

150QBW4 2.25 Series

150W Quarter-Brick - Single Output DC-DC Converter - Wide Input - Isolated & Regulated

DC-DC Converter

150 Watt

- Wide Input voltage range (4:1)
- High efficiency up to 91%
- ♠ Short circuit protection (SCP)
- Input under-voltage, overcurrent, over-voltage, overtemperature protection
- ← Isolation: 2.25KVDC
- Operating temperature range: -40°C to +85°C
- Five-sided metal shielding package
- International standard pin-out: 1/4 brick

The 150QBW4_2.25 series offers 4:1 input voltage, efficiency up to 91%, 2250VDC isolation, Input under-voltage protection, output short circuit protection, over-current protection, over-voltage protection, over-temperature protection and EMI meets CISPR32/EN55032 CLASS A by adding module recommended circuit.

All models are widely applied in battery power supplies, industrial control, electricity, instruments, railway, communication and intelligence robot fields.

Camman anasiGastiana	
Common specifications	
Short circuit protection*:	Hiccup, continuous, automatic recovery
Cooling:	Natural or forced convection
Operation temperature range:	-40°C~+85°C
Storage temperature range:	-55°C ~+125°C
Over temperature protection:	+105°C TYP
Pin welding resistance temperature:	300°C MAX, 1.5mm from case for 10sec. 260°C MAX, Wave-soldering, 10sec.
Storage humidity range:	< 95%
Vibration:	IEC/EN61373 car body 1 B mold
Trim:	90%Vo MIN, 110%Vo MAX
Sense:	105%Vo MAX
Case material:	Plastic [UL94-V0] / aluminium
MTBF:	500,000 hours
Dimensions:	61.8*40.2*12.7 mm 62.0*56.0*14.6 mm (with base-plate) 61.8*40.2*27.7 mm (with heatsink)
Weight:	83g 103g (with base-plate) 114g (with heatsink)

Input specifications	5				
Item	Test condition	Min	Тур	Max	Units
Input current	full load/no load, nominal Vin		3435/ 100	3512/ 200	mA
Reflected ripple current	Nominal Vin		100		mA
Surge voltage	1sec. max.	-0.7		90	VDC
Start-up threshold voltage	100% load			18	VDC
Input under voltage protection		14	16		VDC
Input filter	Pi filter				
Hot plug	Unavailable				
Ctrl (the voltage of Ctrl pin is relative to input pin GND)	Module switch ONModule switch OFFInput current when switched OFF	TTL h Ctrl p	open circui igh level (i oin connec (0-1.2VDC) 2	3.5-12VDC) ted to GN)

Output specification	S				
Item	Test condition	Min	Тур	Max	Units
Output voltage accuracy			±1	±3	%
Line regulation			±0.2	±0.5	%
Load regulation			±0.5	±0.75	%
Transient recovery time	25% load step change		300	500	μs
Transient response deviation	25% load step change		±3	±5	%
Temperature coefficient				±0.03	%/°C
Ripple & Noise*	20MHz Bandwidth		150	250	mVp-p
Output over-voltage protection	Input voltage range	110	130	160	%Vo
Output over-current protection	Input voltage range	110	130	150	%lo
Switching frequency	PFM mode		250		KHz

^{*}Test ripple and noise by "parallel cable" method.

Isolation specification	ins				
Item	Test condition	Min	Тур	Max	Units
Isolation voltage*	Input-outputInput-caseOutput-case	2250 1500 500			VDC VDC VDC
Isolation resistance	Insulation voltage 500VDC	100			ΜΩ
Isolation capacitance	Input-output, 100KHz/0.1V		2200		pF

^{*} Tested for 1 minute and leak current less than 5mA

Example:

150QBW4_4812S2.25

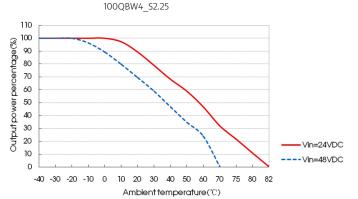
150= 150 Watt; QB= Quarter-Brick; W4= Wide input (4:1);

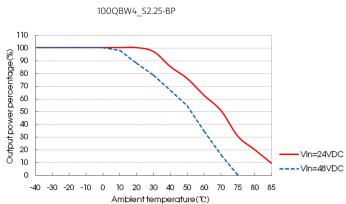
48= 18-75 Vin; 12= 12Vout; S= Single Output; 2.25= 2.25kVDC isolation

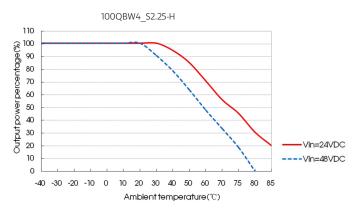
Note:

- Operation under minimum load will not damage the converter; However, they
 may not meet all specification listed, and that will reduce the life of product.
- All specifications measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.
- 3. In this datasheet, all the test methods of indications are based on corporate standards.

150QBW4 2.25 Series

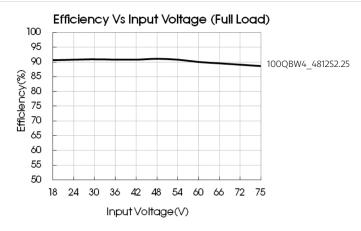

150W Quarter-Brick - Single Output DC-DC Converter - Wide Input - Isolated & Regulated

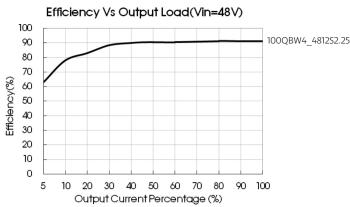

EMC sp	EMC specifications					
EMI	CE	CISPR32/EN55032	CLASS A (see EMC recommended circuit, fig. 2)			
EMI	RE	CISPR32/EN55032	CLASS A (see EMC recommended circuit, fig. 2)			
EMS	ESD	IEC/EN61000-4-2, EN50121-3-	2 Contact ±6KV/Air ±8KV	perf. Criteria B		
EMS	RS	IEC/EN61000-4-3, EN50121-3-	2 10V/m	perf. Criteria A		
EMS	EFT	IEC/EN61000-4-4, EN50121-3-	±2KV (see EMC recommended circuit, fig. 2)	perf. Criteria A		
EMS	Surge	EN50121-3-2	differential mode ±1KV, 1.2/50us, source impedance 42 Ω (see EMC recommended circuit, fig. 2)	perf. Criteria B		
EMS	CS	IEC/EN61000-4-6, EN50121-3-	.2 10 Vr.m.s	perf. Criteria A		


Part Number	Input Vo	oltage [V]	Output Voltage	Output Current	Effic	iency [%]	Capacitive load
	Nominal	Range	[VDC]	[A, max]	Min	Тур	[A, max]
150QBW4_4812S2.25	48	18-75	12	12.5	89	91	2000
150QBW4_4824S2.25	48	18-75	24	6.25	89	91	1000
150QBW4_4848S2.25	48	18-75	48	3.13	89	91	450

 $For a luminium\ base-plate\ add\ -BP\ at\ the\ end,\ f.ex.\ 150QBW4_xxyyS2.25-BP,\ for\ heatsink\ add\ -H\ at\ the\ end,\ f.ex.\ 150QBW4_xxyyS2.25-H.$

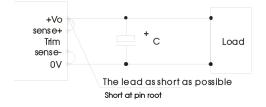
Temperature derating curves





Note: Temperature Derating Curves were tested at natural convection (20FLM).

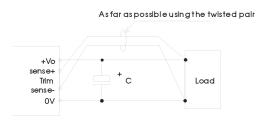
Efficiency



Sense of application and precautions

When not using remote sense

Notes

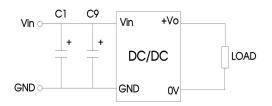

- When not using remote sense, make sure + Vo and Sense + are shorted, and that OV and Sense- are shorted as well;
- Keep the tracks between + Vo and Sense +, OV and Sense- as short
 as possible and close to the terminal. Avoid a looping track. If noise
 interferes the loop, the operation of the power module will become
 unstable.

When remote sense is used

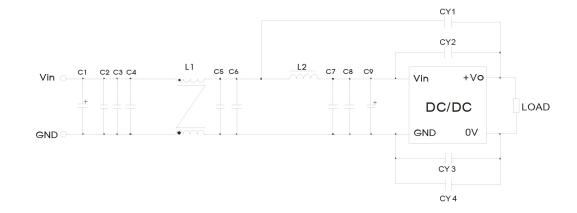
Notes:

- 1. Using remote sense with long wires may cause output voltage to become unstable. Consult us if long sensing wiring is necessary.
- 2. Sense tracks or wires should be as short as possible. If using wires, it should not use twisted-pair or shielded wires.
- 3. Please use wide PCB tracks or thick wires between the power supply module and the load, the line voltage drop should be kept less than 0.3V. Make sure the power supply module's output voltage remains within the specified range.
- 4. The impedance of wires may cause the output voltage oscillation or a greater ripple, please take adequate assessments before using.

Typical application


If not using Gaptec's recommended circuit, please ensure an $220\mu F$ electrolytic capacitors in parallel with the input, which used to suppress the surge voltage come from the input terminal. All the DC/DC converters of this series are tested according to the recommended circuit before delivery.

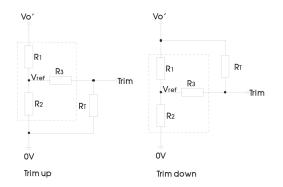
If it is required to further reduce input&output ripple, properly increase the input & output of additional capacitors Cin and Cout or select capacitors of low equivalent impedance, provided that the capacitance is no larger than the max. capacitive load of the product.



Vout (VDC)	Fuse	Cin	Cout
12	15A, slow blow	220μF	220μF
24	15A, slow blow	220μF	100μF
48	15A, slow blow	220μF	100μF

EMC solution recommended circuit

device number	Device parameter	Device function
C1	150µF electrolytic caoacitor	Meet puise group
С9	47µF electrolytic caoacitor	and surge


Device number	Device parameter	Device function
C1	150μF electrolytic capacitor	
C9	47μF electrolytic capacitor	
C2, C3, C4, C5, C6, C7, C8	2.2μF ceramic capacitor	Meet conducted emission and
L1	1.0mH common mode inductor	radiated emission
L2	1.5μH inductance	
CY1, CY2, CY3, CY4	1nF Y1 safety capacitor	

Reflected ripple current test circuit

Note:Lin(4.7 μ H) , Cin(220 μ F, ESR < 1.0 Ω at 100 KHz)

Trim application & trim resistance

Calculation formula of Trim resistance:

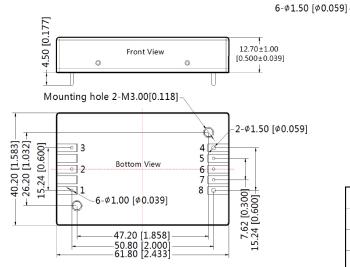
up:
$$R_T = \frac{aR_2}{R_2 - a} - R_3$$
 $a = \frac{Vref}{Vo' - Vref} R_1$

down:
$$R_T = \frac{\alpha R_T}{R_T - \alpha} - R_S$$
 $\alpha = \frac{Vo' - Vref}{Vref} R_S$

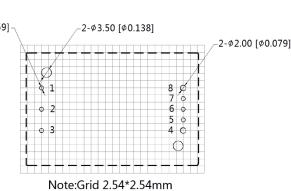
 R_{T} is Trim resistance ,a is a self-defined parameter, with no real meaning. Vo' for the actual needs of the up or down regulated voltage

Application circuit for TRIM (Part in broken line is the interior of models)

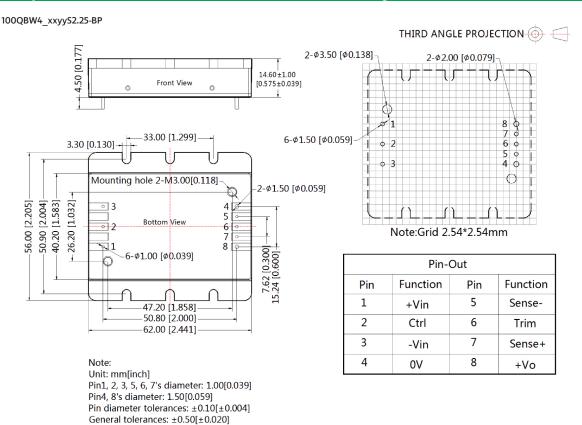
Vout(V)	R1(KΩ)	R2(KΩ)	R3(KΩ)	Vref(V)
12	11.000	2.87	15	2.5
24	24.872	2.87	15	2.5
48	53.017	2.913	15	2.5


When the Trim function with down regulated is used, If the RT resistor is too low or "Trim" is short with "+Vo", the output voltage Vo' would be lower than 0.9Vo, which may cause the product to be irreversibly damaged.

It is not allowed to connect modules output in parallel to enlarge the power.

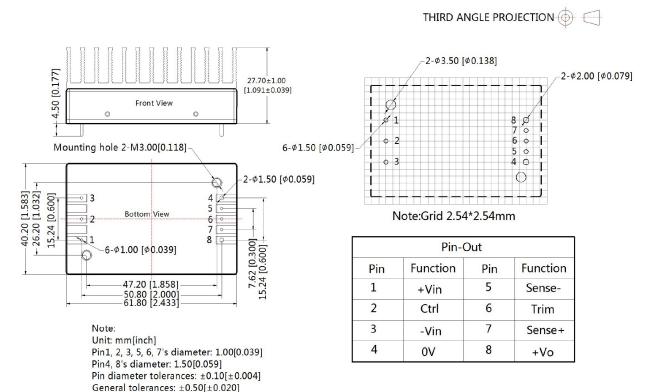

Mechanical dimensions and recommended layout

100QBW4_xxyyS2.25



Note:
Unit: mm[inch]
Pin1, 2, 3, 5, 6, 7's diameter: 1.00[0.039]
Pin4, 8's diameter: 1.50[0.059]
Pin diameter tolerances: ±0.10[±0.004]
General tolerances: ±0.50[±0.020]
Mounting hole screwing torque: Max 0.4 N·m

Pin-Out					
Pin	Function	Pin	Function		
1	+Vin	5	Sense-		
2	Ctrl	6	Trim		
3	-Vin	7	Sense+		
4	0V	8	+Vo		


Base plate dimensions and recommended layout

Base-plate dimensions and recommended layout

Mounting hole screwing torque: Max 0.4 N·m

100QBW4_xxyyS2.25-H

Mounting hole screwing torque: Max 0.4 N·m