
RedBoard Turbo Hookup Guide

Introduction
If you’re ready to step up your Arduino game from older 8-bit/16MHz microcontrollers, the RedBoard Turbo is an
awesome alternative. The RedBoard Turbo uses the ATSAMD21G18, which is an ARM Cortex M0+, 32-bit
microcontroller that can run at up to 48MHz. The RedBoard Turbo is similar to the SAMD21 Dev Breakout, with a
few improvements. The RedBoard Turbo steps up the flash memory from the 256kB of internal memory to 4MB of
external memory. Along with the UF2 Bootloader, the RedBoard Turbo is even easier to program than before!

SparkFun RedBoard Turbo - SAMD21 Development
Board
 DEV-14812

Product Showcase: Going TurboProduct Showcase: Going TurboProduct Showcase: Going Turbo

https://www.sparkfun.com/
https://www.sparkfun.com/products/14812
https://www.sparkfun.com/products/13672
https://www.sparkfun.com/products/14812
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14812
https://www.youtube.com/watch?v=ahuEUC8uQ2k
https://www.youtube.com/channel/UCKPLvnWhN1Qo51IDDZsmq1g

The RedBoard Turbo equips the ATSAMD21G18 with a USB interface for programming and power, a Qwiic
connector, an RTC crystal, WS2812-based addressable RGB LED, 600mA 3.3V regulator, LiPo charger, and a
variety of other components.

Required Materials

In addition to the RedBoard Turbo, you’ll also need a Micro-B Cable (as if you don’t already have dozens in your
USB cable drawer!). That’s all you’ll need to get started. You can also take advantage of its LiPo charger with a
single-cell Lithium Polymer battery. You may not need everything though depending on what you have. Add it to
your cart, read through the guide, and adjust the cart as necessary.

Suggested Reading

Before continuing on with this tutorial, you may want to familiarize yourself with some of these topics if they’re
unfamiliar to you:

Qwiic Connect System

SparkFun RedBoard Turbo - SAMD21
Development Board
 DEV-14812

USB micro-B Cable - 6 Foot
 CAB-10215

 11

https://www.sparkfun.com/products/10215
https://www.sparkfun.com/search/results?term=lithium%20polymer
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/products/14812
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14812
https://www.sparkfun.com/products/10215
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/10215
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/what-is-an-arduino

SAMD21 RedBoard Turbo Overview

Note: For those interested in the nitty, gritty details of the SAMD21, check out the section from the Dev
Breakout's SAMD21 overview or the datasheet.

Before we get into programming the SAMD21, let’s first cover some of the features built into the RedBoard Turbo.
The RedBoard Turbo is similar to our SAMD21 Dev Breakout, except turbocharged. In this section we’ll cover
powering the board, outlining the I/O pins, and what the various LEDs on the board are for.

I/O Pins

If you’ve used any Arduino before, this pinout shouldn’t surprise you – the layout meets the Arduino 1.0 footprint
standard, including a separate SPI header and additional I C header. For a quick reference, consult our graphical
datasheet, which exhaustively shows the capability of each I/O pin and some of the other features on the board.

Analog to Digital Conversion
The world is analog. Use analog to digital conversion to
help digital devices interpret the world.

What is an Arduino?
What is this 'Arduino' thing anyway?

Installing Arduino IDE
A step-by-step guide to installing and testing the
Arduino software on Windows, Mac, and Linux.

SAMD21 Mini/Dev Breakout Hookup Guide
An introduction to the Atmel ATSAMD21G18
microprocessor and our Mini and Pro R3 breakout
boards. Level up your Arduino-skills with the powerful
ARM Cortex M0+ processor.

2

https://learn.sparkfun.com/tutorials/samd21-minidev-breakout-hookup-guide/samd21-overview
http://www.atmel.com/images/atmel-42181-sam-d21_datasheet.pdf
https://www.sparkfun.com/products/14812
https://www.sparkfun.com/products/13672
https://github.com/sparkfun/RedBoard_Turbo/blob/master/Documentation/GraphicalDatasheet-SamD21TurboDev.pdf
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/what-is-an-arduino
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/samd21-minidev-breakout-hookup-guide

All PWM-capable pins are indicated with a tilde (~) adjacent to the pin-label. Speaking of “analog output”, true
analog output is available on the A0 pin.

⚡ 3.3V Logic Levels! When you start interfacing the SAMD21's I/O pins with external sensors and other
components, keep in mind that each I/O will produce, at most, 3.3V for a high-level output.

When configured as an input, the maximum input voltage for each I/O is 3.6V (VDD+0.3V). If you're
interfacing the SAMD21 with 5V devices, you may need some level shifters in between.

Supplying Power

Power can be supplied to the RedBoard Turbo through either USB, a single-cell (3.7-4.2V) lithium-polymer battery,
or an external 5V source via barrel jack. Each of the power supply inputs are available on the top edge of the
board (the VIN pin on the power header can also be used).

⚡ Warning The barrel jack connection on the RedBoard Turbo has a lower input voltage than most Arduino
development boards. Make sure that you are using a power supply below 6V!

USB Power

https://github.com/sparkfun/RedBoard_Turbo/blob/master/Documentation/GraphicalDatasheet-SamD21TurboDev.pdf
https://www.sparkfun.com/products/12009
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/1/power_highlight.jpg

The USB jack comes in the form of a micro-B connector. It should work with one of the many USB phone-
charging cables you have lying around, or one of our Micro-B cables. You can plug the other end into a computer
USB port, or use a USB Wall Adapter. The USB supply input includes a 500mA PTC resettable fuse – if something
on or connected to the breakout fails, it should help protect your supply from damage.

Single-Cell Lithium-Polymer (LiPo) Battery Charger

The SAMD21 touts many low-power features, so using it in battery-powered projects should be a common
occurence. We’ve integrated our standard 2-pin JST connector, and a single-cell USB battery charger into the
board. Any of our single-cell lithium polymer batteries can be used to power the board.

Wall Adapter Power Supply - 5V DC 2A (USB
Micro-B)
 TOL-12890

USB micro-B Cable - 6 Foot
 CAB-10215

Wall Adapter Power Supply - 5V DC 2A (Barrel
Jack)
 TOL-12889

USB Wall Charger - 5V, 1A (Black)
 TOL-11456

Lithium Ion Battery - 1Ah
 PRT-13813

Lithium Ion Battery - 400mAh
 PRT-13851

https://www.sparkfun.com/products/10215
https://www.sparkfun.com/products/12889
https://www.sparkfun.com/categories/54
https://www.sparkfun.com/products/12890
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12890
https://www.sparkfun.com/products/10215
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/10215
https://www.sparkfun.com/products/12889
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12889
https://www.sparkfun.com/products/11456
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11456
https://www.sparkfun.com/products/13813
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13813
https://www.sparkfun.com/products/13851
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13851

To charge the battery, simply connect USB or a 5V wall adapter while the battery is also connected.

The “Charge” LED should illuminate while the battery is charging, and it should eventually turn off once fully juiced
up.

Configuring Battery Charge Current

The MCP73831's charge current is configured by a resistor value between 66kΩ and 2kΩ, to charge the
battery at a rate between 15mA and 500mA, respectively. By default, the board is configured to charge the
battery at around 250mA.

Most batteries shouldn't be charged at a rate over 1C (for example, a 110mAh battery's 1C charge current
would be 110mA). If you need to adjust the charge current, we've added pads for a through-hole resistor. This
resistor can be added in parallel with the 3.9kΩ resistor already on board, or the CHG SET resistor can be
removed with a soldering iron.

Lithium Ion Battery - 2Ah
 PRT-13855

Lithium Ion Battery - 110mAh
 PRT-13853

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/1/RedBoard_Turbo_Hookup_Guide-04.jpg
https://learn.sparkfun.com/tutorials/resistors#series-and-parallel-resistors
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/1/CHG_SET.jpg
https://www.sparkfun.com/products/13855
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13855
https://www.sparkfun.com/products/13853
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13853

If you need a smaller charge current, the charge set resistor must be removed, before adding your own.
Increasing the charge current can be achieved by adding a resistor in parallel. Here are a few resistor
value/charge current examples:

Charge Current
(I)

Total Resistance
(R)

Parallel Resistor

40mA 25kΩ No, must remove CHG SET
resistor

100mA 10kΩ No, must remove CHG SET
resistor

400mA 2.5kΩ 6.9kΩ

500mA 2kΩ 4.1kΩ

The charge current is calculated as:
I = 1000/R

R is the total programming resistor resistance, which may include the 3.9kΩ resistor in parallel.

Current Capabilities

Depending on the task it’s given, the SAMD21’s core will usually consume between 3-17mA. There should be
plenty of juice left from the 600mA 3.3V regulator to power other sensors or components off the Turbo’s 3.3V
supply rail.

Each I/O pin can sink up to 10mA and source up to 7mA, with one caveat: each cluster of I/O is limited to
sourcing 14mA or sinking 19.5mA. The GPIO clusters are:

Cluster GPIO Cluster Supply (Pin) Cluster Ground (Pin)

1 SWCLK, SWDIO VDDIN (44) GND (42)

2 30, 31
(USB_HOST_EN, TX_LED)

VDDIN (44)
VDDIO (36)

GND (42)
GND (35)

3 D2, D5, D6, D7, D10, D11, D12, D13, D38
SCL, SDA, MISO, SCK, MOSI
(USB_D-, USB_D+)

VDDIO (36)
VDDIO (17)

GND (35)
GND (18)

4 D0, D1, D3, D4 VDDIO (17) GND (18)

5 A1, A2, A3, A4
D8, D9

VDDANA (6) GNDANA (5)

6 A0, A5, AREF
(RX_LED, RTC1, RTC2)

VDDANA (6) GNDANA (5)

Charge Prog

Charge Prog

Prog

So, for example, if you’re sourcing current to four LEDs tied to pins 0, 1, 3, and 4 (cluster 4), the sum of that
current must be less than 14mA (~3.5mA per LED).

LEDs

Speaking of LEDs, the RedBoard Turbo has a lot of them: a power indicator, pin 13 “status” LED, USB transmit
and receive LED indicators, a battery charge status indicator, and addressable WS2812 LED.

Status LED

The blue LED driven by the Arduino’s pin 13 is actually sourced through an N-channel MOSFET, so less of our
precious cluster-current is eaten up. The LED still turns on when you write the pin HIGH and off when pin 13 is
LOW.

Serial UART LEDs

The RX and TX LEDs indicate activity on the USB serial port. They are also addressable within an Arduino sketch,
using the macros PIN_LED_RXL and PIN_LED_TXL . These LEDs are active-low, so writing the pin HIGH will turn
the LED off.

Charge LED

The charge LED is controlled by the board’s integrated MCP73831 battery charger. If a battery is connected and
5V supplied (via USB or the external jack), it will illuminate when a battery is being charged and should turn off
once fully-charged.

Addressable WS2812 LED

The RGB LED uses the WS2812, which is connected to pin 44 which can be used for any purpose.

UF2 Bootloader
The RedBoard Turbo is now easier than ever to program, thanks the the UF2 bootloader. With this bootloader, the
RedBoard Turbo shows up on your computer as a USB storage device without having to install drivers!

From the Arduino IDE, you’ll still need to select the correct port on your machine, but you can just as easily use
another programming language such as CircuitPython or MakeCode, which will be available in the near future.

What is UF2?

UF2 stands for USB Flashing Format, which was developed by Microsoft for PXT (now known as MakeCode) for
flashing microcontrollers over the Mass Storage Class (MSC), just like a removable flash drive. The file format is
unique, so unfortunately, you cannot simply drag and drop a compiled binary or hex file onto the Turbo. Instead,
the format of the file has extra information to tell the processor where the data goes, in addition to the data itself.

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/1/LED_Highlight.jpg
https://cdn.sparkfun.com/datasheets/Components/General%20IC/33244_SPCN.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/1/LED_Highlight_1_.jpg

For Arduino users, the UF2 bootloader is BOSSA compatible, which the Arduino IDE expects on ATSAMD
boards. For more information about UF2, you can read more from the MakeCode blog, as well as the UF2 file
format specifiation.

Setting Up Arduino
While the SAMD21 alone is powerful enough, what truly makes it special is its growing support in the Arduino IDE.
With just a couple click’s, copies, and pastes, you can add ARM Cortex-M0+-support to your Arduino IDE. This
page will list every step required for getting RedBoard Turbo support into your Arduino IDE.

Update Arduino! This setup requires at least Arduino version 1.6.4 or later. We've tested it on 1.6.5 and the
latest version – 1.8.8.

If you're running an older version of Arduino, consider visiting arduino.cc to get the latest, greatest release.

Install Arduino SAMD Board Add-Ons

First, you’ll need to install a variety of tools, including low-level ARM Cortex libraries full of generic code, arm-gcc
to compile your code, and bossa to upload over the bootloader. These tools come packaged along with Arduino’s
SAMD board definitions for the Arduino Zero.

To install the Arduino SAMD board definitions, navigate to your board manager (Tools > Board > Boards
Manager…), then find an entry for Arduino SAMD Boards (32-bits ARM Cortex-M0+). Select it, and install the
latest version (recently updated to v1.6.19).

Downloading and installing the tools may take a couple minutes – arm-gcc in particular will take the longest, it’s
about 250MB unpacked.

Once installed, Arduino-blue “Installed” text should appear next to the SAMD boards list entry.

Install SparkFun Board Add-On

Now that your ARM tools are installed, one last bit of setup is required to add support for the SparkFun SAMD
boards. First, open your Arduino preferences (File > Preferences). Then find the Additional Board Manager
URLs text box, and paste the below link in:

https://raw.githubusercontent.com/sparkfun/Arduino_Boards/master/IDE_Board_Manager/package_spark
fun_index.json

https://makecode.com/blog/one-chip-to-flash-them-all
https://github.com/Microsoft/uf2
https://www.arduino.cc/en/Main/Software
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
https://launchpad.net/gcc-arm-embedded
http://www.shumatech.com/web/products/bossa
https://cdn.sparkfun.com/assets/learn_tutorials/4/5/4/arduino-arduino-board-install.png

Then hit “OK”, and travel back to the Board Manager menu. You should (but probably won’t) be able to find a new
entry for SparkFun SAMD Boards. If you don’t see it, close the board manager and open it again. ¯\(ツ)/¯.

This installation should be much faster; you’ve already done the heavy lifting in the previous section.

Select the Board and Serial Port

Once the board is installed, you should see a new entry in your Tools > Board list. Select your SparkFun
RedBoard Turbo.

Finally, select your Turbo’s port. Navigate back up to the Tool > Port menu. The port menu may magically know
which of your ports (if you have more than one) is the RedBoard Turbo board. On a Windows machine, the serial
port should come in the form of “COM#”. On a Mac or Linux machine, the port will look like
“/dev/cu.usbmodem####”.

Once you find it, select it!

Example: Blink

https://cdn.sparkfun.com/assets/learn_tutorials/4/5/4/arduino-board-add.png
https://cdn.sparkfun.com/assets/learn_tutorials/4/5/4/sparkfun-arduino-board-install.png
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/1/Board_Selection.png
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/1/Port_Selection.png

As with any development board, if you can blink an LED, you’re well on your way to controlling the rest of the
world. Since the RedBoard Turbo has 3 user-controllable LEDs, let’s blink them all!

The RX and TX LEDs are on pins 25 and 26, respectively, a couple pre-defined macros (PIN_LED_RXL and
PIN_LED_TXL) can be used to access those pins, just in case you forget the numbers.

Here’s a quick example sketch to blink the LEDs and make sure your environment is properly set up. Copy and
paste from below, and upload!

const int BLUE_LED = 13; // Blue "stat" LED on pin 13
const int RX_LED = PIN_LED_RXL; // RX LED on pin 25, we use the predefined PIN_LED_RXL to make s
ure
const int TX_LED = PIN_LED_TXL; // TX LED on pin 26, we use the predefined PIN_LED_TXL to make s
ure

bool ledState = LOW;

void setup()
{
 pinMode(BLUE_LED, OUTPUT);
 pinMode(RX_LED, OUTPUT);

 pinMode(TX_LED, OUTPUT);
 digitalWrite(RX_LED, HIGH);
 digitalWrite(TX_LED, HIGH);
 digitalWrite(BLUE_LED, LOW);
}

void loop()
{
 digitalWrite(RX_LED, LOW); // RX LED on
 delay(333);
 digitalWrite(RX_LED, HIGH); // RX LED off
 digitalWrite(TX_LED, LOW); // TX LED on
 delay(333);
 digitalWrite(TX_LED, HIGH); // TX LED off
 digitalWrite(BLUE_LED, HIGH); // Blue LED on
 delay(333);
 digitalWrite(BLUE_LED, LOW); // Blue LED off
}

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/1/RedBoard_Turbo_Hookup_Guide-02.jpg

After hitting the “Upload” button, wait a handful of seconds while the code compiles and sends. While the code
uploads, you should see the blue LED flicker. Once you’ve verified that the IDE is all set up, you can start
exploring the world of the ATSAMD21!

Example: Serial Ports
One of the SAMD21’s most exciting features is SERCOM – its multiple, configurable serial ports. The Arduino IDE
equips the SAMD21 with two hardware serial ports, by default, plus a third “USB serial port” for communicating
between the serial monitor.

Each of these serial ports has a unique Serial object which you’ll refer to in code:

Serial Object Serial Port RX Pin TX Pin

SerialUSB USB Serial (Serial Monitor)

Serial1 Hardware Serial Port 1 0 1

There are a couple critical things to notice here. First of all, if you’re trying to use the Serial Monitor to debug, you’ll
need to use SerialUSB.begin(<baud>) and SerialUSB.print() . (Thankfully find/replace exists for adjusting
example code.)

Here’s a quick example demonstrating the differences between Serial Monitor and Serial1 . It is designed to route
data from Serial1 to the Serial Monitor, and vice-versa.

https://learn.sparkfun.com/tutorials/terminal-basics/arduino-serial-monitor-windows-mac-linux

void setup()
{
 SerialUSB.begin(9600); // Initialize Serial Monitor USB
 Serial1.begin(9600); // Initialize hardware serial port, pins 0/1

 while (!SerialUSB) ; // Wait for Serial monitor to open

 // Send a welcome message to the serial monitor:
 SerialUSB.println("Send character(s) to relay it over Serial1");
}

void loop()
{
 if (SerialUSB.available()) // If data is sent to the monitor
 {
 String toSend = ""; // Create a new string
 while (SerialUSB.available()) // While data is available
 {
 // Read from SerialUSB and add to the string:
 toSend += (char)SerialUSB.read();
 }
 // Print a message stating what we're sending:
 SerialUSB.println("Sending " + toSend + " to Serial1");

 // Send the assembled string out over the hardware
 // Serial1 port (TX pin 1).
 Serial1.print(toSend);
 }

 if (Serial1.available()) // If data is sent from device
 {
 String toSend = ""; // Create a new string
 while (Serial1.available()) // While data is available
 {
 // Read from hardware port and add to the string:
 toSend += (char)Serial1.read();
 }
 // Print a message stating what we've received:
 SerialUSB.println("Received " + toSend + " from Serial1");
 }
}

Then try typing something into the serial monitor. Even with nothing connected to the hardware serial port, you
should see what you typed echoed back at you.

You can further test this sketch out by connecting an FTDI Basic or any other serial device to the SAMD21’s pins 0
(RX) and 1 (TX). Data sent from the FTDI should end up in your Serial Monitor, and data sent to your Serial
Monitor will route over to the FTDI.

Example: Analog Input and Output
While it still has PWM-based “analog outputs”, the SAMD21 also features true analog output in the form of a
digital-to-analog converter (DAC). This module can produce an analog voltages between 0 and 3.3V. It can be
used to produce audio with more natural sound, or as a kind of “digital potentiometer” to control analog devices.

The DAC is only available on the Arduino pin A0, and is controlled using analogWrite(A0, <value>) . The DAC
can be set up to 10-bit resolution (making sure to call analogWriteResolution(10) in your setup), which means
values between 0 and 1023 will set the voltage to somewhere between 0 and 3.3V.

In addition to the DAC, the SAMD21’s ADC channels also stand apart from the ATmega328: they’re equipped with
up to 12-bit resolution. That means the analog input values can range from 0-4095, representing a voltage
between 0 and 3.3V. To use the ADC’s in 12-bit mode, make sure you call analogReadResolution(12) in your
setup.

Serial Plotting the DAC

The Serial Plotter in this example requires Arduino 1.6.6 or later. Visit arduino.cc to get the latest, greatest
version.

Here’s an example that demonstrates both the 10-bit DAC and the 12-bit ADC. To set the experiment up, connect
A0 to A1 – we’ll drive A0 with an analog voltage, then read it with A1. It’s the simplest circuit we’ve ever put in a
tutorial:

https://cdn.sparkfun.com/assets/learn_tutorials/4/5/4/serial-monitor-example.png
https://www.sparkfun.com/products/9873
https://www.arduino.cc/en/Reference/AnalogWriteResolution
https://www.arduino.cc/en/Reference/AnalogReadResolution
https://www.arduino.cc/en/Main/Software
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/1/RedBoard_Turbo_Hookup_Guide-01.jpg

Jumping a temporary connection between A0 (our DAC) and A1.

Then copy and paste the code below into your Arduino IDE, and upload!

// Connect A0 to A1, then open the Serial Plotter.

#define DAC_PIN A0 // Make code a bit more legible

float x = 0; // Value to take the sin of
float increment = 0.02; // Value to increment x by each time
int frequency = 440; // Frequency of sine wave

void setup()
{

 analogWriteResolution(10); // Set analog out resolution to max, 10-bits
 analogReadResolution(12); // Set analog input resolution to max, 12-bits

 SerialUSB.begin(9600);
}

void loop()
{
 // Generate a voltage value between 0 and 1023.
 // Let's scale a sin wave between those values:
 // Offset by 511.5, then multiply sin by 511.5.
 int dacVoltage = (int)(511.5 + 511.5 * sin(x));
 x += increment; // Increase value of x

 // Generate a voltage between 0 and 3.3V.
 // 0= 0V, 1023=3.3V, 512=1.65V, etc.
 analogWrite(DAC_PIN, dacVoltage);

 // Now read A1 (connected to A0), and convert that
 // 12-bit ADC value to a voltage between 0 and 3.3.
 float voltage = analogRead(A1) * 3.3 / 4096.0;
 SerialUSB.println(voltage); // Print the voltage.
 delay(1); // Delay 1ms
}

This sketch produces a sine wave output on A0, with values ranging from 0 to 3.3V. Then it uses A1 to read that
output into its 12-bit ADC, and convert it into a voltage between 0 and 3.3V.

You can, of course, open the serial monitor to view the voltage values stream by. But if the the sine wave is hard to
visualize through text, check out Arduino’s new Serial Plotter, by going to Tools > Serial Plotter.

https://cdn.sparkfun.com/assets/learn_tutorials/4/5/4/serial-plotter-open.png

And take in the majesty of that sine wave.

Example: Addressable RGB LED

Heads up! Since the addressable WS2812 LED is attached to pin 44, we will be using the NeoPixel library.
The FastLED will not be able to work at that high of an I/O number for the SAMD21

In this last example, we’ll take a look at how to use the RGB LED on the RedBoard Turbo. The RGB LED comes in
the form of a WS2812, which could be great as a status LED or for debugging if you don’t want or need to use
serial terminal. In the example below, we’ll test the functionality of the LED by using the rainbow fade code below.
To use this code, you will need to install the NeoPixel library. You can obtain these libraries through the Arduino
Library Manager. Search for NeoPixel and you should be able to install the latest version. If you prefer
downloading the libraries manually you can grab them from the GitHub repository:

DOWNLOAD NEOPIXEL LIBRARY (ZIP)

Once the library has been installed, copy and paste the following code into your Arduino IDE.

https://cdn.sparkfun.com/assets/learn_tutorials/4/5/4/serial-plotter.png
https://github.com/adafruit/Adafruit_NeoPixel
https://github.com/adafruit/Adafruit_NeoPixel
https://github.com/adafruit/Adafruit_NeoPixel/archive/master.zip

#include <Adafruit_NeoPixel.h>
#define LEDPIN RGB_LED // connect the Data from the strip to this pin on the Arduino
#define NUMBER_PIEXELS 1 // the number of pixels in your LED strip
Adafruit_NeoPixel strip = Adafruit_NeoPixel(NUMBER_PIEXELS, LEDPIN, NEO_GRB + NEO_KHZ800);

int wait = 10; // how long we wait on each color (milliseconds)

void setup() {
 strip.begin();
}

void loop() {

 for (int color=0; color<255; color++) {
 for (int i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, Wheel(color));
 }
 strip.show();
 delay(wait);
 }
}

// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
 WheelPos = 255 - WheelPos;
 if(WheelPos < 85) {
 return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
 } else if(WheelPos < 170) {
 WheelPos -= 85;
 return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
 } else {
 WheelPos -= 170;
 return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
 }
}

Once uploaded, you should see the LED changing colors. Notice in the code, the RGB LED’s pin is defined using
RGB_LED. You could also call it using LED4 or it’s pin number, 44 .

Troubleshooting

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/1/RedBoard_Turbo_Hookup_Guide-03.jpg

For troubleshooting tips, checkout the SAMD21 Troubleshooting guide here for common issues that you might run
into when using the SAMD21 with Arduino. The only exception is that the RedBoard Turbo does no require drivers
so tips for re-installing drivers will not apply.

SAMD21 MINI/DEV BREAKOUT HOOKUP GUIDE: TROUBLESHOOTING

Resources and Going Further
There is a wealth of information out there, whether you’re looking for datasheets, schematics, or design files.
Additional resources, here are a few links you might find handy:

SparkFun RedBoard Turbo Design Resources
GitHub Product Repository
Schematic (PDF)
Eagle (ZIP)
Graphical Datasheet
GitHub: Arduino Board Definitions

ATmel ATSAMD21 Resources
Atmel ATSAMD21G18A Product Page
ATSAMD21 Summary Datasheet
ATSAMD21 Full Datasheet

Arduino ATSAMD21 Resources
SAMD Arduino Core GitHub Repository

SFE Product Showcase

It’s a brave new world out there – Arduinos and ARMs working together! What are you going to create with your
powerful, new RedBoard Turbo? Looking for some inspiration, check out these tutorials!

Arduino Shields
All things Arduino Shields. What they are and how to
assemble them.

Using GitHub to Share with SparkFun
A simple step-by-step tutorial to help you download
files from SparkFun's GitHub site, make changes, and
share the changes with SparkFun.

Connecting Arduino to Processing Data Types in Arduino

https://learn.sparkfun.com/tutorials/samd21-minidev-breakout-hookup-guide/troubleshooting
https://learn.sparkfun.com/tutorials/samd21-minidev-breakout-hookup-guide/troubleshooting
https://github.com/sparkfun/RedBoard_Turbo
https://cdn.sparkfun.com/assets/6/5/4/5/0/RedBoard_Turbo.pdf
https://cdn.sparkfun.com/assets/a/8/f/1/9/RedBoard_Turbo.zip
https://github.com/sparkfun/RedBoard_Turbo/blob/master/Documentation/GraphicalDatasheet-SamD21TurboDev.pdf
https://github.com/sparkfun/Arduino_Boards
http://www.atmel.com/devices/ATSAMD21G18.aspx
http://www.atmel.com/Images/Atmel-42181-SAM-D21_Summary.pdf
https://cdn.sparkfun.com/assets/4/c/9/e/f/SAMD21-Family-DataSheet-DS40001882D.pdf
https://github.com/arduino/ArduinoCore-samd
https://youtu.be/ahuEUC8uQ2k
https://learn.sparkfun.com/tutorials/arduino-shields
https://learn.sparkfun.com/tutorials/using-github-to-share-with-sparkfun
https://learn.sparkfun.com/tutorials/connecting-arduino-to-processing
https://learn.sparkfun.com/tutorials/data-types-in-arduino

Send serial data from Arduino to Processing and back -
even at the same time!

Learn about the common data types and what they
signify in the Arduino programming environment.

