PCI	N Numb	ber:	2022121	6004	.2		PC	N Da	te:	,		
Titl	o.	Qualifica	ition of nev	w Fa	b site (RFAB) using	qualified	Pro	cess	Techr	ology, Die Revision,		
The	с.	and add	itional Ass	embly/Probe Site & BOM options for				for select devices				
Cus	stomer	Contact:		PCN	<u>Manager</u>		De	pt:		Quality Services		
Pro	posed	1 st Ship	Date:	Jun	19, 2023	Sample accept				Jan 21, 2023*		
*Sa	imple r	equests	received	a fte	ter Jan 21, 2023 will not be supported.							
Cha	ange Ty	pe:										
\boxtimes	Assem	bly Site		\boxtimes	Assembly Process			\square	Asser	mbly Materials		
\boxtimes	Design	1 I		Electrical Specification					Mech	anical Specification		
\boxtimes	Test S	ite			Packing/Shipping/	'Labeling		Test I		Process		
	Wafer	Bump Sit	e		Wafer Bump Mate	rial			Wafe	r Bump Process		
\boxtimes	Wafer	Fab Site		Wafer Fab Materials				\boxtimes	Wafe	r Fab Process		
				Part number change								

PCN Details

Description of Change:

Texas Instruments is pleased to announce the qualification of a new fab & process technology (RFAB, LBC9) and Assembly/Probe Site & BOM option for selected devices as listed below in the product affected section. Construction differences are noted below:

C	urrent Fab Site	3	Additional Fab Site				
Current Fab Site	Process	Wafer Diameter	Additional Fab Site	Process	Wafer Diameter		
SFAB	HCMOS	150 mm	RFAB	LBC9	300 mm		

The die was also changed as a result of the process change.

Additionally, there will be a BOM options introduced for these devices:

	Current	Additional
Bond wire composition,	Au, 0.96 mil	Cu, 0.8mil
diameter		
Mount Compound	40425000	4147858
Mold Compound	4206193	4211471
Probe Site	SFAB	CD-PR

Test coverage, insertions, conditions will remain consistent with current testing and verified with test $\ensuremath{\mathsf{MQ}}$

Reason for Change:

These changes are part of our multiyear plan to transition products from our 150-milimeter factories to newer, more efficient manufacturing processes and technologies, underscoring our commitment to product longevity and supply continuity.

Anticipated impact on Form, Fit, Function, Quality or Reliability (positive / negative):

None

Impact on Environmental Ratings

Checked boxes indicate the status of environmental ratings following implementation of this change. If below boxes are checked, there are no changes to the associated environmental ratings.

RoHS	REACH	Green Status	IEC 62474
🛛 No Change	🛛 No Change	🛛 No Change	🛛 No Change

Fab Site Information	-		
Chip Site	Chip Site Origin Code (20L)	Chip Site Country Code (21L)	Chip Site City
SH-BIP-1	SHE	USA	Sherman
RFAB	RFB	USA	Richardson
Sample product chips	ing labol (not actual produc		
TEXAS INSTRUMENTS MADE IN: Malaysia 2DC: 20: MSL 2 /260C/1 YEAR SEA	ULDT 29/04 (0) 1002 29/04 (1002 (1002 (1002 (1002)	P) SN74LS07NSR A) 2000 (D) 0336 1T)LOT: 3959047MLA W) TKY (1T) 7523483S12) REV: (V), 0033317	
TEXAS INSTRUMENTS MADE IN: Malaysia 2DC: 20: MSL 2 /260C/1 YEAR MSL 1 /235C/UNLIM 03/ OPT:	G4 (1) (1) (1) (1) (1) (1) (1) (1)	P) SN74LSO7NSR a) 2000 (D) 0336 1T) LOT: 3959047MLA w) TKY (1T) 7523483S12) REV: (V) 0033317 L) COPUSA	

Automotive New Product Qualification Summary (As per AEC-Q100 and JEDEC Guidelines)

BD5_LVA_14PW_4Q_MLA_Q1 Approve Date 16-NOVEMBER -2022

Product Attributes

Attributes	Qual Device:	QBS Reference:	QBS Reference:	QBS Reference:	QBS Reference:
Auributes	SN74LV86ATPWRG4Q1	SN74HCS74QPWRQ1	PSN74LV4T125QPWRQ1	SN74LV14ATPWRQ1	ADS131B04QPWRQ1
Automotive Grade Level	Grade 1	Grade 1	Grade 1	Grade 1	Grade 1
Operating Temp Range (C)	-40 to 125	-40 to 125	-40 to 125	-40 to 125	-40 to 125
Product Function	Logic	Logic	Logic	Logic	Signal Chain
Wafer Fab Supplier	RFAB	RFAB	RFAB	RFAB	DMOS6
Assembly Site	MLA	MLA	MLA	MLA	MLA
Package Group	TSSOP	TSSOP	TSSOP	TSSOP	TSSOP
Package Designator	PW	PW	PW	PW	PW
Pin Count	14	14	14	14	20

QBS: Qual By Similarity
 Qual Device SN74LV86ATPWRG4Q1 is qualified at MSL1 260C

Qualification Results

Data Displayed as: Number of lots / Total sample size / Total failed

Туре	#	Test Spec	Min Lot Qty	SS / Lot	Test Name	Condition	Duration	Qual Device: <u>SN74LV86ATPWRG4Q1</u>	QBS Reference: <u>SN74HC S74QPWRQ1</u>	QBS Reference: <u>PSN74LV4T125QPWRQ1</u>	QBS Reference: <u>SN74LV14ATPWRQ1</u>	QBS Reference: ADS131B04QPWRQ1
Test Group	Fest Group A - Accelerated Environment Stress Tests											
PC	A1	JEDEC J- STD-020 JESD22- A113	3	77	Preconditioning	MSL1 260C	1 Step	-	3/0/0	-	-	-

PC	A1	JEDEC J- STD-020 JESD22- A113	3	77	Preconditioning	MSL1 260C	1 Step		-	1/0/0	-	-
PC	A1	JEDEC J- STD-020 JESD22- A113	3	77	Preconditioning	MSL2 260C	1 Step					1/0/0
PC	A1	JEDEC J- STD-020 JESD22- A113	3	77	Preconditioning	MSL2 260C	1 Step				-	3/0/0
HAST	A2	JEDEC JESD22- A110	3	77	Biased HAST	130C/85%RH	96 Hours		3/231/0	-	-	1/77/0
HAST	A2	JEDEC JESD22- A110	3	77	Biased HAST	130C/85%RH	96 Hours			-	-	2/154/0
AC/UHAST	A3	JEDEC JESD22- A102/JEDEC JESD22- A118	3	77	Autoclave	121C/15psig	96 Hours	-	-	1/77/0	-	-
AC/UHAST	A3	JEDEC JESD22- A102/JEDEC JESD22- A118	3	77	Unbiased HAST	130C/85%RH	96 Hours	-		-	-	3/231/0
AC/UHAST	A3	JEDEC JESD22- A102/JEDEC JESD22- A118	3	77	Unbiased HAST	130C/85%RH	96 Hours	-	3/231/0	-	-	-
тс	A4	JEDEC JESD22- A104 and Appendix 3	3	77	Temperature Cycle	-65C/150C	500 Cycles		3/231/0			1/77/0
тс	A4	JEDEC JESD22- A104 and Appendix 3	3	77	Temperature Cycle	-65C/150C	500 Cycles				-	2/154/0
тс	A4	JEDEC JESD22- A104 and Appendix 3	3	77	Temperature Cycle	-65C/150C	500 Cycles	-	-	1/77/0	-	-
HTSL	A6	JEDEC JESD22- A103	1	45	High Temperature Storage Life	150C	1000 Hours	-	3/135/0	-	-	1/45/0
HTSL	A6	JEDEC JESD22- A103	1	45	High Temperature Storage Life	150C	1000 Hours	-	-	1/45/0	-	-

Texas Instruments Incorporated

HTOL	81	JEDEC JESD22- A108	1	77	Life Test	125C	1000 Hours	-	3/231/0	-	-	-
HTOL	81	JEDEC JESD22- A108	1	77	Life Test	150C	300 Hours		-	1/77/0	1/77/0	
HTOL	81	JEDEC JESD22- A108	1	77	Life Test	150C	408 Hours			-	-	3/231/0
ELFR	B2	AEC Q100- 008	1	77	Early Life Failure Rate	125C	48 Hours	-	3/2400/0		-	2/1600/0
ELFR	B2	AEC Q100- 008	1	77	Early Life Failure Rate	150C	48 Hours	-	-	-	-	1/800/2 ¹
Test Group	C - Pack	age Assembly	Integrity	Tests								
WBS	C 1	AEC Q100- 001	1	30	Wire Bond Shear	Minimum of 5 devices, 30 wires Cpk>1.67	Wires		3/90/0			3/90/0
WBS	C1	AEC Q100- 001	1	30	Wire Bond Shear	Minimum of 5 devices, 30 wires Cpk>1.67	Wires	-	-	1/30/0	-	-
WBP	C2	MIL-STD883 Method 2011	1	30	Wire Bond Pull	Minimum of 5 devices, 30 wires Cpk>1.67	Wires	-	3/90/0	-	-	3/90/0
WBP	C2	MIL-STD883 Method 2011	1	30	Wire Bond Pull	Minimum of 5 devices, 30 wires Cpk>1.67	Wires			1/30/0	-	
SD	СЗ	JEDEC J- STD-002	1	15	PB Solderability	>95% Lead Coverage	-	-	1/15/0			
SD	СЗ	JEDEC J- STD-002	1	15	PB-Free Solderability	>95% Lead Coverage		-	1/15/0	-	-	-
PD	C4	JEDEC JESD22- B100 and B108	1	10	Physical Dimensions	Cpk>1.67	-	-	3/30/0	-	-	-
Test Group	D - Die F	abrication Relia	ability Te	sts								
ЕМ	D1	JESD61	-	-	Electromigration			Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements
TDDB	D2	JESD35	-	-	Time Dependent Dielectric Breakdown	-		Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements
нсі	D3	JESD60 & 28	-	-	Hot Carrier Injection	-	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements

Туре	#	Test Spec	Min Lot Qty	SS / Lot	Test Name	Condition	Duration	Qual Device	QBS Reference	QBS Reference	QBS Reference	QBS Reference
Additional T	ests											
ED	E5	AEC Q100- 009	3	30	Electrical Distributions	Cpk>1.67 Room, hot, and cold	-	1/30/0	3/90/0	3/90/0	1/30/0	3/90/0
LU	E4	AEC Q100- 004	1	6	Latch-Up	Per AEC Q100-004	-	-	1/6/0	1/6/0	1/6/0	1/6/0
ESD	E3	AEC Q100- 011	1	3	ESD CDM	-	500 Volts	-	1/3/0	1/3/0	1/3/0	-
ESD	E3	AEC Q100- 011	1	3	ESD CDM	-	1500 Volts	-	-	-	-	1/3/0
ESD	E2	AEC Q100- 002	1	3	ESD HBM	-	4000 Volts	-		-	-	1/3/0
ESD	E2	AEC Q100- 002	1	3	ESD HBM		2000 Volts	-	1/3/0	1/3/0	1/3/0	-
Test Group	est Group E - Electrical Verification Tests											
SM	D5	-	-	-	Stress Migration	-	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements
NBTI	D4		-		Negative Bias Temperature Instability			Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements

Preconditioning was performed for Autoclave, Unbiased HAST, THB/Biased HAST, Temperature Cycle, Thermal Shock, and HTSL, as applicable
 The following are equivalent HTOL options based on an activation energy of 0.7eV : 125C/1X Hours, 140C/480 Hours, 150C/800 Hours, and 155C/240 Hours
 The following are equivalent HTSL options based on an activation energy of 0.7eV : 125C/1X Hours, and 170C/420 Hours
 The following are equivalent HTSL options based on an activation energy of 0.7eV : 150C/1k Hours, and 170C/420 Hours
 The following are equivalent Temp Cycle options per JESD47 : -55C/125C/700 Cycles and -65C/150C/500 Cycles

Ambient Operating Temperature by Automotive Grade Level:

- Grade 0 (or E): -40C to +150C

Grade 1 (or Q): -40C to +125C
 Grade 2 (or T): -40C to +105C

• Grade 3 (or I) : -40C to +85C

E1 (TEST): Electrical test temperatures of Qual samples (High temperature according to Grade level):

- Room/Hot/Cold : HTOL, ED
 Room/Hot : THB / HAST, TC / PTC, HTSL, ELFR, ESD & LU

Room : AC/uHAST

Quality and Environmental data is available at TI's external Web site: http://www.ti.com/

TI Qualification ID: R-NPD-2211-094

Automotive New Product Qualification Summary (As per AEC-Q100, AEC-Q006, and JEDEC Guidelines)

BD5_LVA_14PW_4Q_MLA_Q1 Approve Date 16-NOVEMBER -2022

Product Attributes

Attributes	Qual Device:	QBS Reference:	QBS Reference:	QBS Reference:	QBS Reference:
Autoutes	SN74LV86ATPWRG4Q1	SN74HCS74QPWRQ1	PSN74LV4T125QPWRQ1	SN74LV14ATPWRQ1	ADS131B04QPWRQ1
Die Attributes					
Wafer Fab Supplier	RFAB	RFAB	RFAB	RFAB	DMOS6
Wafer Process	LBC9	LBC9	LBC9	LBC9	LBC8LV
Die Size (L,W) (um)	530 x 575	460 × 510	530 x 575	530 x 575	1720 x 2095
Package Attributes					
Assembly Site	MLA	MLA	MLA	MLA	MLA
Package Group	TSSOP	TSSOP	TSSOP	TSSOP	TSSOP
Package Designator	PW	PW	PW	PW	PW

QBS: Qual By Similarity
 Qual Device SN74LV86ATPWRG4Q1 is qualified at MSL1 260C

Qualification Results

Data Displayed as: Number of lots / Total sample size / Total failed

Туре	#	Test Spec	Min Lot Qty	SS/ Lot	Test Name	Condition	Duration	Qual Device: <u>SN74LV86ATPWRG4Q1</u>	QBS Reference: <u>SN74HCS74QPWRQ1</u>	QBS Reference: PSN74LV4T125QPWRQ1	QBS Reference: <u>SN74LV14ATPWRQ1</u>	QBS Reference: ADS131B04QPWRQ1
Test G	roup A - A	Accelerated	l Enviror	ment St	ress Tests							
PC	A1	JEDEC J-STD- 020 JESD22- A113	3	77	Preconditioning	MSL1 260C	1 Step	-	3/0/0	-	-	-
PC	A1	JEDEC J-STD- 020 JESD22- A113	3	77	Preconditioning	MSL2 260C	1 Step	-	-	-	-	1/0/0
PC	A1.1	-	3	22	SAM Precon Pre	Review for delamination	1 Step	-	3/66/0			1/22/0
PC	A1.2		3	22	SAM Precon Post	Review for delamination	1 Step	-	3/66/0		-	1/22/0
HAST	A2.1	JEDEC JESD22- A110	3	77	Biased HAST	130C/85%RH	96 Hours	-	3/231/0	-	-	1/77/0
HAST	A2.1.2		3	1	Cross Section, post bHAST, 1X	Post stress cross section	Completed	-	3/3/0			1/0/0
HAST	A2.1.3	-	3	30	Wire Bond Shear, post bHAST, 1X	Post stress	Wires	-	3/9/0	-	-	1/0/0
HAST	A2.1.4		3	30	Bond Pull over Stitch, post bHAST, 1X	Post stress	Wires	-	3/9/0	-	-	1/0/0
HAST	A2.1.5	-	3	30	Bond Pull over Ball, post bHAST, 1X	Post stress	Wires	-	3/9/0	-	-	1/0/0
HAST	A2.2	JEDEC JESD22- A110	3	77	Biased HAST	130C/85%RH	192 Hours	-	3/231/0	-	-	1/70/0
HAST	A2.2.1	-	3	22	SAM Analysis, post bHAST 2X	Review for delamination	Completed	-	3/66/0	-	-	1/22/0

HAST	A2.2.2	-	3	1	Cross Section, post bHAST, 2X	Post stress cross section	Completed	-	3/3/0	-	-	1/1/0
HAST	A2.2.3	-	3	30	Wire Bond Shear, post bHAST, 2X	Post stress	Wires	-	3/9/0	-	-	1/3/0
HAST	A2.2.4	-	3	30	Bond Pull over Stitch, post bHAST, 2X	Post stress	Wires	-	3/9/0	-	-	1/3/0
HAST	A2.2.5	-	3	30	Bond Pull over Ball, post bHAST, 2X	Post stress	Wires	-	3/9/0	-	-	1/3/0
тс	A4.1	JEDEC JESD22- A104 and Appendix 3	3	77	Temperature Cycle	-65C/150C	500 Cycles	-	3/231/0	-	-	1/77/0
тс	A4.1.1	-	3	22	SAM Analysis, post TC 1X	Review for delamination	Completed	-	3/66/0	-	-	8/176/0
тс	A4.1.2	-	3	1	Cross Section, post TC, 1X	Post stress cross section	Completed	-	24/24/0	-	-	8/0/0
тс	A4.1.3	-	3	30	Wire Bond Shear, post TC, 1X	Post stress	Wires	-	3/9/0	-	-	8/24/0
тс	A4.1.4	-	3	30	Bond Pull over Stitch, post TC, 1X	Post stress	Wires	-	24/72/0	-	-	8/24/0
тс	A4.1.5	-	3	30	Bond Pull over Ball, post TC, 1X	Post stress	Wires	-	3/9/0	-	-	8/24/0
тс	A4.2	JEDEC JESD22- A104 and Appendix 3	3	77	Temperature Cycle	-65C/150C	1000 Cycles	-	3/231/0	-	-	1/70/0
тс	A4.2.1	-	3	22	SAM Analysis, post TC, 2X	Review for delamination	Completed	-	3/66/0	-	-	1/22/0
тс	A4.2.2	-	3	1	Cross Section, post TC, 2X	Post stress cross section	Completed	-	3/3/0	-	-	1/1/0
тс	A4.2.3	-	3	30	Wire Bond Shear, post TC, 2X	Post stress	Wires	-	3/9/0	-	-	1/3/0
тс	A4.2.4	-	3	30	Bond Pull over Stitch, post TC, 2X	Post stress	Wires	-	3/9/0	-	-	1/3/0
тс	A4.2.5	-	3	30	Bond Pull over Ball, post TC, 2X	Post stress	Wires	-	3/9/0	-	-	1/3/0

HTSL	A6.1	JEDEC JESD22- A103	3	45	High Temperature Storage Life	150C	1000 Hours	-	3/135/0	-	-	1/45/0
HTSL	A6.1.1	-	3	1	Cross Section, post HTSL, 1X	Post stress cross section	Completed	-	24/24/0	-	-	8/8/0
HTSL	A6.2	JEDEC JESD22- A103	3	45	High Temperature Storage Life	150C	2000 Hours	-	3/135/0	-	-	1/44/0
HTSL	A6.2.1	-	3	1	Cross Section, post HTSL, 2X	Post stress cross section	Completed	-	3/3/0	-	•	1/1/0
Test Gr	est Group B - Accelerated Lifetime Simulation Tests											
HTOL	В1	JEDEC JESD22- A108	1	77	Life Test	125C	1000 Hours	-	3/231/0	-		-
HTOL	B1	JEDEC JESD22- A108	1	77	Life Test	150C	300 Hours	-	-	1/77/0	1/77/0	-
HTOL	B1	JEDEC JESD22- A108	1	77	Life Test	150C	408 Hours	-	-	-	-	3/231/0
ELFR	B2	AEC Q100- 008	1	77	Early Life Failure Rate	125C	48 Hours	-	3/2400/0	-	-	2/1600/0
ELFR	B2	AEC Q100- 008	1	77	Early Life Failure Rate	150C	48 Hours	-	-	-	-	1/800/21
Test Gr	roup C - F	Package As	sembly I	Integrity	Tests							
WBS	C1	AEC Q100- 001	1	30	Wire Bond Shear	Minimum of 5 devices, 30 wires Cpk>1.67	Wires	-	3/90/0	-		3/90/0
WBS	С1	AEC Q100- 001	1	30	Wire Bond Shear	Minimum of 5 devices, 30 wires Cpk>1.67	Wires	-	-	1/30/0	-	-
WBP	C2	MIL- STD883 Method 2011	1	30	Wire Bond Pull	Minimum of 5 devices, 30 wires Cpk>1.67	Wires	-	3/90/0	-	-	3/90/0
WBP	C2	MIL- STD883 Method 2011	1	30	Wire Bond Pull	Minimum of 5 devices, 30 wires Cpk>1.67	Wires	-	-	1/30/0	-	-
SD	СЗ	JEDEC J-STD- 002	1	15	PB Solderability	>95% Lead Coverage	-	-	1/15/0	-	-	-

SD	C3	JEDEC J-STD- 002	1	15	PB-Free Solderability	>95% Lead Coverage	-	-	1/15/0		-	-
PD	C4	JEDEC JESD22- B100 and B108	1	10	Physical Dimensions	Cpk>1.67	-	-	3/30/0	-	-	-
Test G	roup D - C	Die Fabricat	ion Relia	ubility Te	sts							
ЕМ	D1	JESD61	-	-	Electromigration	-	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements
TDDB	D2	JESD35	-	-	Time Dependent Dielectric Breakdown	-	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements
HCI	D3	JESD60 & 28	-	-	Hot Carrier Injection	-	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements
NBTI	D4	-	-	-	Negative Bias Temperature Instability	-	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements
SM	D5	-	-	-	Stress Migration	-	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements
Test G	roup E - E	Electrical Ve	rificatio	n Tests								
ESD	E2	AEC Q100- 002	1	3	ESD HBM	-	2000 Volts	-	1/3/0	1/3/0	1/3/0	-
ESD	E2	AEC Q100- 002	1	3	ESD HBM	-	4000 Volts	-	-	-	-	1/3/0
ESD	E3	AEC Q100- 011	1	3	ESD CDM	-	1500 Volts	-	-	-	-	1/3/0
ESD	E3	AEC Q100- 011	1	3	ESD CDM	-	500 Volts	-	1/3/0	1/3/0	1/3/0	-
LU	E4	AEC Q100- 004	1	6	Latch-Up	Per AEC Q100-004	-	-	1/6/0	1/6/0	1/6/0	1/6/0
ED	E5	AEC Q100- 009	3	30	Electrical Distributions	Cpk>1.67 Room, hot, and cold	-	1/30/0	3/90/0	3/90/0	1/30/0	3/90/0

Preconditioning was performed for Autoclave, Unbiased HAST, THB/Biased HAST, Temperature Cycle, Thermal Shock, and HTSL, as applicable

The following are equivalent HTOL options based on an activation energy of 0.7eV : 125C/1k Hours, 140C/480 Hours, 150C/300 Hours, and 155C/240 Hours

The following are equivalent HTSL options based on an activation energy of 0.7eV : 150C/1k Hours, and 170C/420 Hours

The following are equivalent Temp Cycle options per JESD47 : -55C/125C/700 Cycles and -65C/150C/500 Cycles

Ambient Operating Temperature by Automotive Grade Level:

- Grade 0 (or E): -40C to +150C
 Grade 1 (or O): -40C to +125C
- Grade 2 (or T): -40C to +105C
- Grade 3 (or I) : -40C to +85C

E1 (TEST): Electrical test temperatures of Qual samples (High temperature according to Grade level):

- Room/Hot/Cold : HTOL, ED
- Room/Hot : THB / HAST, TC / PTC, HTSL, ELFR, ESD & LU
- Room : AC/uHAST

Quality and Environmental data is available at TI's external Web site: http://www.ti.com/

TI Qualification ID: R-NPD-2211-094

For questions regarding this notice, e-mails can be sent to the contacts shown below or your local Field Sales Representative.

Location	E-Mail				
WW Change Management Team	PCN ww admin team@list.ti.com				

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disdaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (<u>www.ti.com/legal/termsofsale.html</u>) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.