

Compliance Engineering Ireland Ltd

CLONROSS LANE, DUNSHAUGHLIN, CO. MEATH, IRELAND Tel: +353 1 8017000 Fax: +353 1 8256733

Page - 1 - of 43

EMC Test Report for Vox Power Ltd

Report Reference: 13E4772-3

Vox Power Product: Nevo+1200S & Nevo+1200M

JANUARY 2017 COMPLIANCE ENGINEERING IRELAND LTD.

Client:	Test of:
VOX Power,	NEVO+1200ML & NEVO+1200M
Vox Power Ltd	NEVO+1200SL & NEVO+1200S,
Unit 2	Modular Power supply system
Red Cow interchange estate	
Ballymount	
Dublin 22	То:
	EN 55011: 2009 + A1: 2010
	EN 60601-1-2: 2007 (3 rd Edition)
	EN 60601-1-2: 2014 (4 th Edition)
	EN 61000-6-2: 2005
	EN 61000-3-2: 2014
Attention: Mr. Brian McDonald	EN 61000-3-3: 2013

COPIES TO: Files

REPORT REF: 13E4772-3	TESTED BY: G	Monahan / L Brien
DATE RECEIVED: November 2013	REPORT BY: G	Monahan
ISSUE DATE: January 2017	APPROVED SIG	NATORY: J McAuley
	JOB TITLE:	Technical Manager
	SIGNATURE:	John the anley
		ð ð

Compliance Engineering Ireland Ltd Terms and Conditions

- 1. All quotations are submitted, orders are accepted and services supplied by Compliance Engineering Ireland Limited ("CEIL") subject to and upon the following express Terms and Conditions and all other Conditions, warranties and representations express or implied and statutory or otherwise are hereby excluded insofar as it is lawful to do so. No addition thereto or variation therefrom, contained or referred to in the Customers order form or otherwise effected shall apply unless specifically agreed in writing by a duly Authorised Officer of CEIL.
- 2. All orders including any based on a quotation previously submitted by CEIL are subject to acceptance in writing by CEIL.
- 3.(a) The prices set out in any quotation are based upon current costs and if there is any variation in the said costs between the date of the order or Contract and delivery of the final report CEIL shall be entitled to adjust prices to reflect such variations.
 - b) In the event of any suspension or variation of work arising from the Customer's instructions or lack of instructions the price set out in any quotation may be increased to cover any extra expense incurred by CEIL.
 - c) All prices quoted are strictly NET. The customer shall where applicable, in addition to the relevant price, pay a sum equal to the VAT chargeable in respect of the supply of services.
 - d) Accounts must be paid in full in advance or by way of an irrevocable letter of credit opened with a Bank approved by CEIL unless credit terms have been agreed by CEIL in which event accounts must be paid in full within 1 month from the date of the invoice. Time for payment is of the essence and the customer shall be liable to pay any outstanding amount from its due date until the date of payment at a rate of 2% per month or part thereof.
- 4. Any times quoted for the performance of services are to be treated as estimates only. CEIL shall not be liable in any manner whatsoever for failure to perform services within the time quoted, nor in such circumstances shall the Customer be entitled to cancel or terminate any order or contract.
- 5. The Customer is responsible for delivery to CEIL of test item(s) free of any duty, VAT, freight charges etc. unless otherwise agreed in writing by CEIL.
- 6. The Customer shall be responsible for collecting non-perishable samples received for testing or laboratory work upon completion of tests or laboratory work. If the Customer fails to collect such samples within 90 days from completion of the tests or laboratory work CEIL shall be entitled without further notice to dispose of the samples without liability.
- 7. No action or legal proceedings shall be taken (except in the case of wilful neglect or default) against CEIL by reason of or arising out of any research, investigation, test or analyses or the publication of the results thereof in the name of CEIL. Under no circumstances shall CEIL be liable to the Customer for any indirect, incidental, special or consequential damages of any nature whatsoever (including but not limited to loss of use, revenue, profit, data or business opportunity) either based upon a claim or action in Contract or in Tort, indemnity or contribution, or otherwise arising out of the Contract or performance of services by CEIL even if CEIL has been advised of the possibility of such damages. The limit of CEIL's aggregate liability (whether in Contract, Tort, strict liability in Tort or by statute or otherwise) to the Customer or to any third party for non-performance by CEIL and for any and all other claims shall not in the aggregate exceed the fees paid by the Customer to CEIL. The Customer shall indemnify CEIL against all claims made against CEIL by any third party arising from this Contract.
- 8. The copyright of any report is reserved to CEIL and it shall not be used either in whole or in part, for the purposes of advertising, publicity, litigation or otherwise without the prior written consent of a duly Authorised Officer of CEIL where such consent is given the Customer shall comply with any conditions attaching to the consent. In conformance with laboratory accreditation requirements reports shall only be produced in full. The test results tabulated shall relate only to the defined item(s) tested.
- 9. If in CEIL's judgment, the customer's financial condition is such as could adversely affect the customers' ability to perform any of its obligations or if the customer is in default in any of its obligations to CEIL whether hereunder or under any other Contract CEIL may terminate this Contract and/ or any other Contract between CEIL and the Customer, cancel any uncompleted order or suspend performance of services or the delivery of any reports and if it does so the Customer shall indemnify CEIL against all costs, charges, expense and damages incurred thereby.
- 10. CEIL will not be liable for non-performance in whole or in part of its obligations if this is attributable to any cause beyond the control of CEIL including (without limitation) any act of god, force majeure, war, civil war, disturbance, rebellion, embargo, strike, labour dispute, illness, flood, fire, sabotage or government action or regulation. If a Contract or order or any part thereof shall become impossible of performance or otherwise frustrated CEIL shall be entitled to reasonable remuneration for any work done up to the date of such impossibility or frustration, due credit being given for any amounts in respect of the Contract or order paid by the Customer.
- 11. CEI agrees to keep confidential all matters relating to this contract. This includes but is not limited to products tested, methods used, results of the work and contents of any reports.
- 12. These Conditions and the Contract to which the document relates shall in all respects be governed by and construed in accordance with the laws of the Republic of Ireland and in accordance with the Republic of Ireland shall have exclusive jurisdiction to determine any disputes arising therefrom unless otherwise agreed.
- 13. CEI is an accredited test laboratory and relevant test reports are denoted by use of the accreditation logo. When the accreditation logo is not used, the report is outside our scope accreditation.

Executive Summary

The equipment under test fulfils the standards listed below

Standard	Test result
EN 60601-1-2: 2014 (4 th Edition) Title: Medical Electrical Equipment Section 1.2: Collateral standard: Electromagnetic Compatibility – Requirements and tests.	Pass
EN 61000-6-3: 2007 Title: Generic Standard Section 6.3: Emission Standard for residential, commercial and light industrial environments.	Pass
EN 61000-6-2: 2005 Title: Generic Standard Section 6.2: Immunity for industrial Environments	Pass
EN 61000-6-1:2007 Generic Standard Immunity for residential, commercial and light-industrial environments	Pass

Declaration of conformity

The intention of these tests is such that the following statement can be added to the Declaration of Conformity I.e. DoC

The NEVO+1200 S/SL/M/ML products comply with the EMC directive 2014/30/EU, EMC directive.

Conformity was demonstrated by testing to and passing the limits set in the following standards.

EN55011:2009 +A1:2010 Class B EN61000-3-2:2014 EN61000-3-3:2013 EN60601-1-2:2007 (3RD Edition) EN60601-1-2:2014 (4TH Edition)

Guidance and	manufacturer's decla	aration – electromagnetic emissions
The Device is intended fo	r use in the electromagnetic e	nvironment specified below. The customer or the user of
the Device should assure	that it is used in such an envi	ronment
Emissions test	Compliance	
RF Emissions CISPR 11 EN 55011: 2009 + A1: 2010	Group 1	The Device must emit electromagnetic energy in order to perform its intended function. Nearby electronic equipment may be affected.
RF Emissions CISPR 11 EN 55011: 2009 + A1: 2010	Class B	Class B equipment is equipment suitable for use in domestic establishments and in establishments directly connected to a low voltage power supply network which supplies buildings used for domestic purposes. In the documentation for the user, a statement shall be included drawing attention to the fact that there may be potential difficulties in ensuring electromagnetic compatibility in other environments, due to conducted as well as radiated disturbances.
Harmonic emissions IEC 61000-3-2 EN 61000-3-2: 2014	Class A	
Voltage fluctuations / flicker emissions IEC 61000-3-3 EN 61000-3-3: 2013	All Parameters	

 Table 201 – Guidance and manufacturer's declaration – electromagnetic emissions – for all equipment and systems

Guidance and manufacturer's declaration – electromagnetic immunity			
The Device is intended for use in the electromagnetic environment specified below. The customer or the user of the Device should assure that it is used in such an environment			
Immunity test	IEC 60601 Test level	Compliance level	Electromagnetic environment - guidance
Electrostatic discharge (ESD) IEC 61000-4-2 EN 61000-4-2: 2009	±8 kV contact ±15 kV air	±2, 4, 6 & 8 kV contact ±2, 4, 8 & 15 kV air	Floors should be wood, concrete or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.
Electrical fast transient/burst IEC 61000-4-4 EN 61000-4-4: 2012	$\pm 2kV$ for power supply lines $\pm 1 \ kV$ for input/output lines	±2kV for power supply lines ±1kV for input/output lines	Mains power quality should be that of a typical commercial or hospital environment
Surge IEC 61000-4-5 EN 61000-4-5: 2006	±1kV differential mode ±2 kV common mode	±0.5 & 1kV differential mode ±0.5, 1 & 2 kV common mode	Mains power quality should be that of a typical commercial or hospital environment
Voltage dips, short interruptions and voltage variations on power supply input lines IEC 61000-4-11 EN 61000-4-11: 2004	<5 % Ut (>95 % dip in Ut) for 0.5 cycle @ 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315° 70 % Ut (30 % dip in Ut) for 25 cycles <5 % Ut (>95 % dip in Ut) for 5 sec <5 % Ut (>95 % dip in Ut) for 1 cycle 40 % Ut (>60 % dip in Ut) for 5 cycle	<5 % Ut (>95 % dip in Ut) for 0.5 cycle @ 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315° 70 % Ut (30 % dip in Ut) for 25 cycles <5 % Ut (>95 % dip in Ut) for 5 sec <5 % Ut (>95 % dip in Ut) for 1 cycle 40 % Ut (>60 % dip in Ut) for 5 cycle	Mains power quality should be that of a typical commercial or hospital environment. If the user of the Device requires continued operation during power mains operation, it is recommended that the Device must be powered from an uninterruptible power supply or battery
Power frequency (50/60 Hz) magnetic field IEC 61000-4-8 EN 61000-4-8: 2010	30 A/m	30 A/m	Power frequency magnetic fields should be at levels characteristic of a typical location in a typical commercial or hospital environment

Note: Ut is the a.c.mains voltage prior to application of the test level			
Table 202 – Guidance and manufacturer's declaration – electromagnetic immunity – for all			
equipment and systems			
The Device is intended	for use in the electromagnet	ic environment specified	below. The customer or the user of the
Device should assure that	t it is used in such an environ	ment	
Immunity test	IEC 60601 test level	Compliance	Electromagnetic environment
		level	- guidance
			communications equipment should be used no closer to any part of the EUT, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter. Recommended separation distance
Conducted RF	3 Vrms outside industrial,	6 Vrms	d = [1.17]√P
	scientific and medical (ISM) and amateur radio bands. 6 Vrms in ISM and amateur radio bands	150 kHz to 80 MHz	
IEC 61000-4-6 EN 61000-4-6: 2014	150 kHz to 80 MHz		
Radiated RF	10 V/m	10 V/m	d = [1.17]√P80MHz to 800 MHz
IEC 61000-4-3 EN 61000-4-3: 2006 + A1: 2008 + A2: 2010	80 MHz to 2.7 GHz	80 MHz to 2.7 GHz	d = [2.33]√P800 MHz to 2.5GHz
	27 V/m, 18 Hz PM 385 MHz	27 V/m, 18 Hz PM 385 MHz	Where P is the maximum output power rating of the transmitter in Watts (W) according to the transmitter
	28 V/m, 50 %18 Hz PM 450 MHz	28 V/m, 50 %18 Hz PM 450 MHz	manufacturer and d is the recommended separation distance in metres (m)
	9 V/m, 217 Hz PM 710 MHz	9 V/m, 217 Hz PM 710 MHz	Field strengths from fixed RF transmitters, as determined by an
	9 V/m, 217 Hz PM 745 MHz	9 V/m, 217 Hz PM 745 MHz	electromagnetic site survey, ^a should be less than the compliance level in each frequency range. ^b
	9 V/m, 217 Hz PM 780 MHz	9 V/m, 217 Hz PM 780 MHz	Interference may occur in the vicinity of equipment marked with the following
	28V/m, 18 Hz PM 810 MHz	28V/m, 18 Hz PM 810 MHz	symbol (((•)))
	28 V/m, 18 Hz PM 870 MHz	28 V/m, 18 Hz PM 870 MHz	
	28 V/m, 18 Hz PM 930 MHz	28 V/m, 18 Hz PM 930 MHz	
	28V/m, 217 Hz PM 1720 MHz	28V/m, 217 Hz PM 1720 MHz	

I	28 \//m 217 Hz DM	1	1
	20 V/III, 217 112 FW 1845 MHz	28 \//m 217 Hz PM	
	1043 MI12	1845 MHz	
	28 \//m 217 Hz PM		
	1970 MHz	28 \//m 217 Hz PM	
		1970 MHz	
	27 V/m 217 Hz PM		
	2450 MHz	27 V/m 217 Hz PM	
	2 100 11112	2450 MHz	
	9V/m, 217 Hz PM	2100 11112	
	5240 MHz	9V/m. 217 Hz PM	
		5240 MHz	
	9 V/m. 217 Hz PM		
	5500 MHz	9 V/m. 217 Hz PM	
		5500 MHz	
	9 V/m, 217 Hz PM		
	5785 MHz	9 V/m, 217 Hz PM	
		5785 MHz	
Note 1: At 80 MHz and	d 800 MHz, the higher frequer	ncy range applies	
Note 2: These guidelir	nes may not apply in all situati	ons. Electromagnetic propa	gation is affected by absorption and
reflection from structur	res, objects and people.		
a Field strengths	from fixed transmitters, such	as base stations for radio (co	ellular/cordless) telephones and land
mobile radios, a	amateur radio, AM and FM rad	dio broadcast and TV broad	cast cannot be predicted theoretically with
accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey			
should be considered. If the measured field strength in the location in which the EUT is used exceeds the			
applicable RF compliance level above, the EUT should be observed to verify normal operation. If abnormal			
performance is observed, additional measures may be necessary, such as re-orientating or relocating the EUT.			
			
D Over the freque	ency range 150 kHz to 80 MH	z, field strengths should be l	ess than [V1]V/m

Table 204 – Guidance and manufacturer's declaration – electromagnetic immunity – for equipment and systems that are not life-supporting

Recommended separation distances between portable and mobile RF communication equipment and the EUT

The Device is intended for use in an electromagnetic environment specified in Table 201. The customer or the user of the Device can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and the Device as recommended below, according to the maximum output power of the communications equipment.

Rated maximum output power of	Separation distance according to frequency of transn m		of transmitter
transmitter W	150 kHz to 80 MHz	80 MHz to 800 MHz d – [1 17]√P	800 MHz to 2.5GHz
0.01	0.12	0.12	0.23
0.1	0.37	0.37	0.75
1	1.17	1.17	2.33
10	3.70	3.70	7.36
100	11.70	11.70	23.30

For transmitters rated at a maximum output power not listed above, the recommended separation distance d in metres (m) can be estimated using the equation applicable to the frequency of the transmitter, where P is the maximum output power rating of the transmitter in watts (w) according to the transmitter manufacturer.

NOTE 1 At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies.

NOTE 2 These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

Table 206 – Recommended separation distances between portable and mobile RF communications equipment and the equipment and system – for equipment and systems that are not life supporting

Table of Contents

- Section 1: Equipment under Test (E.U.T.)
- Section 2: Test Specification, Methods and Procedures
- Section 3: Deviations and Exclusions from the Test Specifications
- Section 4: Operation of E.U.T. During Testing
- Section 5: Results
- Section 6: Analysis of Test Results, Conclusions

Appendix 1:	Test Equipment Used
Appendix 2:	Test Configuration
Appendix 3:	Results

1 Equipment under Test (E.U.T.)

1.1 Identification of E.U.T.

Brand Name:	Nevo + 1200S/SL, Nevo + 1200M/ML
Description:	1200W Configurable Modular PSU
Model Number:	1200 S, 1200M
Serial Number:	1340A003
Cables:	Mains Cable
Country of Manufacture:	Ireland

1.2 Description of E.U.T.

The EUT mains powered 1200 watt modular configurable PSU.

1.3 Modifications incorporated in E.U.T.

A ferrite (TDK - ZCAT2032-0930) was fitted to the input mains cable to comply with EN55022 Radiated emissions Class B

Two ferrites (TDK - ZCAT3035-1330) were fitted to the output mains cable to comply with EN55022 Radiated emissions Class B

Input Cable Ferrite

Output Cable Ferrite

1.4 Support Equipment List

No Support Equipment was required.

1.5 Date of Test

The tests were carried during the months of August and October 2013.

Additional testing required to meet EN 60601-1-2: 2014 (4^{th} Edition) was carried out between the 5^{th} and 8^{th} of December 2016.

2 Test Specification, Methods and Procedures

2.1 Emissions

Emissions were assessed to the following standards:

EN 55011: Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement.

EN 61000-3-2: Limits for harmonic current emissions (equipment input current \leq 16 A per phase)

EN 61000-3-3: Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current <= 16 A per phase and not subject to conditional connection

2.2 Immunity

Immunity was assessed according to the following standards:

EN 61000-6-1: Electromagnetic compatibility (EMC) - Part 6-1: Generic standards -Immunity for residential, commercial and light-industrial environments

EN 61000-4-2	Electromagnetic Compatibility (EMC)
	Part4: Testing and measurement techniques
	Section2: Electrostatic discharge immunity test
EN 61000-4-3	Electromagnetic Compatibility (EMC)
	Part4: Testing and measurement techniques
	Section3: Radiated, radio-frequency, electromagnetic field
	immunity test
EN 61000-4-4	Electromagnetic Compatibility (EMC)
	Part4: Testing and measurement techniques
	Section4: Electrical fast transient/burst immunity test
EN 61000-4-5	Electromagnetic compatibility (EMC)
	Part 4. Testing and measurement techniques.
	Section 5: Surge immunity test.
EN 61000-4-6	Electromagnetic compatibility (EMC)
	Part 4. Testing and measurement techniques.
	Section 6: Immunity to Conducted disturbances, induced by
	Radio-frequency fields.
EN 61000-4-8	Electromagnetic Compatibility (EMC)
	Part4: Testing and measurement techniques
	Section4: Power frequency magnetic field immunity test
EN 61000-4-11	Electromagnetic compatibility (EMC)
	Part 4. Testing and measurement techniques.
	Section 11: Voltage dips, short interruptions and voltage
	variations immunity test.

2.3 Apparatus and Methods:

Measuring apparatus used during tests was designed and built to the requirements of: C.I.S.P.R. 16

3. <u>Deviations and Exclusions from the Test Specifications</u>

3.1 Deviations

Up to date versions of the basic standards have been used in this test programme. Where necessary, we have verified that the requirements of any older basic standards as may be referred to in the product standard have been complied with.

3.2 Exclusions

There were no exclusions from the test specification.

4. Operation of E.U.T. During Testing

4.1 **Operating Environment**

Supply Voltage: 230 Vac, 50 Hz for all tests and repeated at 120 Vac for EN 61000-4-11.

The following were the conditions at the time of immunity testing.

Temperature:	19-20 [°] C
Humidity:	54-56% RH

4.2 Operating Modes:

The E.U.T was connected to a bank of power resistors which loaded with DC output with 1 ohm.

The maximum clocking source in the EUT was 260 kHz

4.3 Compliance Criteria:

For radiated and conducted emissions, compliance was determined by comparing the measured results to the appropriate limits.

For immunity testing, compliance was determined by monitoring the output LED's and voltage for any signs of disturbance.

4.4 Criteria for compliance during immunity test

4.4.1 Performance Criteria A

During testing, normal performance within the specification limits.

4.4.2 Performance Criteria B

After the test the EUT shall maintain normal operation with no degradation of performance or loss of function.

4.4.3 Performance Criteria C

After the test it shall be possible to restart the EUT and regain normal operation with no degradation of performance or loss of function.

5 <u>Results</u>

5.1 Conducted Emissions

Voltage & Frequency: 230V 50Hz

Measurements of conducted emissions were carried out using the receiver analysis feature, which uses three detectors, peak, quasi peak and average. Using this mode, the voltage emission spectrum could be scanned in peak detection mode and emissions, which exceeded a sub range margin relevant to the respective limits, could be further measured. The receiver bandwidth was set to 10 kHz.

Appendix 3 illustrate the results. The test configuration is shown in Appendix 2.

5.1.1 Measurement Uncertainty

The measurement uncertainty (with a 95% confidence level) for the conducted emissions test was ±3.5 dB.

5.2 Radiated Emissions

Compliant measurements of radiated emissions were carried out in an Anechoic Chamber from 30 MHz to 1 GHz. The equipment and cable orientation were investigated to ensure that maximum emissions were obtained at critical frequencies. The antenna height was also adjusted through the range of 1m - 4m.

The receiver bandwidth was set to 120 kHz for frequencies between 30 MHz and 1 GHz. See Appendix 3 for results.

5.2.1 Measurement Uncertainty

The measurement uncertainty (with a 95% confidence level) for the radiated emissions test was $\pm 5.3 \text{ dB}$ (from 30 to 100 MHz), $\pm 4.7 \text{ dB}$ (from 100 to 300 MHz) and $\pm 3.9 \text{ dB}$ (from 300 to 1000 MHz

5.3 Immunity to Radiated, Radio Frequency Electromagnetic Fields

a) Radiated RF EM fields

Port:	Enclosure
Basic Standard:	EN 61000-4-3
Limit:	10 V/m (80% AM 1 kHz modulation)
Frequency range:	80-2700 MHz
Dwell time:	3 second dwell
Performance Criteria:	A

The EUT was placed in the anechoic chamber.

The step sizes from 80-2700MHz were in 1% steps. The dwell time at each frequency was 3 seconds. The test level was maintained at over 10 V/m at all frequencies in accordance with EN 60601-1-2.

The distance of the antenna from the EUT was 2.2 metres. The tests were carried out with the antenna oriented in horizontal and vertical polarisations for each side of the EUT.

The EUT was deemed to comply in accordance with the manufacturer's specification.

Radiated Immunity Tests

Frequency	Modulation	Polarisation	Level	Result
MHz	Frequency	(V/H)	(V/m)	
80-2700 MHz	1 kHz	V and H	10	Complied

b) Proximity fields from RF wireless communications equipment

Port:EnclosureDwell time:3 second dwell

The EUT was placed in the anechoic chamber.

The testing was carried out on the spot frequencies as listed below. The dwell time at each frequency was at least 3 seconds.

A field sensor was placed in close proximity to the system. The tests were carried out with the antenna oriented in horizontal and vertical polarisations for each side of the EUT.

The EUT was deemed to comply with Performance Criteria A when tested in accordance with the manufacturer's specification.

Frequency	Modulation	Polarisation	Level	Result
MHZ	Frequency	(V/H)	(V/m)	
385	18 Hz Pulse Modulation	V and H	27	Complied
450	50% 18 Hz Pulse Modulation	V and H	28	Complied
710	217 Hz Pulse Modulation	V and H	9	Complied
745	217 Hz Pulse Modulation	V and H	9	Complied
780	217 Hz Pulse Modulation	V and H	9	Complied
810	18 Hz Pulse Modulation	V and H	28	Complied
870	18 Hz Pulse Modulation	V and H	28	Complied
930	18 Hz Pulse Modulation	V and H	28	Complied
1720	217 Hz Pulse Modulation	V and H	28	Complied
1845	217 Hz Pulse Modulation	V and H	28	Complied
1970	217 Hz Pulse Modulation	V and H	28	Complied
2450	217 Hz Pulse Modulation	V and H	28	Complied
5240	217 Hz Pulse Modulation	V and H	9	Complied
5500	217 Hz Pulse Modulation	V and H	9	Complied
5785	217 Hz Pulse Modulation	V and H	9	Complied

Radiated Immunity Tests

5.4 Electrostatic Discharge Test

Port:	Enclosure
Basic Standard:	EN 61000-4-2
Limit:	$\pm 2, \pm 4$ & ± 8 kV contact discharges
	$\pm 2, \pm 4, \pm 8 \& \pm 15 \text{ kV}$ air discharges

The ESD generator contained a discharge capacitor of 150pF and resistor of 330Ω in accordance with the requirements of EN 61000-4-2. The tests were carried out using both positive and negative discharges. Discharges were applied to the EUT to comply with EN 61000-4-2.

Only parts of the equipment that can be touched during normal operation were subjected to discharges.

Air discharges of ± 2 , ± 4 , ± 8 & ± 15 kV, were applied to different points on the enclosure. Contact discharges of ± 2 , ± 4 & ± 8 kV, were applied to conductive points on the enclosure, in addition to the horizontal and vertical coupling planes. 10 discharges of each polarity were applied at each location.

The EUT while powered complied with Performance Criteria A during and after the application of discharges. Discharges were applied to chassis screws and chassis only.

ESD Discharge Points

5.5 Conducted RF Immunity

Ports:	AC mains.
Basic Standard:	EN 61000-4-6
Performance Criterion:	A
Limit:	10V emf, 80% AM modulation
Frequency range:	150 kHz to 80 MHz

The EUT was arranged according to the EN61000-4-6.

The test configuration is shown in Appendix 2.

The current was injected on the mains cable in common mode. Each surface of the EUT was more than 0.5m from other metal surfaces.

The test configuration used was the EM clamp injection method. The system was calibrated to provide a current input level equivalent to an injected voltage level of 10V emf into a 150-ohm system. The dwell time at each frequency was 3 seconds.

The E.U.T. was found to be operating satisfactorily during and subsequent to testing.

Port	Disturbance type	Result
Mains	10V emf, 150 kHz – 80 MHz	Complied
B 14		

Results of Conducted Immunity Testing

Figure 5: Conducted Immunity Test Set up

5.6 Electrical Fast Transient Test

Ports:	AC mains
Basic Standard:	EN 61000-4-4
Performance Criterion:	A
Level:	4
Limit:	\pm 1, \pm 2 & \pm 4 kV mains power ports

Positive and negative fast transient discharges of amplitude ± 1 , ± 2 & ± 4 kV were applied to the mains input in accordance with the requirements of EN 61000-4-4.

The test configuration is shown in Appendix 2.

The tests were carried out with negative and positive transients. The application time for each test was 1 minute.

The E.U.T. was found to be operating satisfactorily during and subsequent to testing.

Test port	Level	Result
Live	±1, ±2, ±4 kV	Complied
Neutral	±1, ±2, ±4 kV	Complied
L-N-E	±1, ±2, ±4 kV	Complied
Earth	±1, ±2, ±4 kV	Complied

5.7 Surge Immunity Test

AC Mains
EN 61000-4-5
А
3
±0.5, ±1 & ±2 kV
±0.5 & ±1 kV

Positive and negative surges were applied to each of the mains inputs in accordance with the requirements of EN 61000-4-5.

Surges were applied to the mains conductors coupled line to line and line to earth.

The test configuration is shown in Appendix 2.

The tests were carried out with positive and negative surges. The test was repeated every 60 seconds for a total of 5 times in each polarity and in all coupling modes. The tests were performed at 0°, 90°, 180° and 270° phases for both polarities.

The E.U.T. was found to be operating satisfactorily during and subsequent to testing.

Results of Surge Immunity Testing

Port	Mode of conduction	Disturbance level	Result
PSU	L-E	± 0.5, ±1, ±2 kV	Complied
PSU	N-E	± 0.5, ±1, ±2 kV	Complied
PSU	L-N	± 0.5, ±1 kV	Complied

5.8 Voltage Dips & Interruptions Test

Ports:	AC Mains
Basic Standard:	EN 61000-4-11
Dips:	Mains port - > 95% dip 0.5 cycles
	At 0°, 45°, 90°, 135°, 180°, 225°, 270° & 315°
	Mains port - >95% dip 1 cycle
	Mains port – 30% dip 25 cycles
	Mains port – 60% dip 10 cycles

Interruption: Mains port – Interruption 250 cycles

Dips and interruptions were applied to the mains input in accordance with the requirements of EN 61000-4-11.

The test configuration is shown in Appendix 2.

The E.U.T. was checked after each test run to ensure correct operation.

The E.U.T. was found to be operating satisfactorily during and subsequent to testing.

Results of Voltage	e Dips and	Interruptions	Testing
---------------------------	------------	---------------	---------

Port	Disturbance type	Result
Mains supply	>95% dip 0.5 cycles	Complied
240 Vac	At 0°, 45°, 90°, 135°, 180°, 225°, 270° & 315°	A
Mains supply	>95% dip 1 cycles	Complied
240 Vac		A
Mains supply	30% dip 25 cycles	Complied
240 Vac		A
Mains supply	60% dip 10 cycles	Complied
240 Vac		A
Mains supply	>95% interruption 250 cycles	Complied
240 Vac		С

5.9 Power Frequency Magnetic Field Immunity Test

Basic Standard:	EN 61000-4-8
Performance Criterion:	А
Limit:	30 A/m

The unit was placed on a non-conductive table of 0.8-meter height from the ground plane.

The test configuration is shown in Appendix 2.

The current level was set to 30 A/m and the unit was centred in the middle of the loop. The EUT was tested with the loop in both horizontal and vertical positions for one minute. The test was carried out at 230 Vac.

The EUT maintained normal operation during and subsequent to testing.

5.10 Fluctuating Harmonics

Ports:	AC mains
Basic Standard:	EN 61000-3-2
Class:	А

The test measures the current at each of the harmonic frequencies from the second harmonic up to the fortieth harmonic.

A 50 Hertz, 230 Volt AC source was used to power the unit in compliance with EN 61000-3-2. The current harmonic levels were measured and compared with the limit levels for Class A waveforms. See Appendix 3 for results.

The test configuration is shown in Appendix 2.

5.11 Flicker

Ports:	AC mains
Basic Standard:	EN 61000-3-3

The E.U.T. was connected to an impedance network and a 50 Hertz, 230 Volt AC source to power the unit in compliance with EN 61000-3-3.

The mains voltage flicker test was performed for 120 minutes. The E.U.T. flicker levels were significantly below the limit. See Appendix 3 for results.

The test configuration is shown in Appendix 2.

6 Analysis of Test Results, Conclusions

6.1 Measurement Uncertainties

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4 with a confidence level of 95%.

6.2 Radiated Emissions to EN 55011.

The E.U.T. complied with the radiated emission specification of EN 55011 class A by a margin of 6.4 dB at frequency 116.240 Mhz.

The E.U.T. complied with the radiated emission specification of EN 55011 class B with a ferrite fitted as outlined in Section 1.3 by a margin of 2.0 dB at frequency 229.652 Mhz.

6.3 Conducted Emissions to EN 55011.

The E.U.T. complied with the EN 55011 Class B conducted emission specification by a margin of greater than 1 dB (Ave detector)

6.4 Immunity.

The EUT complied with the immunity tests carried out to demonstrate compliance with EN 61000-6-2 & EN 60601-1-2 when tested in accordance with the manufacturers specifications.

6.5 Steady State and Fluctuating Harmonics

The E.U.T. complied with the tests carried out to demonstrate compliance with EN 61000-3-2.

6.6 Flicker

The E.U.T. complied with the tests carried out to demonstrate compliance with EN 61000-3-3.

Appendix 1

Test Equipment Used:

Instrument	Mftr.	Model	Serial No.
Measuring Receiver	Rohde and Schwarz	ESVS30	607
Measuring Receiver	Rohde and Schwarz	ESHS30	605
LISN	Rohde and Schwarz	ESH3-Z5	604
Signal Generator	Rohde and Schwarz	SME 03	765
Signal Generator	Rohde and Schwarz	SME 03	782
Power Amplifier	Ophir	5292FE	-
Anachoic Chamber	CEI	CEI	845
Power Amplifier	Schaffner	CBA9433	-
Field Monitor System	Amplifier Research	FM2000	616
Field Probe	Amplifier Research	FP2000	616
Bilog Antenna	Schaffner	CBL6140	-
Bilog Antenna	Schwarbeck	VULB9160	889
Transient Simulator	EMC Partner	TEMA 4000	921
Anechoic Chamber	CEI	-	845
Anechoic Chamber	CEI	-	627
N Type Cable	-	615	615
BNC Cable	-	601	601
EM Clamp	Schaffner	KEMZ 801	727
Directional Coupler	Lab Plant	RX 1026	738

Appendix 2

Test Configurations

Figure 1: Radiated Emissions Test Set up

Figure 2: Conducted Immunity Test Set up

Figure 3: Radiated Immunity Test Set up

Figure 4: Fast Transients Test Set up

Figure 5: Surges / Voltage Dips & Interruptions Test Set up

Figure 6: ESD Test set up

Figure 7: Harmonic and Flicker Test set up

Figure 8: Magnetic field Test set up

Appendix 3: Results

Compliance Engineering Ireland Itd Conducted Emissions

23. Aug 13 15:15

Manuf: Operator: Comment: VoxPower L Brien Live

Figure 1: Conducted Emissions, Live (Class B)

Figure 2: Conducted Emissions, Neutral (Class B)

Figure 3: Radiated Emissions, Vertical Scan (Class A) Pre-scan

RADIATED EMISSIONS

23. Aug 13 08:45

Manuf [.]	Kelsius
On Cond	Normal
Operator:	.I McAuley
Test Spec	EN 55022
Comment:	NO CABLES
Comment.	NO ONBELO

Scan S	ettings (1 F	Range)											
	Frequenci	ies		Rec	eiver	Settings							
Start	Stop	Step	IF BW D	etector	M-Tin	ne Atten Prear	np Op	Rge					
30M	1000M	120k	120k	PK	5ms	0dBLN OFF	60dB						
Final M	easuremer	nt: x Hor-l	Max / + Ve	ert-Max				Trans	duce	r No. S	Start S	Stop	Na
	Meas 7	Time: 1	s					3	9	20M	1000N	I CE	EIL61

Subranges: 8 Acc Margin: 0dB

me 5 19 30M 1000M BILOG

Figure 4: Radiated Emissions, Horizontal Scan (Class A)

Pre-scan

Frequency MHz	QP Level dBuV/m	Limit dbuV/m	Antenna Polarity	Antenna Height (m)	Pass / Fail
117.572	32.4	40	Vertical	1.00	Pass
274.200	28.7	47	Vertical	1.00	Pass
235.484	28.1	47	Vertical	1.00	Pass
150.480	25.6	40	Vertical	1.00	Pass
116.240	33.1	40	Horizontal	4.00	Pass

Table 1:

Radiated Emissions, 30MHz -1GHz, Class A Limits– Anechoic Chamber at 10metres

Figure 3 and 4 are peak level scan used to indicate peaks

RADIATED EMISSIONS

23. Aug 13 09:36

Manuf:	Kelsius
Op Cond:	Normal
Operator:	J McAuley
Test Spec:	EN 55022
Comment:	NO CABLES

Scan Se	ettings (1 F	Range)								
	Frequenci	ies		Rec	eiver S	Settings				
Start	Stop	Step	IF BW D	etector	M-Tin	ne Atten Prear	np OpR	Rge		
30M	1000M	120k	120k	PK	5ms	0dBLN OFF	60dB			
							-		.	
Final Me	easuremen	nt: x Hor-M	Max / + Ve	ert-Max				I ransducer No. Start	Stop	Name

 Meas Time:
 1 s
 3
 9
 20M
 1000M
 CEIL615

 Subranges:
 8
 19
 30M
 1000M
 BILOG

 Acc Margin:
 0dB

Figure 5: Radiated Emissions, Vertical Scan (Class B) Pre-scan

RADIATED EMISSIONS

23. Aug 13 09:44

Manuf:	Kelsius
Op Cond:	Normal
Operator:	J McAuley
Test Spec:	EN 55022
Comment:	NO CABLES

Scan Se	ettings (1 Ra	ange)											
	Frequencie	s		Red	ceiver \$	Settings							
Start	Stop	Step	IF BW D	etector	M-Tin	ne Atten Prear	mp OpR	ge					
30M	1000M	120k	120k	PK	5ms	0dBLN OFF	60dB						
Final Me	asurement:	: x Hor-N	Max / + Ve	ert-Max			٦	Frans	duce	er No.	Start	Stop	Name
	Meas Ti	me: 1	s					3	9	20M	1000	M C	EIL615
	Subrang	ges: 8							19	30M	1000	M	BILOG
	Acc Mar	rgin: Oc	dB										

Figure 6: Radiated Emissions, Horizontal Scan (Class B) Pre-scan

Frequency MHz	QP Level dBuV/m	EN55022 Limit dbuV/m	Antenna Polarity	Antenna Height (m)	Pass / Fail
117.652	23.1	30	Vertical	1.00	Pass
229.652	28.0	30	Vertical	1.00	Pass
117.700	26.6	30	Horizontal	4.00	Pass

Table 1:

Radiated Emissions, with ferrites 30MHz -1GHz, Class B Limits– Anechoic Chamber at 10metres

Figure 5 and 6 are peak level scan used to indicate peaks

Harmonics – Class-A per Ed. 3.0 (2005-11) (Run time)

EUT: Nevo1200 Tested by: Lewis Brien Test category: Class-A per Ed. 3.0 (2005-11) (European limits) Test Margin: 100 Test date: 24/10/2013 Start time: 16:37:26 End time: 16:47:47 Test duration (min): 10 Data file name: H-001712.cts_data Comment: Comments Customer: Vox Power 13E4772

Test Result: Pass Source qualification: Distorted

Current & voltage waveforms

Harmonics and Class A limit line

_ _

European Limits

Current Test Result Summary (Run time)

EUT: Nevo1200 **Tested by: Lewis Brien** Test category: Class-A per Ed. 3.0 (2005-11) (European limits) Test Margin: 100 Test date: 24/10/2013 Start time: 16:37:26 End time: 16:47:47 Test duration (min): 10 Data file name: H-001712.cts data **Comment: Comments** Customer: Vox Power 13E4772 **Test Result: Pass** Source gualification: Distorted I-THD (%): 4.55 THC (A): 0.24 POHC (A): 0.105 POHC Limit (A): 0.251 Highest parameter values during test: V_RMS (Volts): 238.20 I-Peak (Amps): 8.161 Frequency (Hz): 50.00 I-RMS (Amps): 5.393 I-Fund (Amps): 5.383 **Crest Factor:** 1.517 Power (Watts): 1276.7 **Power Factor:** 0.994 Harm# Harms (avg) 100%Limit %of Limit Harms (max) 150%Limit %of Limit Status 2 0.004 1.080 0.006 0.35 0.4 1.620 Pass 3 0.208 2.300 9.1 0.214 3.450 6.20 Pass 4 0.002 0.430 0.5 0.004 0.645 0.56 Pass 5 0.036 1.140 3.1 0.037 1.710 2.18 Pass 6 0.300 0.002 0.002 0.6 0.450 0.51 Pass 7 0.021 0.770 2.8 0.022 1.155 1.94 Pass 8 0.001 0.230 0.5 0.002 0.345 0.55 Pass 9 0.400 4.2 Pass 0.017 0.018 0.600 3.01 10 0.001 0.184 0.8 0.002 0.276 0.83 Pass 0.017 0.330 5.2 0.018 0.495 3.68 Pass 11 12 0.002 0.153 1.5 0.003 0.230 1.19 Pass 0.026 13 0.025 0.210 11.8 0.315 8.22 Pass 14 0.002 0.131 1.8 0.003 0.197 1.76 Pass 15 0.150 15.8 11.36 0.024 0.026 0.225 Pass 16 0.002 0.115 1.5 0.003 0.173 1.75 Pass Pass 0.028 0.132 20.9 0.029 0.199 14.55 17 18 0.002 0.102 2.0 0.003 0.153 1.81 Pass 19 24.0 0.030 16.89 Pass 0.028 0.118 0.178 20 0.002 0.092 1.9 0.003 0.138 2.34 Pass 28.6 19.81 21 0.031 0.107 0.032 0.161 Pass 0.003 22 0.002 0.084 2.3 0.125 2.40 Pass 23 0.033 0.098 33.5 0.034 0.147 23.30 Pass 24 0.002 0.077 2.4 0.003 0.115 2.71 Pass 25 0.090 0.033 36.5 0.035 0.135 25.56 Pass 26 0.002 0.071 3.0 0.003 0.106 Pass 2.77 27 0.030 0.083 36.3 0.032 0.125 25.83 Pass 28 0.003 0.066 0.004 0.099 4.12 Pass 4.4 37.9 27.21 29 0.029 0.078 0.032 0.116 Pass 30 0.002 0.061 0.004 0.092 4.14 Pass 3.9 34.96 50.5 31 0.037 0.073 0.038 0.109 Pass 0.002 0.004 32 0.058 3.8 0.086 4.14 Pass 33 0.032 0.068 47.4 0.034 0.102 33.51 Pass 34 0.003 0.054 5.4 0.005 0.081 5.77 Pass 35 0.064 47.2 33.69 0.030 0.032 0.096 Pass 0.051 0.005 36 0.003 6.1 0.077 6.11 Pass 37 0.038 0.061 63.0 0.040 0.091 44.37 Pass 0.048 0.008 Pass 38 0.003 0.073 10.28 6.9 39 0.041 0.058 70.3 0.043 0.087 49.03 Pass 40 0.003 0.046 6.0 0.005 0.069 6.85 Pass

Voltage Source Verification Data (Run time)

EUT: Nevo1200 **Tested by: Lewis Brien** Test category: Class-A per Ed. 3.0 (2005-11) (European limits) Test Margin: 100 Start time: 16:37:26 End time: 16:47:47 Test date: 24/10/2013 Data file name: H-001712.cts data Test duration (min): 10 **Comment: Comments** Customer: Vox Power 13E4772 Test Result: Pass Source qualification: Distorted Highest parameter values during test: Voltage (Vrms): 238.20 Frequency (Hz): 50.00 I-Peak (Amps): I-RMS (Amps): 5.393 8.161 I-Fund (Amps): 5.383 **Crest Factor:** 1.517 Power (Watts): **Power Factor:** 0.994 1276.7 Harm# Harmonics V-rms Limit V-rms % of Limit Status 2 0.476 28.70 OK 0.137 3 0.275 2.142 12.82 OK 4 0.476 0.159 33.49 OK 5 0.283 0.952 29.74 ΟΚ 6 0.107 0.476 22.53 OK 7 οκ 0.177 0.714 24.78 8 ΟΚ 0.096 0.476 20.10 9 0.169 0.476 35.50 OK 10 0.078 0.476 16.28 ΟΚ 11 0.200 0.238 ΟΚ 83.96 12 0.083 0.238 34.92 OK 13 91.88 OK 0.219 0.238 14 0.106 0.238 44.64 ΟΚ 15 0.142 0.238 59.56 OK 16 0.074 0.238 31.25 OK 17 ΟΚ 0.182 0.238 76.37 18 0.078 0.238 32.76 ΟΚ 87.72 19 0.209 0.238 OK 0.238 30.62 ΟΚ 20 0.073 21 0.241 0.238 101.37 Marg. 22 0.075 0.238 31.36 OK 23 Dist. 0.289 0.238 121.56 0.068 24 0.238 28.70 OK 25 0.260 0.238 109.15 Marg. 26 0.238 29.05 0.069 OK 0.238 Marg. 27 0.258 108.34 28 0.092 0.238 38.62 ΟK 29 Dist. 0.295 0.238 123.75 30 0.073 0.238 30.55 OK 31 0.380 0.238 159.50 Dist. 32 0.076 0.238 31.78 ΟΚ 33 Dist. 0.301 0.238 126.24 0.090 0.238 34 37.81 OK 35 0.329 0.238 138.20 Dist. 36 0.077 0.238 32.13 OK 37 0.453 0.238 Dist. 190.19 38 0.093 0.238 38.84 OK 39 0.422 0.238 177.10 Dist. 40 0.238 26.80 OK 0.064

Flicker Test Summary per EN/IEC61000-3-3 (Run time)

EUT: Nevo1200Tested by: L BrienTest category: All parameters (European limits)Test Margin: 100Test date: 24/10/2013Start time: 16:52:02End time: 18:52:23Test duration (min): 120Data file name: F-001713.cts_dataComment: CommentsCustomer: Vox Power 13E4772

Test Result: Pass

Status: Test Completed

Pst and limit line

European Limits

Plt and limit line

Parameter values recorded during the test: Vrms at the end of test (Volt): 238.06 Highest dt (%): 0.21

	200.00			
Highest dt (%):	0.21	Test limit (%):	3.30	Pass
Time (mS) > dt:	0.0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.10	Test limit (%):	3.30	Pass
Highest dmax (%):	-0.21	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.064	Test limit:	1.000	Pass
Highest Plt (2 hr. period):	0.064	Test limit:	0.650	Pass