# NCP1034 Buck Converter Evaluation Board User's Manual



ON Semiconductor®

www.onsemi.com

#### **EVAL BOARD USER'S MANUAL**

**Table 1. GENERAL PARAMETERS** 

| Device  | Input Voltage | Output Voltage | Output Current | Voltage Ripple | Topology | I/O Isolation |
|---------|---------------|----------------|----------------|----------------|----------|---------------|
| NCP1034 | 48 V ±20%     | 5 V            | 5 A            | < 30 mV        | Buck     | None          |

#### **Description**

This evaluation board user's manual describes high voltage, high power and high efficiency DC/DC buck converter featuring the NCP1034.

The NCP1034 is voltage mode PWM controller for a high voltage synchronous buck. The controller drives two external N-MOSFETs with programmable frequency up to 500 kHz for wide applications range. The IC is able to be synchronized by external signal or is able to synchronize other ICs that simplify design of system level filter. The output voltage can be set as low as 1.25 V. Besides system and drivers UVLO there is an external UVLO that can be set to user value. Over current protection uses low side MOSFET R<sub>DSON</sub> as sensing resistor, which has no impact on efficiency. Current limit protection uses a hiccup mode. These protections provide application additional security level.

#### **Key Features**

- High Input Voltage
- High Operation Frequency
- High Efficiency
- Low Output Voltage Ripple
- Ceramic Capacitors Only
- Over-current Protection
- Under-voltage Protection
- Start to Pre-biased Output
- Small Size

# **Connection Diagram**

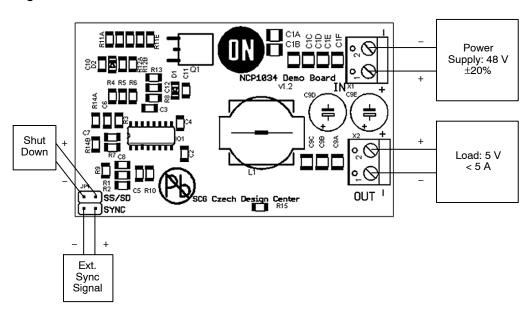



Figure 1. Connection Diagram

#### **Schematic**

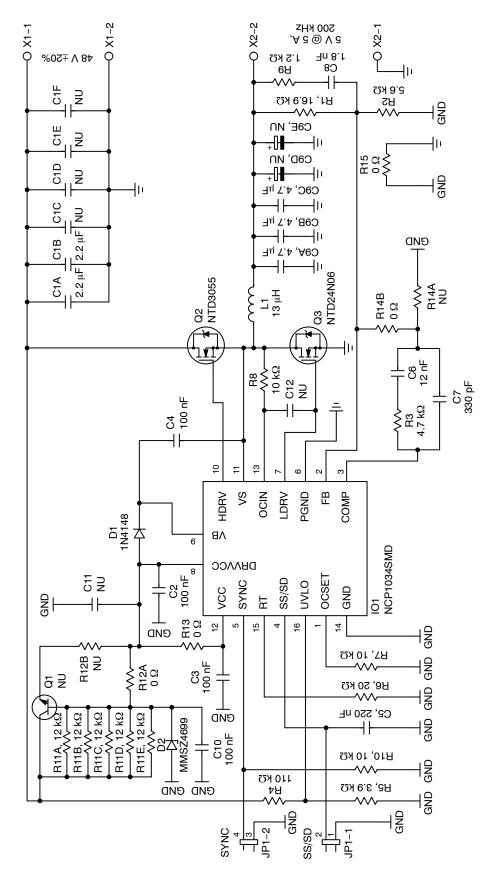



Figure 2. Schematic of the NCP1034 Demo Board

The demo board was designed as board with many options. There is linear regulator for powering the IC only with Zener diode or with high voltage transistor (R12A and R12B selected one of these regulators), compensation circuit of second or third type (R14A and R14B), ceramic or electrolytic output capacitors (C9A–C9E) and various input capacity (C1A–C1F). For additional filtering there are R13 and C11 which is not currently used. There are two headers pins for easy connection to external synchronization pulse source or to direct connection to the other NCP1034 demo board and the SS/SD pin that can be used to shut down the controller by connecting it to the ground.

#### **Circuit Layout**

Circuit is designed on two layer FR4 board with 72 µm copper cladding. Except connectors all components are

surface mounted types and almost all of them are on the top layer. On the bottom side there are power MOSFETs because it can be easy put on cooler (if demo board is used on prescribed operations conditions and at room temperature it is not needed).

Some components must be placed very carefully. Blocking capacitors C2, C3 and bootstrap capacitor C4 have to be placed close to the IC. Low side MOSFET's source have to be connected to the IC's power ground with minimum resistance and inductance of connection so two layers connection between them is needed. Feedback and compensation network should be near the IC to minimize noise on them. Using signal and power ground connected in one point near the output connector improves load regulation. Inductor and output capacitors are placed close to the MOSFETs and output connector.

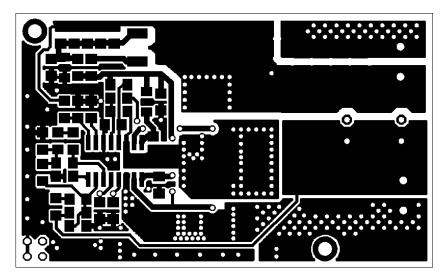



Figure 3. Top Layer

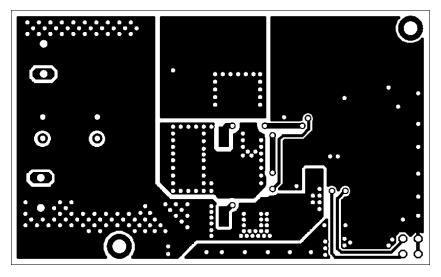



Figure 4. Bottom Layer

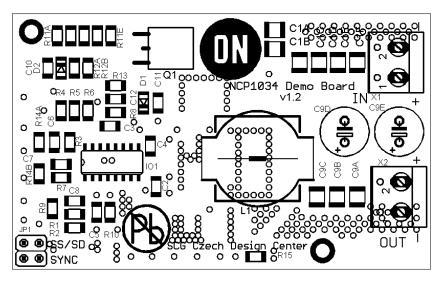



Figure 5. Top Side Components

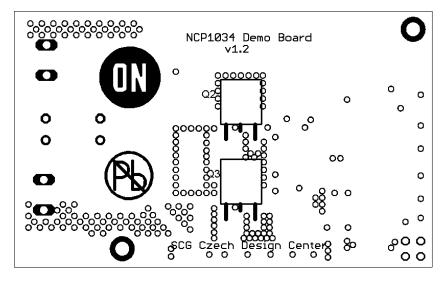



Figure 6. Bottom Side Components

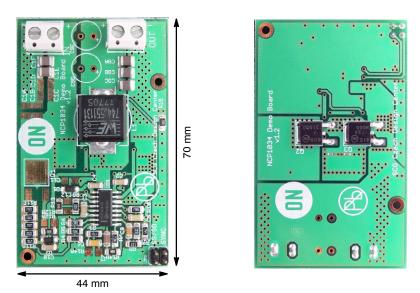



Figure 7. Demo Board Photos

#### Measurement

**Table 2. OUTPUT PARAMETERS** 

| Characteristic                                                                               | Тур            | Unit                |
|----------------------------------------------------------------------------------------------|----------------|---------------------|
| Output Voltage                                                                               | 5.02           | V                   |
| Maximum Output Current                                                                       | 5              | A                   |
| Oscillator Frequency                                                                         | 200            | kHz                 |
| Output Voltage Ripple I <sub>OUT</sub> = 0.1 A I <sub>OUT</sub> = 5 A                        | 16.5<br>20.5   | mV <sub>pk-pk</sub> |
| Load Regulation<br>I <sub>OUT</sub> = 0-5 A, V <sub>IN</sub> = 48 A                          | -0.34          | mV/A                |
| Line Regulation $V_{IN} = 38-58 \text{ A}$ $I_{OUT} = 0.1 \text{ A}$ $I_{OUT} = 5 \text{ A}$ | 0.004<br>0.011 | %                   |

# Start Up Sequence

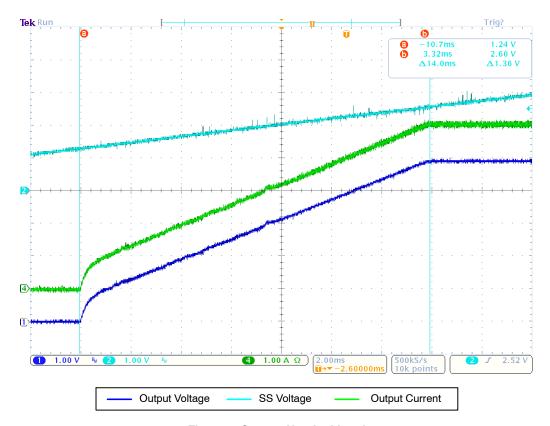



Figure 8. Start to Nominal Load

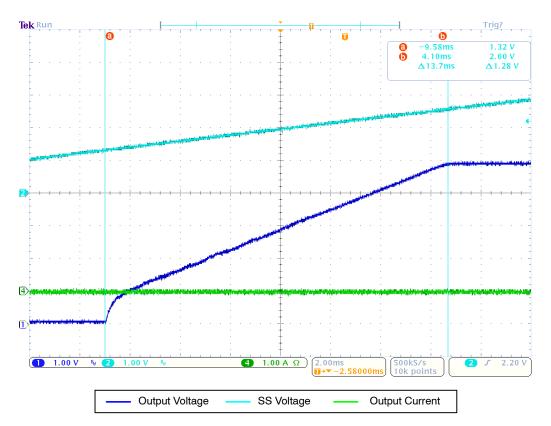



Figure 9. Start to Light Load

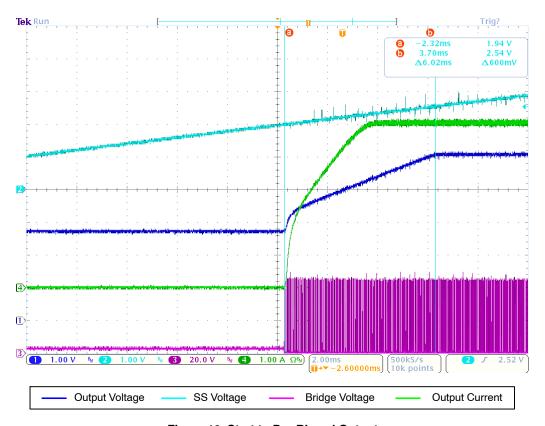



Figure 10. Start to Pre-Biased Output

#### **Over-Current Protection**

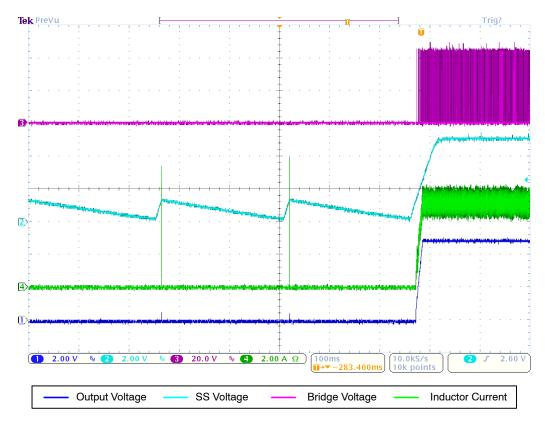



Figure 11. Shorted Output and Release

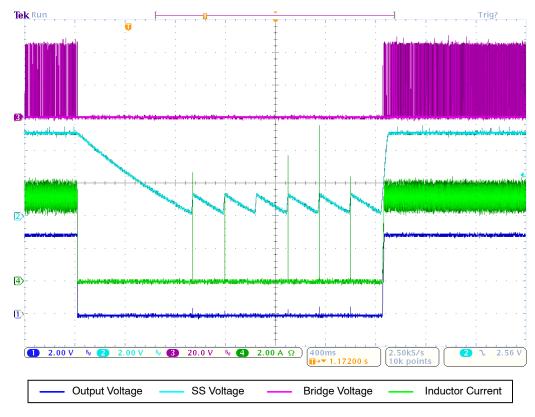



Figure 12. Overload from Nominal Load and Released

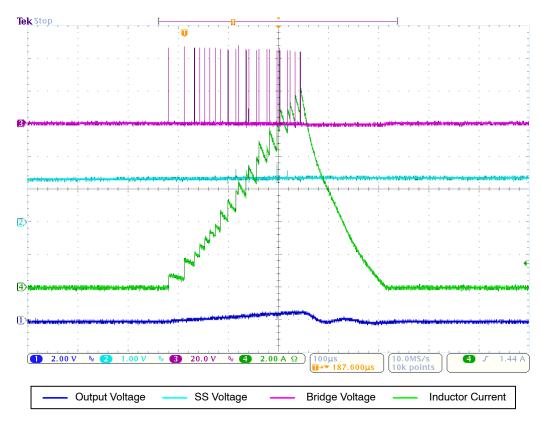



Figure 13. Hicup Pulse Detail

#### Shutdown

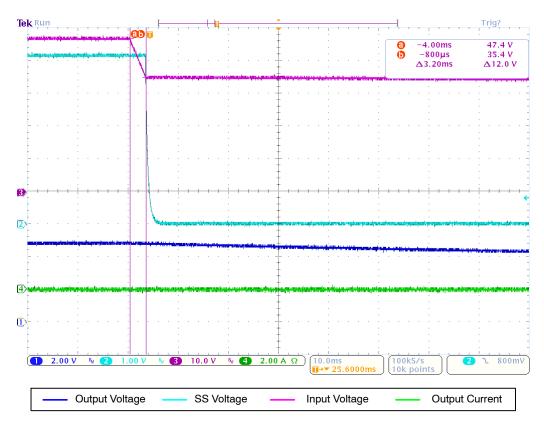



Figure 14. Switch Off Input Voltage to Light Load

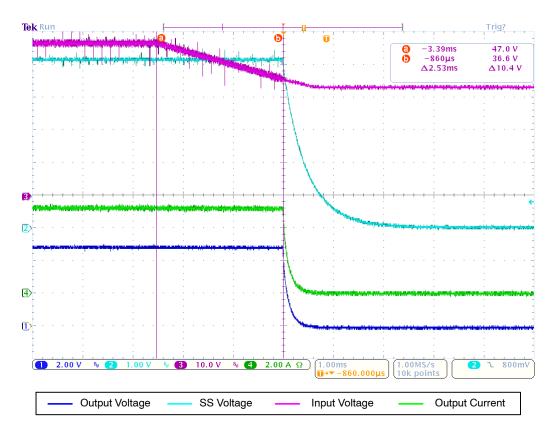



Figure 15. Switch Off Input Voltage to Nominal Load

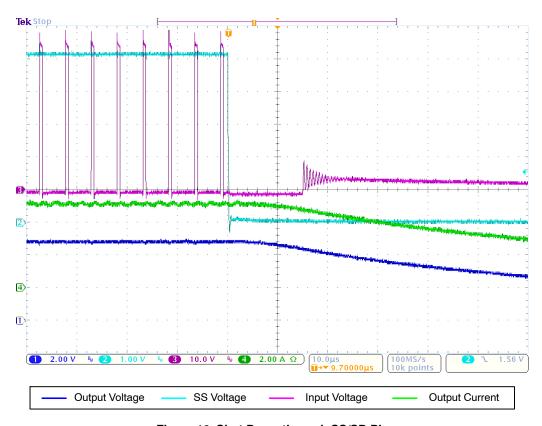



Figure 16. Shut Down through SS/SD Pin

#### **Step Response and Output Voltage Ripple**

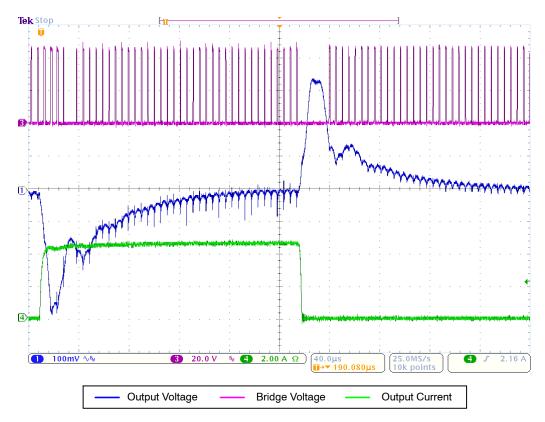



Figure 17. Load Step Response

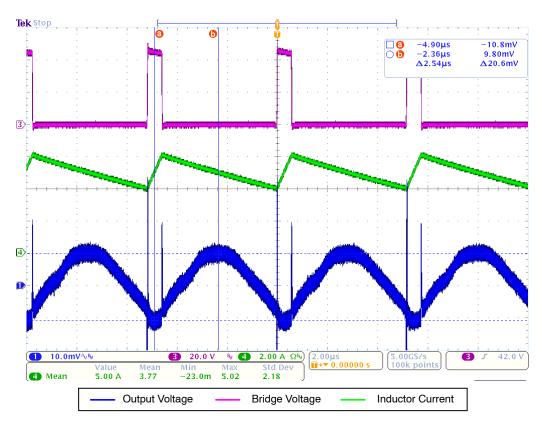



Figure 18. Output Voltage Ripple I<sub>OUT</sub> = 5 A

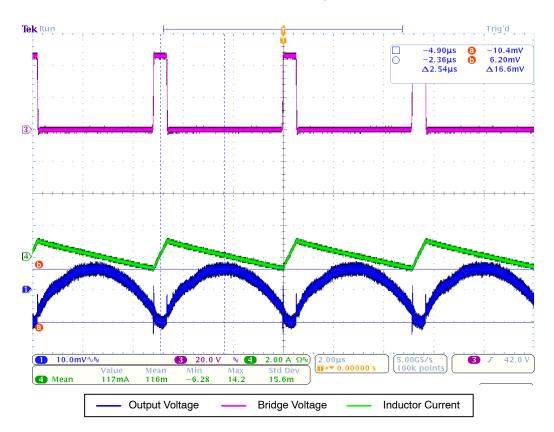



Figure 19. Output Voltage Ripple I<sub>OUT</sub> = 0.1 A

#### **Synchronization**

Two independent boards connected (or not) via Sync pin and ground.

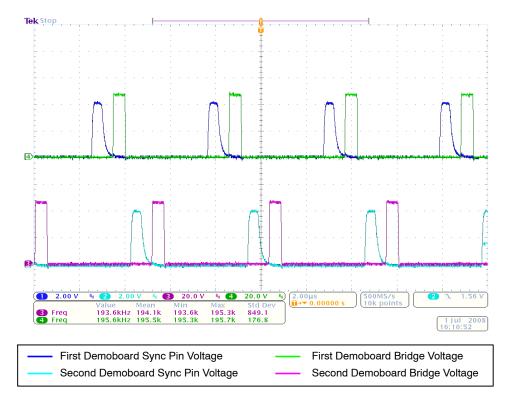



Figure 20. No Synchronization

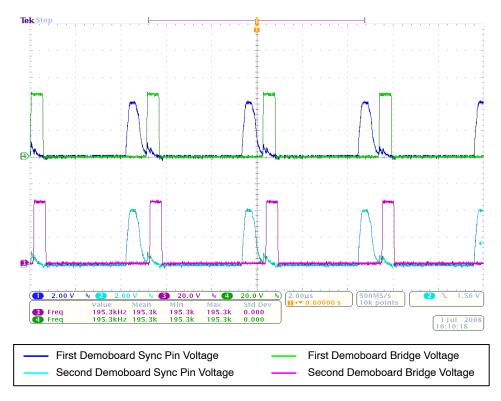



Figure 21. Synchronized - Sync Pins Connected

# Line and Load Regulation

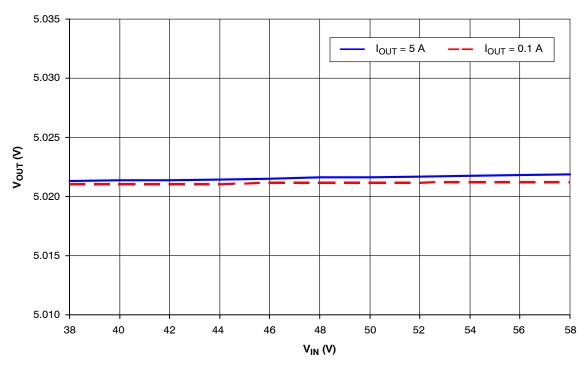



Figure 22. Line Regulation

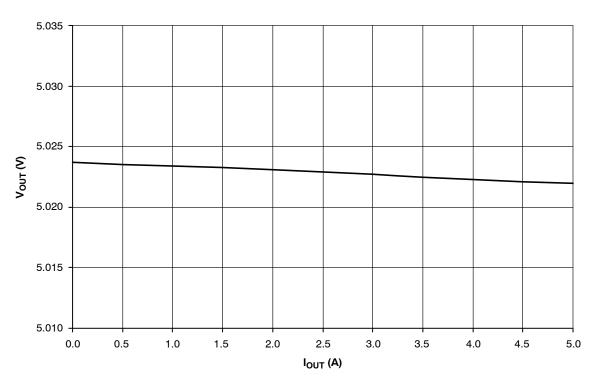



Figure 23. Load Regulation  $V_{IN}$  = 48 V

#### **Efficiency**

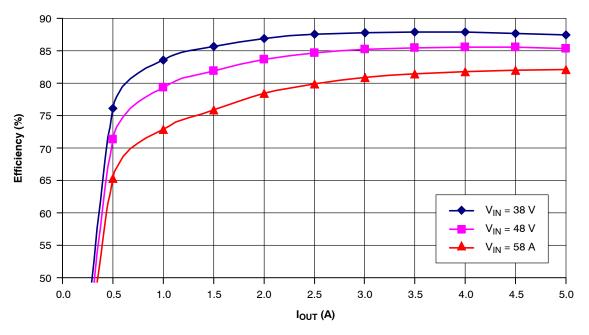



Figure 24. Efficiency

| U | r | 1 | I | t |
|---|---|---|---|---|
|   |   |   |   |   |

| Pind, winding      | 0.32  | W |
|--------------------|-------|---|
| Pcore              | 1.20  | W |
| Pstatic, IC        | 0.03  | W |
| Phigh_gate         | 0.02  | W |
| Plow_gate          | 0.06  | W |
| Pdynam, IC         | 0.07  | W |
| Phigh_switch, cond | 0.32  | W |
| Plow_switch, cond  | 0.72  | W |
| Phigh_switch, sw   | 0.21  | W |
| Plow_switch, sw    | 0.00  | W |
| Plow_switch, body  | 0.92  | W |
| Plow_dead_time     | 0.11  | W |
| P_switch_capacit   | 0.07  | W |
| Ppreregulator      | 0.31  | W |
| Ploss, total       | 4.37  | W |
| Pout               | 25.00 | W |
| Pin                | 29.37 | W |
| Effectivity        | 85    | % |

- ← Inductor Winding Loss
- ← Core Loss in Inductor. Available in Inductor Data Sheet
- ← Static Power Loss of the IC
- ← Power Loss of High Power Switch Gate Charge
- $\leftarrow$  Power Loss of Low Power Switch Gate Charge
- ← Dynamic Power Loss of the IC
- $\leftarrow \quad \text{Conduction Loss of High Power Switcher}$
- $\leftarrow$  Conduction Loss of Low Power Switcher
- ← Switching Loss of High Power Switcher
- $\leftarrow \quad \text{Switching Loss of Low Power Switcher}$
- ← Body Diode Recovery Charge Loss
- ← Body Diode Conduction Loss
- ← Switchers Capacitance Loss
- $\leftarrow\quad$  Power Loss of Linear Preregulator  $V_{IN} \rightarrow V_{CC}$
- $\leftarrow \quad \text{Total Loss}$
- $\leftarrow \quad \text{Output Power}$
- ← Input Power = Output Power + Total Loss
- ← Efficiency of Converter (Est: ±5%)

Figure 25. Power Loss Review from Spreadsheet

#### **Bode Plot**

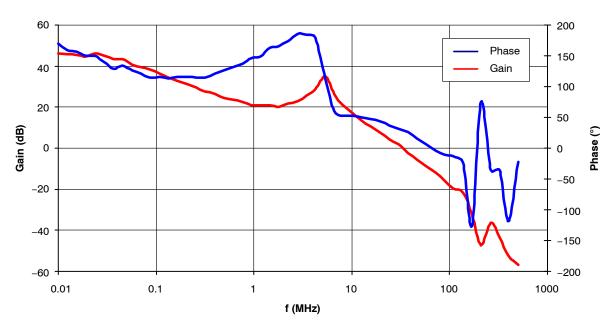



Figure 26. Bode Plot  $V_{IN}$  = 48 V,  $I_{OUT}$  = 5 A

Table 3. BILL OF MATERIALS FOR THE NCP1034 DEMOBOARD (Note 1)

| Parts                              | Qty | Description                                        | Value        | Tolerance | Footprint   | Manufacturer     | Manufacturer<br>Part Number | Substitution<br>Allowed |  |
|------------------------------------|-----|----------------------------------------------------|--------------|-----------|-------------|------------------|-----------------------------|-------------------------|--|
| R9                                 | 1   | Resistor SMD                                       | 1.2 kΩ       | 1%        | 1206        | Vishay           | CRCW12061K20FKEA            | Yes<br>Yes              |  |
| R5                                 | 1   | Resistor SMD                                       | 3.9 kΩ       | 1%        | 1206        | Vishay           | CRCW12063K90FKEA            |                         |  |
| R3                                 | 1   | Resistor SMD                                       | 4.7 kΩ       | 1%        | 1206        | Vishay           | CRCW12064K70FKEA            | Yes                     |  |
| R2                                 | 1   | Resistor SMD                                       | 5.6 kΩ       | 1%        | 1206        | Vishay           | CRCW12065K60FKEA            | Yes                     |  |
| R1                                 | 1   | Resistor SMD                                       | 16.9 kΩ      | 1%        | 1206        | Vishay           | CRCW120616K9FKEA            | Yes                     |  |
| R6                                 | 1   | Resistor SMD                                       | 20 kΩ        | 1%        | 1206        | Vishay           | CRCW120620K0FKEA            | Yes                     |  |
| R11A, R11B,<br>R11C, R11D,<br>R11E | 5   | Resistor SMD                                       | 12 kΩ        | 1%        | 1206        | Vishay           | CRCW120612K0FKEA            | Yes                     |  |
| R4                                 | 1   | Resistor SMD                                       | 110 kΩ       | 1%        | 1206        | Vishay           | CRCW1206110KFKEA            | Yes                     |  |
| R7, R8, R10                        | 3   | Resistor SMD                                       | 10 kΩ        | 1%        | 1206        | Vishay           | CRCW120610K0FKEA            | Yes                     |  |
| R12A, R13,<br>R14B, R15            | 4   | Resistor SMD                                       | 0 Ω          | 1%        | 1206        | Vishay           | CRCW120600R0FKEA            | Yes                     |  |
| R12B, R14A                         | 2   | Resistor SMD                                       | NU           | -         | 1206        | -                | -                           | -                       |  |
| C8                                 | 1   | Ceramic Capacitor SMD                              | 1.8 nF       | 10%       | 1206        | Kemet            | C1206C182K5RAC-TU           | Yes                     |  |
| C6                                 | 1   | Ceramic Capacitor SMD                              | 12 nF        | 10%       | 1206        | Kemet            | C1206C123K5RACTU            | Yes                     |  |
| C5                                 | 1   | Ceramic Capacitor SMD                              | 220 nF       | 10%       | 1206        | Kemet            | C1206C224K5RACTU            | Yes                     |  |
| C7                                 | 1   | Ceramic Capacitor SMD                              | 330 pF       | 10%       | 1206        | Yageo            | CC1206KRX7R9BB331           | Yes                     |  |
| C11, C12                           | 2   | Ceramic Capacitor SMD                              | NU           | -         | 1206        | -                | -                           | Yes                     |  |
| C2, C3, C4,<br>C10                 | 4   | Ceramic Capacitor SMD                              | 100 nF       | 10%       | 1206        | Kemet            | C1206F104K1RACTU            | Yes                     |  |
| C9A, C9B,<br>C9C                   | 3   | Ceramic Capacitor SMD                              | 47 μF/6.3 V  | 20%       | 1206        | Kemet            | C1210C476M9PAC7800          | Yes                     |  |
| C1A, C1B                           | 2   | Ceramic Capacitor SMD                              | 2.2 μF/100 V | 10%       | 1206        | Murata           | GRM32ER72A225KA35L          | Yes                     |  |
| C1C, C1D,<br>C1E, C1F              | 4   | Ceramic Capacitor SMD                              | NU           | -         | 1206        | -                | -                           | Yes                     |  |
| C9D, C9E                           | 2   | Electrolytic Capacitor                             | NU           | -         | 8x15        | -                | 1                           | Yes                     |  |
| L1                                 | 1   | Inductor SMD                                       | 13 μΗ        | 20%       | 13.2x12.8   | Wurth            | 7443551131                  | Yes                     |  |
| D1                                 | 1   | Switching Diode                                    | MMSD4148     | -         | SOD-123     | ON Semiconductor | MMSD4148T1G                 | Yes                     |  |
| D2                                 | 1   | Zener Diode 500 mW<br>12 V                         | MMSZ4699     | -         | SOD1-23     | ON Semiconductor | MMSZ4699T1G                 | Yes                     |  |
| Q1                                 | 1   | NPN Transistor                                     | NU           | -         | DPAK        | -                | _                           | Yes                     |  |
| Q2                                 | 1   | Power N-MOSFET                                     | NTD3055      | -         | DPAK        | ON Semiconductor | NTD3055-150G                | Yes                     |  |
| Q3                                 | 1   | Power N-MOSFET                                     | NTD24N06     | -         | DPAK        | ON Semiconductor | NTD24N06T4G                 | Yes                     |  |
| IO1                                | 1   | High Voltage<br>Synchronous PWM Buck<br>Controller | NCP1034      | -         | SOIC-16     | ON Semiconductor | NCP1034DR2G                 | No                      |  |
| X1                                 | 1   | Inlet Terminal Block                               | PCB 2 WAY    | -         | Pitch: 5 mm | Lumberg          | KRM 02                      | Yes                     |  |
| X2                                 | 1   | Outlet Terminal Block                              | PCB 2 WAY    | -         | Pitch: 5 mm | Lumberg          | KRM 02                      | Yes                     |  |

<sup>1.</sup> All parts are Pb-Free

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is as such not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and should as such only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

The board is delivered "AS IS" and without warranty of any kind including, but not limited to, that the board is production—worthy, that the functions contained in the board will meet your requirements, or that the operation of the board will be uninterrupted or error free. ON Semiconductor expressly disclaims all warranties, express, implied or otherwise, including without limitation, warranties of fitness for a particular purpose and non-infringement of intellectual property rights.

ON Semiconductor reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by ON Semiconductor shall not constitute any representation or warranty by ON Semiconductor, and no additional obligations or liabilities shall arise from ON Semiconductor having provided such information or services.

The boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. Should you purchase or use the board for any such unintended or unauthorized application, you shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING — This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by ON Semiconductor to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

ON Semiconductor does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: ON Semiconductor shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if ON Semiconductor is advised of the possibility of such damages. In no event shall ON Semiconductor's aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any. For more information and documentation, please visit <a href="https://www.onsemi.com">www.onsemi.com</a>.

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

**TECHNICAL SUPPORT** 

North American Technical Support:

Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative