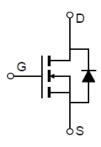


RM80N60DF

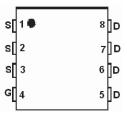
N-Channel Super Trench Power MOSFET

Description

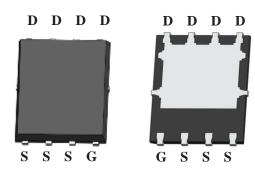
The RM80N60DF uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{DS(ON)}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.


General Features

- V_{DS} =60V,I_D =80A
 - $R_{DS(ON)} < 4.0 \text{m}\Omega$ @ $V_{GS} = 10V$ (Typ:3.5m Ω) $R_{DS(ON)} < 5.0 \text{m}\Omega$ @ $V_{GS} = 4.5V$ (Typ:4.0m Ω)
- Excellent gate charge x R_{DS(on)} product
- Very low on-resistance $R_{DS(on)}$
- 150 °C operating temperature
- Pb-free lead plating
- 100% UIS tested


Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification


100% UIS TESTED! 100% \(\text{\text{Vds}} \) TESTED!

Schematic diagram

Marking and pin assignment

Top View Bottom View

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
80N60	RM80N60DF	DFN5X6-8L	-	-	-

Absolute Maximum Ratings (T_C=25 ℃ unless otherwise noted)

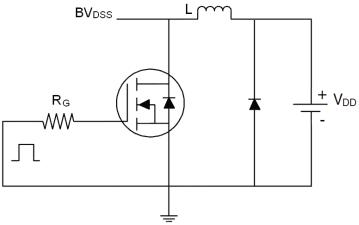
Parameter	Symbol	Limit	Unit
Drain-Source Voltage	VDS	60	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous (Silicon Limited)	I _D	80	А
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	58	А
Pulsed Drain Current	I _{DM}	320	А
Maximum Power Dissipation	P _D	85	W
Derating factor		0.68	W/°C
Single pulse avalanche energy (Note 5)	E _{AS}	400	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	°C

Thermal Characteristic

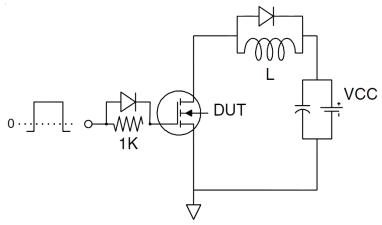
Thermal Resistance, Junction-to-Case (Note 2)	R _{eJC}	1.47	°C/W
---	------------------	------	------

Electrical Characteristics (T_C=25 ℃ unless otherwise noted)

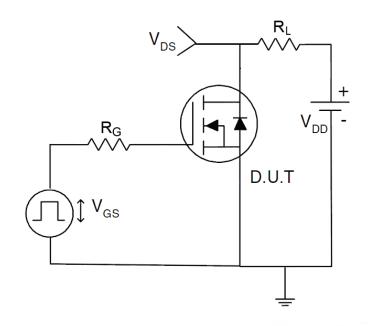
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	<u> </u>		•			•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =60V, V_{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	$V_{GS}=\pm20V, V_{DS}=0V$	-	-	±100	nA
On Characteristics (Note 3)	·					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.7	2.4	V
Danie Course On Otata Basistana		V _{GS} =10V, I _D =40A	-	3.5	4.0	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =40A	-	4.0	5.0	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =40A	40	-	-	S
Dynamic Characteristics (Note4)	<u> </u>					
Input Capacitance	C _{Iss}	N 00MN 0M	-	4000	-	PF
Output Capacitance	Coss	$V_{DS}=30V, V_{GS}=0V,$	-	680	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	23	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	11	-	nS
Turn-on Rise Time	t _r	V_{DD} =30 V , I_{D} =40 A	-	5	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =4.7 Ω	-	56	-	nS
Turn-Off Fall Time	t _f		-	12	-	nS
Total Gate Charge	Qg	V 20VI 40A	-	67		nC
Gate-Source Charge	Q _{gs}	$V_{DS}=30V,I_{D}=40A,$	-	12		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	8.5		nC
Drain-Source Diode Characteristics	<u> </u>		•			•
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =80A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	80	А
Reverse Recovery Time	t _{rr}	$T_J = 25$ °C, $I_F = I_S$	-	48		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	60		nC


Notes:

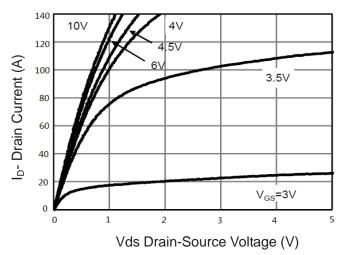
- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,VDD=30V,VG=10V,L=0.5mH,Rg=25 Ω



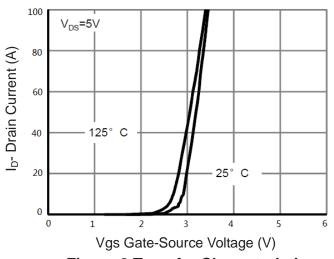
Test Circuit


1) E_{AS} test Circuit

2) Gate charge test Circuit



3) Switch Time Test Circuit



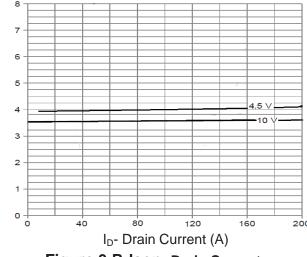

RATING AND CHARACTERISTICS CURVES (RM80N60DF)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Rdson On-Resistance(mΩ)

Figure 3 Rdson- Drain Current

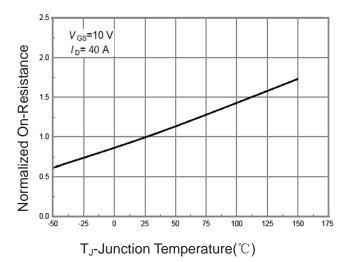


Figure 4 Rdson-JunctionTemperature

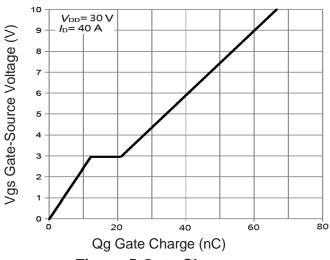


Figure 5 Gate Charge

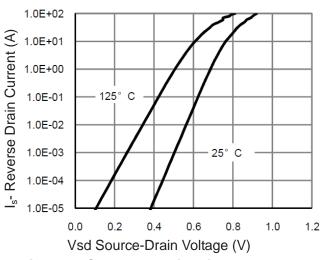


Figure 6 Source- Drain Diode Forward

RATING AND CHARACTERISTICS CURVES (RM80N60DF)

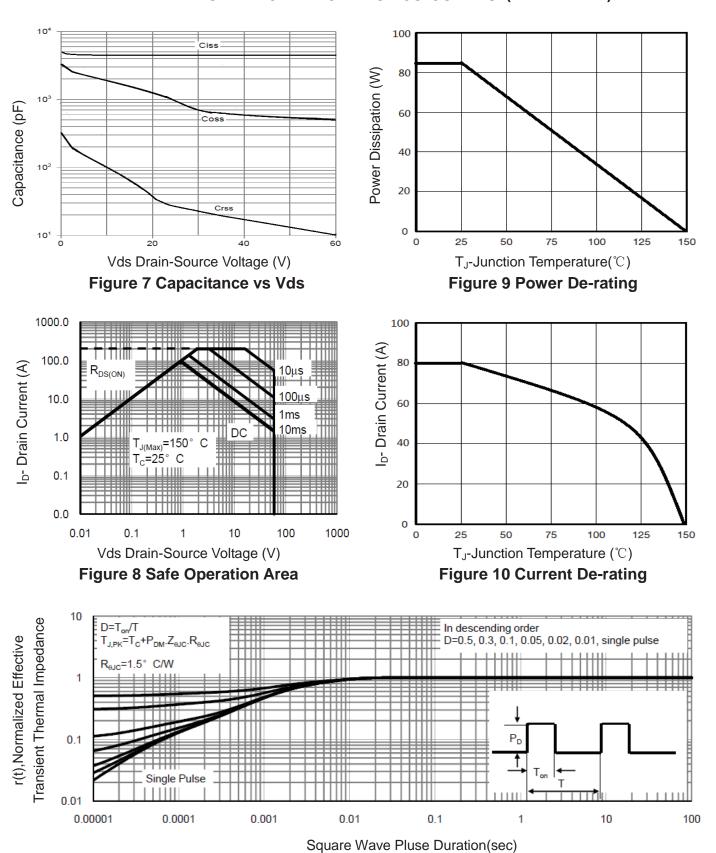
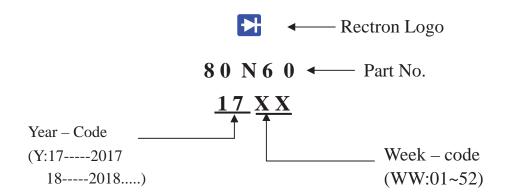
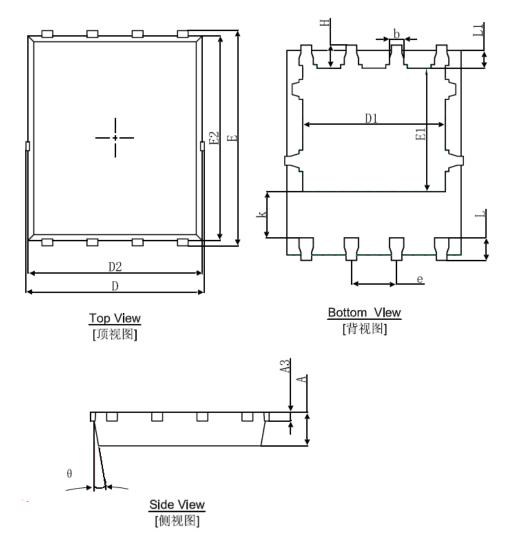



Figure 11 Normalized Maximum Transient Thermal Impedance



Marking on the body

DFN5X6-8L Package Information

Cumbal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.900	1.000	0.035	0.039	
A3	A3 0.254RI		0.010	REF.	
D			0.195	0.201	
E	5.974	6.126	0.235	0.241	
D1	3.910	4.110	0.154	0.162	
E1	3.375	3.575	0.133	0.141	
D2	4.824	4.976	0.190	0.196	
E2	5.674	5.826	0.223	0.229	
k	1.190	1.390	0.047	0.055	
b	0.350	0.450	0.014	0.018	
е	1.270	TYP.	0.050	TYP.	
L	0.559	0.711	0.022	0.028	
L1	0.424	0.576	0.017	0.023	
Н	0.574	0.726	0.023	0.029	
θ	8°	12°	8°	12°	

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

