

AEC-Q200
This component was always
RoHS compliant from the first
date of manufacture.

RO3073E-1

315.0 MHz SAW Resonator

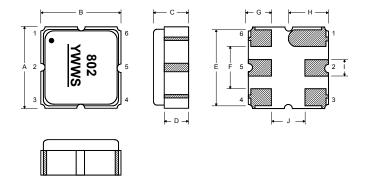
- Ideal for 315 MHz Automotive-Keyless-Entry Transmitters
- · Very Low Series Resistance
- Quartz Stability
- Complies with Directive 2002/95/EC (RoHS)
- Tape and Reel Standard per ANSI/EIA-481

The RO3073E-1 is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount, ceramic case. It provides reliable, fundamental-mode, quartz frequency stabilization of local oscillators operating at approximately 315 MHz. This SAW was designed for AM transmitters in automotive-keyless-entry applications operating in the USA under FCC Part 15, in Canada under DoC RSS-210, and in Italy.

Absolute Maximum Ratings

Rating	Value	Units
Input Power Level	0	dBm
DC Voltage	12	VDC
Storage Temperature Range	-40 to +125	°C
Operating Temperature Range	-40 to +105	°C
Soldering Temperature (10 seconds / 5 cycles max.)	260	°C

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Frequency (+25 °C)	Absolute Frequency	f _C		314.950		315.050	MHz
	Tolerance from 315.0 MHz	Δf_{C}				±50	kHz
Insertion Loss		IL			1.6	2.4	dB
Quality Factor	Unloaded Q	Q _U			8200		
	50 $Ω$ Loaded Q	Q_L			1350		
Temperature Stability	Turnover Temperature	T _O		10	25	35	°C
	Turnover Frequency	f _O			f _C		
	Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f _A			10		ppm/yr
DC Insulation Resistance between Any Two Terminals				1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R_{M}			19.8		Ω
	Motional Inductance	L _M			82		μH
	Motional Capacitance	C _M			3.1		fF
	Shunt Static Capacitance	C _O			4.1		pF
Test Fixture Shunt Inductance		L _{TEST}			63		nH
Lid Symbolization		802, <u>YWWS</u>				11	
StandardReelQuantity	Reel Size 7 Inch				500 Pie	ces / Reel	
	Reel Size 13 Inch				3000 Pie	ces / Reel	

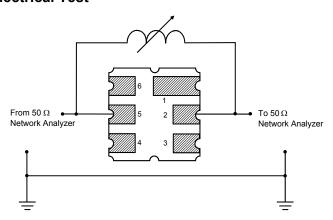

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. NOTES:

- 1. The design, manufacturing process, and specifications of this device are subject to change.
- 2. US or International patents may apply.

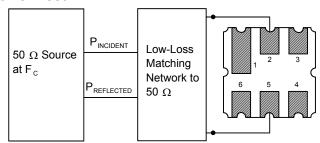
Electrical Connections

The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.

Pin	Connection				
1	NC				
2	Terminal				
3	NC				
4	NC				
5	Terminal				
6	NC				

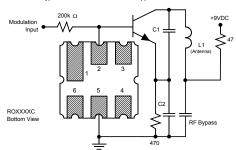

Case	Dim	ensi	ons

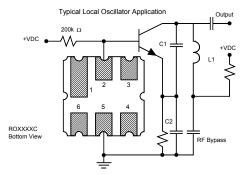
Dimension		mm			Inches	
	Min	Nom	Max	Min	Nom	Max
Α	2.87	3.0	3.13	0.113	0.118	0.123
В	2.87	3.0	3.13	0.113	0.118	0.123
С	1.12	1.25	1.38	0.044	0.049	0.054
D	0.77	0.90	1.03	0.030	0.035	0.040
E	2.67	2.80	2.93	0.105	0.110	0.115
F	1.47	1.6	1.73	0.058	0.063	0.068
G	0.72	0.85	0.98	0.028	0.033	0.038
Н	1.37	1.5	1.63	0.054	0.059	0.064
İ	0.47	0.60	0.73	0.019	0.024	0.029
J	1.17	1.30	1.43	0.046	0.051	0.056

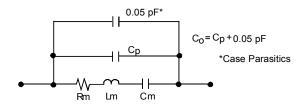

Typical Test Circuit

The test circuit inductor, L_{TEST} , is tuned to resonate with the static capacitance, C_O , at F_C .

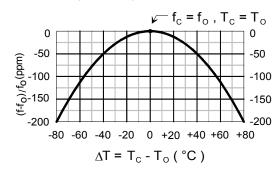
Electrical Test




Power Test


Typical Application Circuits

Typical Low-Power Transmitter Application



Equivalent LC Model

Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.

Recommended Reflow Profile

- 1. Preheating shall be fixed at 150~180°C for 60~90 seconds.
- 2. Ascending time to preheating temperature 150°C shall be 30 seconds min.
- 3. Heating shall be fixed at 220°C for 50~80 seconds and at 260°C +0/-5°C peak (10 seconds).
- 4. Time: 5 times maximum.

