100
SpeedL: Velocity rate. Value range: 1 - 100
AccL: Acceleration rate. Value range: 1 -100

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

12

Linear movement in parallel with output
Function:

local IO={{Mode, Distance, Index, Status},{Mode, Distance, Index, Status},...}
MovLIO(P, IO)

Or:

local IO={{Mode, Distance, Index, Status},{Mode, Distance, Index, Status},...}
local Option={CP=1, SpeedL=50, AccL=20}
MovLIO(P, IO, Option)

Description: Linear movement in parallel with output . Multiple digital output ports can be set.

Required parameter:
P, Indicate the target point, which is user-defined or obtained from the points list. Only Cartesian point is
supported.
{Mode, Distance, Index, Status},{Mode, Distance, Index, Status},...: Multiple digital output ports can be
set.

Mode： Set Distance mode. 0: Distance is a percentage； 1: Distance from the starting point, or from
the target point.
Distance: If the Mode is a percentage, it represents the percentage of the distance between the
starting point and the target point. If the Mode is a distance, it represents the distance from the
starting point, or from the target point. If the distance is set to positive, it indicates the distance from
the starting point; if set to negative, it indicates the distance from the target point.
Index: Digital output port. Value range: 1- 18
Status： Status of the digital output port.

Optional parameter: {CP=1, SpeedL=50, AccL=20}. You can double-click to insert the command with
optional parameters.

CP: Continuous path rate. Value range: 0-100
SpeedL: Velocity rate. Value range: 1 - 100
AccL: Acceleration rate. Value range: 1 -100

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

13

Point to point movement in parallel with output
Function:

local IO={{Mode, Distance, Index, Status},{Mode, Distance, Index, Status},...}
MovJIO(P, IO)

Or:

local IO={{Mode, Distance, Index, Status},{Mode, Distance, Index, Status},...}
local Option={CP=1, SpeedJ=50, AccJ=20}
MovJIO(P, IO, Option)

Description: Point to point movement in parallel with output . Multiple digital output ports can be set.

Required parameter:
P, Indicate the target point, which is user-defined or obtained from the points list. Only Cartesian point is
supported.
{Mode, Distance, Index, Status},{Mode, Distance, Index, Status},...: Multiple digital output ports can be
set.

Mode： Set Distance mode. 0: Distance is a percentage； 1: Distance from the starting point, or from
the target point.
Distance: If the Mode is a percentage, it represents the percentage of the distance between the
starting point and the target point. If the Mode is a distance, it represents the distance from the
starting point, or from the target point. If the distance is set to positive, it indicates the distance from
the starting point; if set to negative, it indicates the distance from the target point.
Index: Digital output port. Value range: 1- 18
Status： Status of the digital output port.

Optional parameter: {CP=1, SpeedJ=50, AccJ=20}. You can double-click to insert the command with
optional parameters.

CP: Continuous path rate. Value range: 0-100
SpeedJ: Velocity rate. Value range: 1 - 100
AccJ: Acceleration rate. Value range: 1 -100

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-08-11 15:11:45

14

Arc Movement
Function:

Arc(P1, P2)

Or:

local Option={CP=1, SpeedL=50, AccL=20}
Arc(P1, P2, Option)

Description: Arc movement. This command needs to combine with other motion commands, to obtain the
starting point of an arc trajectory.

Required parameter：

P1, Middle point, which is user-defined or obtained from the points list. Only Cartesian point is
supported.
P2, End point, which is user-defined or obtained from the points list. Only Cartesian point is supported.

Optional parameter：{CP=1, SpeedL=50, AccL=20}. You can double-click to insert the command with
optional parameters.

CP: Continuous path rate. Value range: 0-100

SpeedL: Velocity rate. Value range: 1 - 100

AccL: Acceleration rate. Value range: 1 -100

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

15

Circle Movement
Function:

Circle(P1, P2, Count)

Or:

local Option={CP=1, SpeedL=50, AccL=20}
Circle(P1, P2, Count, Option)

Description: Circle movement. This command needs to combine with other motion commands, to obtain the
starting point of a circle trajectory

Required parameter:
P1, Middle point, which is user-defined or obtained from the points list. Only Cartesian point is
supported.
P2, Middle point, which is user-defined or obtained from the points list. Only Cartesian point is
supported.
Count, Number of circles.

Optional parameter: {CP=1, SpeedL=50, AccL=20}. You can double-click to insert the command with
optional parameters.

CP: Continuous path rate. Value range: 0-100
SpeedL: Velocity rate. Value range: 1 - 100
AccL: Acceleration rate. Value range: 1 -100

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

16

2 Motion Parameters
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

17

Joint Acceleration
Function:

AccJ(R)

Description: Set the joint acceleration rate . This command is valid only when the motion mode is MovJ,
MovJIO, MovJR, or JointMovJ .

Required parameter: Acceleration rate. Value range: 1 -100

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 17:28:42

18

Cartesian Acceleration
Function:

AccL(R)

Description: Set the Cartesian acceleration rate. This command is valid only when the motion mode is MovL,
MovLIO, MovLR, Jump, Arc, Circle.

Required parameter: Acceleration rate. Value range: 1 -100

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 17:28:53

19

Joint Speed
Function:

SpeedJ(R)

Description: Set the joint velocity rate . This command is valid only when the motion mode is MovJ, MovJIO,
MovJR, or JointMovJ .

Required parameter: Velocity rate. Value range: 1 - 100

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 17:20:30

20

Cartesian Speed
Function:

SpeedL(R)

Description: Set the Cartesian velocity rate. This command is valid only when the motion mode is MovL,
MovLIO, MovLR, Jump, Arc, Circle.

Required parameter: Velocity rate. Value range: 1 -100

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 17:19:55

21

CP
Function:

CP(R)

Description: Set the continuous path rate. This command is invalid when the motion mode is Jump.
Required parameter: Continuous path rate. Value range: 0-100

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 11:01:34

22

Synchronization
Function:

Sync()

Description: Whether to stop at this point.

Required parameter: None.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

23

Set Load Parameters
Function：

SetPayload(payload, {x, y}, index)

Description: Set payload, X-axis offset, Y-axis offset and servo index.

Required parameter:

payload: Payload. Value range: 0- 750. Unit: g

{x,y}: Offset in X-axis and Y-axis

Optional parameter: index, servo parameter index。The default value range is 1 - 10.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

24

3 IO
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-25 09:35:43

25

DI
Function:

DI(Index)

Description: Get the status of the digital input port.

Required parameter: Index，Digital input port. Value range: 1-18

Return:

When an port is set in the DI function, DI(index) returns the status (ON/OFF) of this specified input port.
When there is no port in the DI function, DI() returns the status of all the input ports, which are saved in
a table. For example, local di=(), the saving format is {num = 24 value = {0x55, 0xAA, 0x52}}, you can
obtain the status of the specified input port with di.num and di.value[n].

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 11:01:33

26

DO
Function:

DO(Index,ON/OFF)

Description: Set the status of digital output port (Queue command).

Required parameter：

Index: Digital output port. Value range: 1 - 18
ON/OFF: Status of the digital output port.

Queue command: When the robot system receives a command, this command will be pressed into the internal
command queue. The robot system will execute commands in the order in which the commands were pressed
into the queue.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 17:24:07

27

DOInstant
Function:

DOInstant(Index,ON/OFF)

Description: Set the status of digital output port (Immediate command).

Required parameter：

Index: Digital output port. Value range: 1 - 18
ON/OFF: Status of the digital output port.

Immediate command: The robot system will process the command once received regardless of whether there is
the rest commands processing or not in the current controller;

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-03-03 17:41:10

28

4 Program Managing Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

29

Motion command waiting
Function:

Wait(time)

Description: Set the delay time for robot motion commands.

Required parameter: time, Delay time. Unit: ms

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

30

Blocking instruction issuance
Function:

Sleep(time)

Description: Set the delay time for all commands.

Required parameter: time, Delay time. Unit: ms

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

31

Pause program operation
Function:

Pause()

Description: Pause the running program. When the program runs to this command, robot pauses running
and you need to click Resume on the Software to recover the running.

Required parameter: None

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-08-11 15:14:12

32

Start timing
Function:

ResetElapsedTime()

Description: Start timing after all commands before this command are executed completely. Use in
conjunction with ElapsedTime() command.
Required parameter: None

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

33

Stop timing
Function:

ElapsedTime()

Description: Stop timing and return the time difference. Use in conjunction with ResetElapsedTime()
command
Required parameter: None
Return: Time difference. Unit: ms

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

34

Get current time
Function:

Systime()

Description: Get the current time
Required parameter: None

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

35

5 Pose
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

36

Get Cartesian coordinates
Function:

GetPose()

Description: Get the current pose of the robot under the Cartesian coordinate system. If you have set the
User or Tool coordinate system, the current pose is under the current User or Tool coordinate system.

Required parameter: None

Return: Cartesian coordinate of the current pose.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

37

Get Joint coordinates
Function:

GetAngle()

Description: Get the current pose of the robot under the Joint coordinate system.

Required parameter: None

Return: Joint coordinates of the current pose.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

38

Cartesian point offset
Function:

local Offset={OffsetX, OffsetY, OffsetZ, OffsetR}
RelPoint(P, Offset)

Description: Set the X, Y, Z.R axes offset under the Cartesian coordinate system to return a new Cartesian
coordinate point. he robot can move to this point in all motion commands except JointMovJ.

Required parameter:

P, Indicate the current Cartesian point, which is user-defined or obtained from the points list. Only
Cartesian point is supported.
{OffsetX, OffsetY, OffsetZ, OffsetR}: X, Y, Z, R axes offset in the Cartesian coordinate system.

Return: Cartesian point.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

39

Joint point offset
Function:

local Offset={Offset1, Offset2, Offset3, Offset4}
RelJoint(P, Offset)

Description: Set the joint offset in the Joint coordinate system to return a new joint point. The robot can move
to this point only in JointMovJ command .

Required parameter:

P, Indicate the current joint point, which is user-defined or obtained from the points list. Only joint point is
supported.
{Offset1, Offset2, Offset3, Offset4}: J1 - J4 axes offset.

Return: Joint point.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

40

Cartesian point
Function:

local P={coordinate = {x,y,z,r}, tool = 0, user = 0}

Description: User-define a Cartesian point.

Required parameter:

{x,y,z,r}: X, Y, Z, R axes coordinates.
tool: Tool coordinate system index. Value range: 0-9
user: User coordinate system index. Value range: 0-9

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

41

Joint point
Function:

local P={joint= {j1,j2,j3,j4}}

Description: User-define a joint point.

Required parameter: {j1,j2,j3,j4}， J1-J4 axes coordinates.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

42

6 TCP
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-25 09:35:43

43

Create TCP
Function:

Err, Socket = TCPCreate(IsServer, IP, Port)

Description: Create a TCP network. Only support a single connection.

Required parameter:

IsServer: Whether to create a server. false: Create a client; true: Create a server.
IP: IP address of the server, which is in the same network segment of the client without conflict.
Port： Server port. When the robot is set as a server, port cannot be set to 502 and 8080. Otherwise, it
will be in conflict with the Modbus default port or the port used in the conveyor tracking application,
causing the creation to fail.

Return:

Err:
0: TCP network is created successfully.
1: TCP network is created failed.

Socket: Socket object.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

44

Establish TCP connection
Function:

TCPStart(Socket, Timeout)

Description: Establish TCP connection.

Required parameter:

Socket: Socket object.
Timeout: Wait timeout. Unit: s. If Timeout is 0, the connection is still waiting. If not, after exceeding the
timeout, the connection is exited.

Return:

0: TCP connection is successful.
1: Input parameters are incorrect.
2: Socket object is not found.
3: Timeout setting is incorrect.
4: If the robot is set as a client, it indicates that the connection is wrong. If the robot is set as a server, it
indicates that receiving data is wrong.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

45

Receive TCP data
Function:

Err, RecBuf = TCPRead(Socket, Timeout, Type)

Description: Robot as a client receives data from a server or

as a server receives data from a client .

Required parameter:

Socket: Socket object.
Timeout: Receiving timeout. Unit: s. If Timeout is 0 or is not set, this command is a block reading.
Namely, the program will not continue to run until receiving data is complete. If not, after exceeding the
timeout, the program will continue to run regardless of whether receiving data is complete.
Type: Buffer type. If Type is not set, the buffer format of RecBuf is a table. If Type is set to string, the
buffer format is a string.

Return:

Err:
0: Receiving data is successful.
1: Receiving data is failed.

Recbuf: Data buffer.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

46

Send TCP data
Function:

TCPWrite(Socket, Buf, Timeout)

Description: Robot as a client sends data to a server or as a server sends data to a client.

Required parameter:

Socket: Socket object.
Buf: Data sent by the robot.
Timeout: Timeout. Unit: s. If Timeout is 0 or not set, this command is a block reading. Namely, the
program will not continue to run until sending data is complete. If not, after exceeding the timeout, the
program will continue to run regardless of whether sending data is complete.

Return:

0: Sending data is successful.
1: Sending data is failed.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

47

Close TCP
Function:

TCPDestroy(Socket)

Description: Release a TCP network.

Required parameter: Socket, Socket object.

Return:

0: Releasing TCP is successful.
1: Releasing TCP is failed.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

48

7 UDP
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-25 09:35:43

49

Create UDP
Function:

Err, Socket = UDPCreate(IsServer, IP, Port)

Description: Create a UDP network. Only support a single connection.

Required parameter:

IsServer: Whether to create a server. false: Create a client; true: Create a server.
IP: IP address of the server, which is in the same network segment of the client without conflict.
Port： Server port. When the robot is set as a server, port cannot be set to 502 and 8080. Otherwise, it
will be in conflict with the Modbus default port or the port used in the conveyor tracking application,
causing the creation to fail.

Return:

Err:
0: UDP network is created successfully.
1: UDP network is created failed.
Socket: Socket object.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

50

Receive UDP data
Function:

Err, RecBuf = UDPRead(Socket, Timeout, Type)

Description: Robot as a client receives data from a server or

as a server receives data from a client .

Required parameter:

Socket: Socket object.
Timeout: Receiving timeout. Unit: s. If Timeout is 0 or is not set, this command is a block reading.
Namely, the program will not continue to run until receiving data is complete. If not, after exceeding the
timeout, the program will continue to run regardless of whether receiving data is complete.
Type: Buffer type. If Type is not set, the buffer format of RecBuf is a table. If Type is set to string, the
buffer format is a string.

Return:

Err:
0: Receiving data is successful.
1: Receiving data is failed.

Recbuf: Data buffer.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

51

Send UDP data
Function:

UDPWrite(Socket, Buf, Timeout)

Description: Robot as a client sends data to a server or as a server sends data to a client.

Required parameter:

Socket: Socket object.
Buf: Data sent by the robot.
Timeout: Timeout. Unit: s. If Timeout is 0 or not set, this command is a block reading. Namely, the
program will not continue to run until sending data is complete. If not, after exceeding the timeout, the
program will continue to run regardless of whether sending data is complete.

Return:

0: Sending data is successful.
1: Sending data is failed.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

52

8 Modbus
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-25 09:35:43

53

Create Modbus master station
Function:

ModbusCreate()

Description: create Modbus master station, and establish connection with the slave station

Parameter:

IP: IP address of slave station
port: slave station port
slave_id: ID of slave station

Return:

err:
0: Modbus master station is created successfully
1: Modbus master station fails to be created

id: device ID of slave station, supporting at most five devices, range: 0~4

Note: When ip, port, slave_id is void, or ip is 127.0.0.1 or 0.0.0.1, connect the Modbus slave station. For
example, if you input any one of the following commands, it indicates connecting Modbus slave station.

ModbusCreate()
ModbusCreate(“127.0.0.1”)
ModbusCreate(“0.0.0.1”)
ModbusCreate(“127.0.0.1”,xxx,xxx) //xxx arbitrary value
ModbusCreate(“0.0.0.1”,xxx,xxx) //xxx arbitrary value

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-08-17 12:41:48

54

Disconnect with Modbus slave
Function:

ModbusClose()

Description: disconnect with Modbus slave station

Parameter:

id: device ID of slave station, supporting at most five devices, range: 0~4
Return:

0: Modbus master station is closed successfully
1: Modbus master station fails to be closed

Example

err, id = ModbusCreate(ip, port,slave_id)
if err == 0 then
coils = {0, 1, 1, 1, 0}
SetCoils(id,1024, #coils, coils)
ModbusClose(id)
else
print("Create failed:",err)
end

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-08-12 19:04:27

55

Read the value from the Modbus slave coil register
address

Function:

GetCoils(id, addr, count)

Description: read the coil value from the Modbus slave

Parameter:
id: device ID of slave station, supporting at most five devices, range: 0~4
addr: starting address of the coils to read, range: 0~4095
count: number of the coils to read, range: 0 to 4096-addr

Return: coil value stored in a table, where the first value in the table corresponds to the coil value at the
starting address; data type: bit

Example

 Read 5 coils starting at address 0
 Coils = GetCoils(id,0,5)
 Return:
 Coils={1,0,0,0,0}
 As shown in Table 16.3, it indicates that the robot is in the starting state

Coil register address (e.g.: PLC)	Coil register address (Robot system)	Data type	Description
------------------------	----------------------------- -	-------	----------
00001	0	Bit	Start
00002	1	Bit	Pause
00003	2	Bit	Continue
00004	3	Bit	Stop
00005	4	Bit	Emergency stop
00006	5	Bit	Clear alarm
00007~0999	6~998	Bit	Reserved
01001~04096	999~4095	Bit	User-defined

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

56

Set the coil register in the Modbus slave
Function:

SetCoils(id, addr, count, table)

Description: set the address value of coil register in the Modbus slave This command is not supported when
the coil register address is from 0 to 5

Parameter:
id: device ID of slave station, supporting at most five devices, range: 0~4
Addr: starting address of the coils to set, range: 6 - 4095
count: number of the coils to set, range: 0 to 4096-addr
table: coil value, stored in a table, data type: bit

Return: null

Example

local Coils = {0,1,1,1,0}
SetCoils(id, 1024, #coils, Coils)

Set 5 coils starting at address 1024.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

57

Read the value from the Modbus slave discrete
register address

Function:

GetInBits(id, addr, count)

Description: read the discrete input value from Modbus slave

Parameter:

id: device ID of slave station, supporting at most five devices, range: 0~4
addr: starting address of the discrete inputs to read, range: 0~4095
count: number of the discrete inputs to read, range: 0 to 4096-addr

Return: coil value stored in a table, where the first value in the table corresponds to the input register value at
the starting address; data type: bit

Example

Read 5 discrete inputs starting at address 0
inBits = GetInBits(id,0,5)
Return:
inBits = {0,0,0,1,0}
As shown in Table 17.1, it indicates the robot is in running state

Coil register address (e.g.:
PLC)

Coil register address (Robot
system)

Data
type Description

00001 0 Bit Start

00002 1 Bit Pause

00003 2 Bit Continue

00004 3 Bit Stop

00005 4 Bit Emergency
stop

00006 5 Bit Clear alarm

00007~0999 6~998 Bit Reserved

01001~04096 999~4095 Bit User-defined

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

58

Read the value from the Modbus slave input register
address

Function:

GetInRegs(id, addr, count, type)

Description: read the input register value with the specified data type from the Modbus slave

Parameter:

id: device ID of slave station, supporting at most five devices, range: 0~4
addr: starting address of the input registers, range: 0 - 4095
count: number of the input registers to read, range: 0 ~ 4096-addr
type: data type

Empty: read 16-bit unsigned integer (two bytes, occupy one register)
“U16”: read 16-bit unsigned integer (two bytes, occupy one register)
“U32”: read 32-bit unsigned integer (four bytes, occupy two registers)
“F32”: read 32-bit single-precision floating-point number (four bytes, occupy two registers)
“F64”: read 64-bit double-precision floating-point number (eight bytes, occupy four registers)

Return: value of input register stored in a table, where the first value in the table corresponds to the input
register value at the starting address

Example 1

data = GetInRegs(id,2048,1)

Read a 16-bit unsigned integer starting at address 2048.

Example 2

data = GetInRegs(id, 2048, 1, “U32”)

Read a 32-bit unsigned integer starting at address 2048.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

59

Read the value from the Modbus slave holding
register address

Function:

GetHoldRegs(id, addr, count, type)

Description: Read the holding register value from the Modbus slave according to the specified data type

Parameter:

id: device ID of slave station, supporting at most five devices, range: 0~4
addr: starting address of the holding registers. Value range: 0 - 4095
count: number of the holding registers to read. Value range: 0 to 4096-addr
type: data type

Empty: read 16-bit unsigned integer (two bytes, occupy one register)
“U16”: read 16-bit unsigned integer (two bytes, occupy one register)
“U32”: read 32-bit unsigned integer (four bytes, occupy two registers)
“F32”: read 32-bit single-precision floating-point number (four bytes, occupy two registers)
“F64”: read 64-bit double-precision floating-point number (eight bytes, occupy four registers)

Return: coil value stored in a table, where the first value in the table corresponds to the input register value at
the starting address

Example 1:

data = GetHoldRegs(id,2048,1)

Read a 16-bit unsigned integer starting at address 2048.

Example 2:

data = GetHoldRegs(id, 2048, 1, “U32”)

Read a 32-bit unsigned integer starting at address 2048.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

60

Set the holding register in the Modbus slave
Function:

SetHoldRegs(id, addr, count, table, type)

Description: set the holding register in the Modbus slave

Parameter:

id: device ID of slave station, supporting at most five devices, range: 0~4
addr: starting address of the holding registers to set, range: 0 - 4095
count: number of the holding registers to set, range: 0 to 4096-addr
table: holding register value, stored in a table
type: datatype

Empty: read 16-bit unsigned integer (two bytes, occupy one register)
“U16”: read 16-bit unsigned integer (two bytes, occupy one register)
“U32”: read 32-bit unsigned integer (four bytes, occupy two registers)
“F32”: read 32-bit single-precision floating-point number (four bytes, occupy two registers)
“F64”: read 64-bit double-precision floating-point number (eight bytes, occupy four registers)

Return: null

Example 1

local data = {6000}
SetHoldRegs(id, 2048, #data, data, “U16”)

Set a 16-bit unsigned integer starting at address 2048.

Example 2

local data = {95.32105}
SetHoldRegs(id, 2048, #data, data, “F64”)

Set a 64-bit double-precision floating-point number starting at address 2048.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

61

9 Conveyor Tracking
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

62

Set conveyor number to create a tracing queue
Function:

CnvVison(CnvID)

Description: Set conveyor number to create a tracing queue.

Required parameter: CnvID, Conveyor number. Only support single conveyor.

Return:

0: No error
1: Error

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

63

Obtain status of the object
Function:

GetCnvObject(CnvID, ObjID)

Description: Obtain the information of the part on the conveyor to check whether the part is in the pickup
area .

Required parameter:

CnvID: Conveyor index.
ObjID: Part index.

Return:

Part status: Whether there is a part. Value range: true or false
Part type
Part coordinate (x,y,r)

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

64

Set X,Y axes offset under the set User coordinate
system

Function:

SetCnvPointOffset(OffsetX,OffsetY)

Description: Set X,Y axes offset under the set User coordinate system.

Required parameter:

OffsetX: X-axis offset.
OffsetY: Y-axis offset.

Return:

0: No error
1: Error

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 17:27:19

65

Set time compensation
Function:

SetCnvTimeCompensation(Time)

Description: Set time compensation. This command is used for compensating the pick-up position offset in
the moving direction of the conveyor which is caused by taking photos with a time delay.

Required parameter: Time, time-offset. Unit: ms

Return:

0: No error
1: Error

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

66

Synchronize the specified conveyor
Function:

SyncCnv(CnvID)

Description: Synchronize the specified conveyor. The motion commands used between SyncCnv(CnvID) and
StopSyncCnv(CnvID) only support MovL command.

Required parameter: CnvID, Conveyor index.

Return:

0: No error
1: Error

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 17:14:42

67

Stop synchronous conveyor
Function:

StopSyncCnv(CnvID)

Descriptioon: Stop synchronizing the conveyor. The other commands following this command will not be
executed until this command running is completed.

Required parameter: CnvID, Conveyor index.

Return:

0: No error
1: Error

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

68

10 Pallet
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

69

Instantiate matrix pallet
Function:

Pallet = MatrixPallet (Index)

Or:

local Option={IsUnstack= true, User= 1}
Pallet = MatrixPallet (Index, Option)

Description: Instantiate matrix pallet.

Required parameter: Index: Matrix pallet index.

Optional parameter: {IsUnstack= true, User= 1}. You can double-click to insert the command with
optional parameters.

IsUnstack: Stack mode. Value range: true or false. true: Dismantling mode . false: Assembly mode. If
not set, the default is assembly mode
User: User coordinate system index. If not set, the default is User 0 coordinate system.

Return: Matrix pallet object.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-10-28 17:01:02

70

Instantiate teaching pallet
Function:

Pallet = TeachPallet (Index)

Or:

local Option={IsUnstack= true, User= 1}
Pallet = TeachPallet (Index,Option)

Description: Instantiate teaching pallet.

Required parameter: Index: Teaching pallet index.

Optional parameter: {IsUnstack= true, User= 1}. You can double-click to insert the command with
optional parameters.

IsUnstack: Stack mode. Value range: true or false. true: Dismantling mode . false: Assembly mode. If
not set, the default is assembly mode
User: User coordinate system index. If not set, the default is User 0 coordinate system.

Return: Teaching pallet object.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-10-28 17:15:51

71

Set the next stack index which is to be operated
Function:

SetPartIndex(Pallet, Index)

Description: Set the next stack index which is to be operated.

Required parameter:

Pallet: Pallet object.
Index: The next stack index. Initial value: 0

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

72

Get the current operated stack index
Function

GetPartIndex(Pallet)

Description: Get the current operated stack index.

Required parameter: Pallet, Pallet object.

Return: The current operated stack index.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

73

Set the next pallet layer index which is to be
operated

Function:

SetLayerIndex(Pallet, Index)

Description: Set the next pallet layer index which is to be operated.

Required parameter:

Pallet: Pallet object.
Index: The next pallet layer index. Initial value: 0

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

74

Get the current pallet layer index
Function:

GetLayerIndex(Pallet)

Description: Get the current pallet layer index.

Required parameter: Pallet, Pallet object.

Return: The current pallet layer index.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

75

Reset pallet
Function:

Reset(Pallet)

Description: Reset pallet.

Required parameter: Pallet, Pallet object.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-06-04 15:51:09

76

Check whether the stack assembly or dismantling is
complete

Function:

IsDone(Pallet)

Description: Check whether the stack assembly or dismantling is complete.

Required parameter: Pallet, Pallet object.

Return:

true: Finished.
false: Un-finished.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

77

Release palletizing instance
Function:

Release(Pallet)

Description: Release palletizing instance.

Required parameter: Pallet, Pallet object.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

78

The robot moves from the current position to the
first stack position as the configured stack
assembly path

Function:

PalletMoveIn(Pallet)

Or:

local Option={SpeedAB=20, SpeedBC=30, AccAB=20, AccBC=10, CP=20}
PalletMoveIn(Pallet, Option)

Description: The robot moves from the current position to the first stack position as the configured stack
assembly path.

Required parameter: Pallet, Pallet object.

Optional parameter: {SpeedAB=20, SpeedBC=30, AccAB=20, AccBC=10, CP=20}. You can double-click

to insert the command with optional parameters.

SpeedAB: Velocity rate when the robot moves from the transition point to the preparation point. Value
range: 1-100
SpeedBC: Velocity rate when the robot moves from the preparation point to the first stack point. Value
range: 1-100
AccAB: Acceleration rate when the robot moves from the transition point to the preparation point. Value
range: 1-100
AccBC: Acceleration rate when the robot moves from the preparation point to the first stack point. Value
range: 1-100
CP: Continuous path rate. Value range: 0-100

The stack assembly path and dismantling path are shown as follows. Point A is the transition point, which is
fixed or varies with the pallet layer. Point B is the preparation point which is calculated by the target point and
the set offset. Point C is the first stack point.

79

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:53

80

The robot moves from the current position to the
transition point as the configured stack dismantling
path

Function:

PalletMoveOut(Pallet)

Or:

local Option={SpeedAB=20, SpeedBC=30, AccAB=20, AccBC=10, CP=20}
PalletMoveOut(Pallet, Option)

Description: The robot moves from the current position to the transition point as the configured stack
dismantling path.

Required parameter: Pallet, Pallet object.

Optional parameter: {SpeedAB=20, SpeedBC=30, AccAB=20, AccBC=10, CP=20}. You can double-click

to insert the command with optional parameters.

SpeedAB: Velocity rate when the robot moves from the preparation point to the transition point. Value
range: 1-100
SpeedBC: Velocity rate when the robot moves from the first stack point to the preparation point. Value
range: 1-100
AccAB: Acceleration rate when the robot moves from the preparation point to the transition point. Value
range: 1-100
AccBC: Acceleration rate when the robot moves from the first stack point to the preparation point. Value
range: 1-100
CP: Continuous path rate. Value range: 0-100

The stack assembly path and dismantling path are shown as follows. Point A is the transition point, which is
fixed or varies with the pallet layer. Point B is the preparation point which is calculated by the target point and
the set offset. Point C is the first stack point.

81

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-01-26 16:58:54

82

Vision
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-09-16 12:23:42

83

Initialize the connection to the camera
Function:

InitCam (“CAM0”)

Description: Initialize the connection to the camera.

Parameter:

CAM0: Name of the camera
Return:

0: Initialize successfully
1: Failed to initialize

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-09-16 16:35:18

84

Trigger the camera to take a picture
Function:

TriggerCam (“CAM0”)

Description: Trigger the camera to take a picture.

Parameter:

CAM0: Name of the camera
Return:

0: Trigger successfully
1: Fail to trigger

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-09-16 15:30:25

85

Send data
Function:

SendCam (“CAM0”,“0,0,0,0”)

Description: Send data to the camera.

Parameter:

CAM0: Name of the camera
"0, 0, 0, 0": Data

Return:

0: Send successfully
1: Failed to send

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-09-16 15:40:07

86

Receive data
Function:

RecvCam (“CAM0”,“number”)

Description: Receive data from the camera.

Parameter:

CAM0: Name of the camera
number: Data type, value range: number or string

Return:

err：

0: Receive data correctly
1: Time out
2: The data format is incorrectly and cannot be parsed.
3: Network disconnection

n: The number of data groups sent by the camera.

data: The data sent by the camera is stored in a two-dimensional array.

Example:

InitCam("CAM0")
SendCam("CAM0","0,0,0,0;")
while true do
 local err,n,data = RecvCam("CAM0")
 if err == 0 then
 for i = 1, n do
 pos.x=data[i][1] --data[i][1]assign to pos.x
 pos.y=data[i][2] --data[i][2]assign to pos.y
 pos.c=data[i][3] --data[i][3]assign to pos.r
 pos.z = -20 --Set the height according to the actual situation
 Move(pos)
 end
 elseif err == 1 then
 print("Data receive timeout")
 break
 elseif err == 2 then
 print("The data format is incorrectly and cannot be parsed")
 break
 elseif err == 3 then
 print("Network disconnection")
 break
 end
end
DestroyCam("CAM0")

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-09-16 16:35:49

87

88

Close the camera
Function:

DestroyCam (“CAM0”)

Description: Release the connection with the camera

Parameter:

CAM0: Name of the camera
Return:

0: Send successfully
1: Failed to send

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2020 all right reserved，powered by GitbookRevision:
2021-09-16 16:15:56

89

	Introduction
	1 Motion Commands
	1.1 Point to point, the target point is Cartesian point
	1.2 Linear Movement
	1.3 Point to point, the target point is Joint point
	1.4 Jump Movement, Jump parameters can be set in this command
	1.5 Jump Movement, Jump parameters are called by Arch index
	1.6 Move to the Cartesian offset position in a point to point mode
	1.7 Move to the Cartesian offset position in a straight line
	1.8 Linear movement in parallel with output
	1.9 Point to point movement in parallel with output
	1.10 Arc Movement
	1.11 Circle Movement

	2 Motion Parameters
	2.1 Joint Acceleration
	2.2 Cartesian Acceleration
	2.3 Joint Speed
	2.4 Cartesian Speed
	2.5 CP
	2.6 Synchronization
	2.7 Set Load Parameters

	3 IO
	3.1 DI
	3.2 DO
	3.3 DOInstant

	4 Program Managing Commands
	4.1 Motion command waiting
	4.2 Blocking instruction issuance
	4.3 Pause program operation
	4.4 Start timing
	4.5 Stop timing
	4.6 Get current time

	5 Pose
	5.1 Get Cartesian coordinates
	5.2 Get Joint coordinates
	5.3 Cartesian point offset
	5.4 Joint point offset
	5.5 Cartesian point
	5.6 Joint point

	6 TCP
	6.1 Create TCP
	6.2 Establish TCP connection
	6.3 Receive TCP data
	6.4 Send TCP data
	6.5 Close TCP

	7 UDP
	7.1 Create UDP
	7.2 Receive UDP data
	7.3 Send UDP data

	8 Modbus
	8.1 Create Modbus master station
	8.2 Disconnect with Modbus slave
	8.3 Read the value from the Modbus slave coil register address
	8.4 Set the coil register in the Modbus slave
	8.5 Read the value from the Modbus slave discrete register address
	8.6 Read the value from the Modbus slave input register address
	8.7 Read the value from the Modbus slave holding register address
	8.8 Set the holding register in the Modbus slave

	9 Conveyor Tracking
	9.1 Set conveyor number to create a tracing queue
	9.2 Obtain status of the object
	9.3 Set X,Y axes offset under the set User coordinate system
	9.4 Set time compensation
	9.5 Synchronize the specified conveyor
	9.6 Stop synchronous conveyor

	10 Pallet
	10.1 Instantiate matrix pallet
	10.2 Instantiate teaching pallet
	10.3 Set the next stack index which is to be operated
	10.4 Get the current operated stack index
	10.5 Set the next pallet layer index which is to be operated
	10.6 Get the current pallet layer index
	10.7 Reset pallet
	10.8 Check whether the stack assembly or dismantling is complete
	10.9 Release palletizing instance
	10.10 The robot moves from the current position to the first stack position as the configured stack assembly path
	10.11 The robot moves from the current position to the transition point as the configured stack dismantling path

	11 Vision
	11.1 Initialize the connection to the camera
	11.2 Trigger the camera to take a picture
	11.3 Send data
	11.4 Receive data
	11.5 Close the camera

