

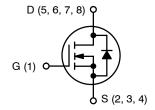
MOSFET - Power, Single N-Channel, TDFNW8 DUAL COOL® 150 V, 4.45 mΩ, 174 A NTMTSC4D3N15MC

Features

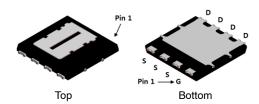
- Small Footprint (8x8 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Power Tools, Battery Operated Vacuums
- UAV/Drones, Material Handling
- BMS/Storage, Home Automation

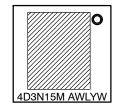

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Symbol	Parameter			Value	Unit
V _{DSS}	Drain-to-Source Voltage			150	V
V _{GS}	Gate-to-Source Voltage			±20	V
I _D	Continuous Drain Current $R_{\theta JC}$ (Note 2)	Steady State	T _C = 25°C	174	Α
P _D	Power Dissipation $R_{\theta JC}$ (Note 2)			293	W
I _D	Continuous Drain Current $R_{\theta JA}$ (Notes 1, 2)	Steady State	T _A = 25°C	22	A
P _D	Power Dissipation $R_{\theta JA}$ (Notes 1, 2)			5	W
I _{DM}	Pulsed Drain Current	T _A = 25°C	C, t _p = 10 μs	900	Α
T _J , T _{stg}	Operating Junction and Storage Temperature Range		-55 to +175	°C	
I _S	Source Current (Body Diode)			244	Α
E _{AS}	Single Pulse Drain-to-Source Avalanche Energy (I _L = 48.5 A _{pk} , L = 0.3 mH)			354	mJ
TL	Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
150 V	4.45 mΩ @ 10 V	174 A
150 V	5 mΩ @ 8 V	1747



N-CHANNEL MOSFET

TDFNW8 8.3x8.4, 2P PQFN88 CASE 507AS

MARKING DIAGRAM

4D3N15M = Specific Device Code

A = Assembly Location
WL = Wafer Lot Code
Y = Year Code
W = Work Week Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMTSC4D3N15MC	TDFNW8 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Symbol	Parameter	Max	Unit
$R_{ hetaJC}$	Junction-to-Case - Steady State (Note 2)	0.5	°C/W
$R_{ hetaJC}$	Junction-to-Top Source - Steady State (Note 2)	0.8	
$R_{ hetaJA}$	Junction-to-Ambient - Steady State (Note 2)	30	

Symbol	Parameter	Test Co	ondition	Min	Тур	Max	Unit
FF CHARACT	ERISTICS	•		•	•	•	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D =$	250 μΑ	150	-	_	٧
V _{(BR)DSS} / T _J	Drain-to-Source Breakdown Voltage Temperature Coefficient	I _D = 250 μA, ref to 25°C		-	49.84	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = 120 V	T _J = 25°C	-	-	1	μΑ
		V _{DS} = 120 V	T _J = 125°C	-	-	10	μΑ
I_{GSS}	Gate-to-Source Leakage Current	$V_{DS} = 0 \text{ V, } V_{GS}$	= ±20 V	-	-	±100	nA
N CHARACTE	ERISTICS (Note 3)						
V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D =$	= 521 μA	2.5	3.6	4.5	V
V _{GS(TH)} / T _J	Negative Threshold Temperature Coefficient	I _D = 250 μA, ref	to 25°C	-	-9.93	_	mV/°C
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V, I _D :	= 95 A	-	3.4	4.45	mΩ
		$V_{GS} = 8 \text{ V}, I_D =$	47 A	-	3.7	5	
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 95 A		-	177	_	S
R _G	Gate-Resistance	T _A = 25°C		-	1.1	_	Ω
HARGES & C	APACITANCES						•
C _{ISS}	Input Capacitance	$V_{GS} = 0 \text{ V, } f = 1 \text{ MHz,} $ $V_{DS} = 75 \text{ V}$		-	6514	_	pF
Coss	Output Capacitance			_	1750	_	
C _{RSS}	Reverse Transfer Capacitance			_	12.5	_	
Q _{G(TOT)}	Total Gate Charge	V _{GS} = 10 V, V _{DS} = 75 V, I _D = 95 A		_	79	_	nC
Q _{G(TH)}	Threshold Gate Charge			_	21	_	
Q _{GS}	Gate-to-Source Charge			-	36	_	
Q _{GD}	Gate-to-Drain Charge			_	11	_	
V _{GP}	Plateau Voltage	1		_	5.8	_	1
Q _{OSS}	Output Charge	V _{GS} = 0 V, V _{DS} = 75 V		-	225	_	nC
WITCHING CH	HARACTERISTICS, V _{GS} = 10 V (Note 3)	•					
t _{d(ON)}	Turn – On Delay Time	V _{GS} = 10 V, V _D	_S =75 V,	-	38	_	ns
t _r	Rise Time	I _D = 95 A, R _G =	6 Ω	_	11	_	1
t _{d(OFF)}	Turn – Off Delay Time			_	48	_	7
t _f	Fall Time			_	8	_	1
	E DIODE CHARACTERISTICS	•					
V _{SD}	Forward Diode Voltage	V _{GS} = 0 V,	T _J = 25°C	_	0.86	1.2	V
_		I _S = 95 A T _J = 125°C		-	0.80	_	1
t _{RR}	Reverse Recovery Time	V _{GS} = 0 V, dI _S /dt = 100 A/μs, I _S = 95 A		-	85	_	ns
t _a	Charge Time			_	58	_	1
t _b	Discharge Time	1		_	38	_	1
Q _{RR}	Reverse Recovery Charge	1		_	194	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

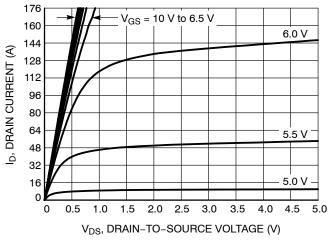


Figure 1. On-Region Characteristics

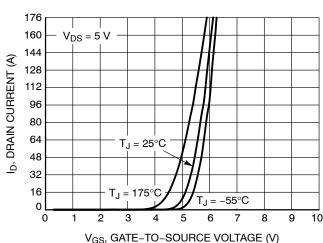


Figure 2. Transfer Characteristics

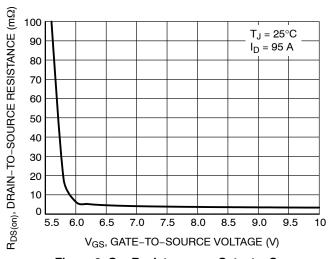


Figure 3. On-Resistance vs. Gate-to-Source Voltage

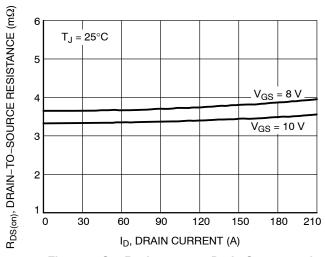


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

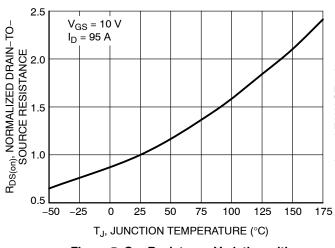


Figure 5. On–Resistance Variation with Temperature

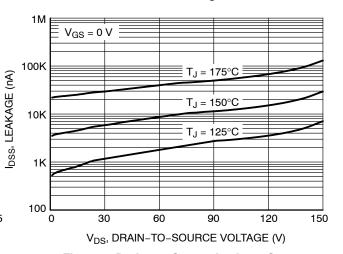


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

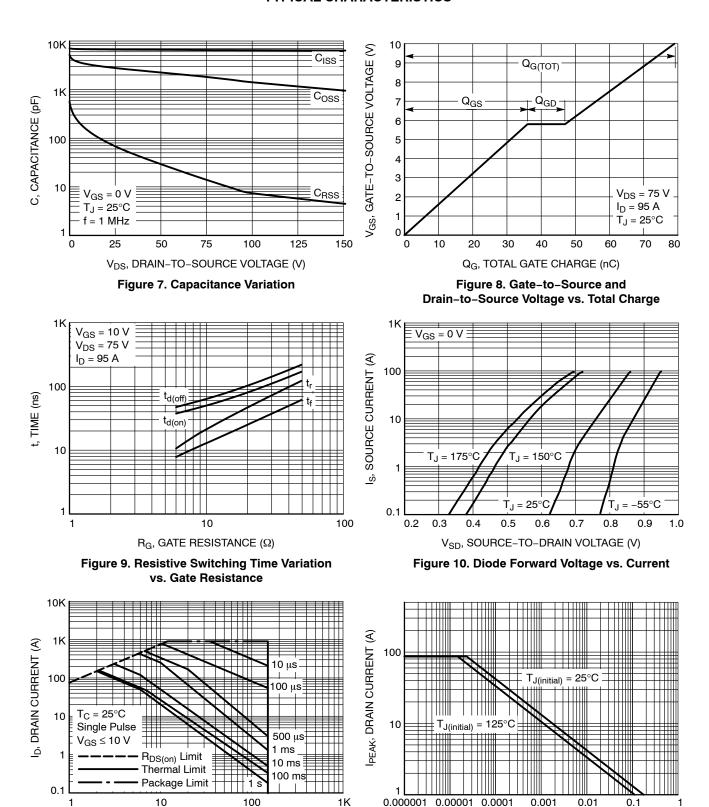


Figure 11. Safe Operating Area Figure 12. I_{PEAK} vs. Time in Avalanche

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

TIME IN AVALANCHE (sec)

TYPICAL CHARACTERISTICS

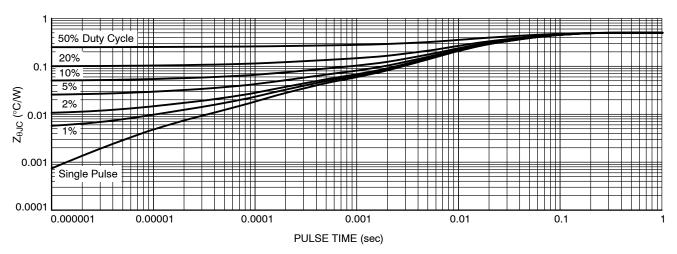
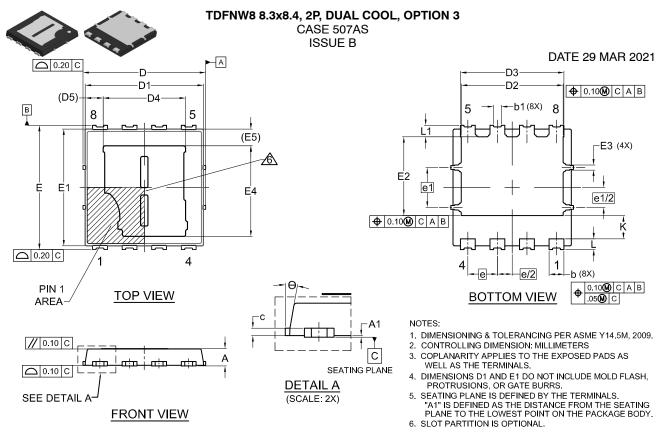
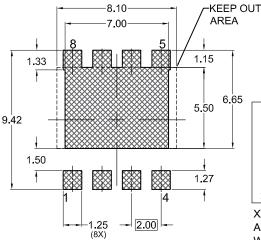




Figure 13. Thermal Characteristics

RECOMMENDED LAND PATTERN

(For additional information on our Pb-free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.)

GENERIC MARKING DIAGRAM* NON-MARKABLE EXPOSED METAL AREA XXXXXXX AWLYW

XXXX = Specific Device Code A = Assembly Location

WL = Wafer Lot Code Y = Year Code

W = Work Week Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

MIN. 0.82	NOM.	MAX.
	0.92	1.02
0.00		0.05
0.90	1.00	1.10
0.35	0.45	0.55
0.23	0.28	0.33
8.20	8.30	8.40
7.90	8.00	8.10
6.80	6.90	7.00
6.90	7.00	7.10
5.52	5.67	5.82
	1.16 RE	F
8.30	8.40	8.50
7.80	7.90	8.00
5.24	5.34	5.44
0.25	0.35	0.45
6.08	6.23	6.38
	1.13 RE	F
	2.00 BS	С
1.00 BSC		
2.70 BSC		
1.35 BSC		
1.50	1.57	1.70
0.64	0.74	0.84
0.67	0.77	0.87
0°		12°
	0.90 0.35 0.23 8.20 7.90 6.80 6.90 5.52 8.30 7.80 5.24 0.25 6.08	0.90 1.00 0.35 0.45 0.23 0.28 8.20 8.30 7.90 8.00 6.80 6.90 6.90 7.00 5.52 5.67 1.16 RE 8.30 8.40 7.80 7.90 5.24 5.34 0.25 0.35 6.08 6.23 1.13 RE 2.00 BS 2.70 BS 1.35 BS 1.50 1.57 0.64 0.74 0.67 0.77

DOCUMENT NUMBER:	98AON95716G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TDFNW8 8.3x8.4, 2P, DUAL COOL, OPTION 3		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales