

AO4435 30V P-Channel MOSFET

General Description

The AO4435 uses advanced trench technology to provide excellent $R_{DS(ON)}$, and ultra-low low gate charge with a 25V gate rating. This device is suitable for use as a load switch or in PWM applications.

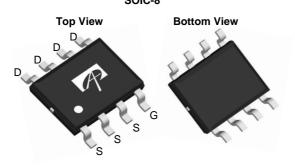
- -RoHS Compliant
- -AO4435 is Halogen Free

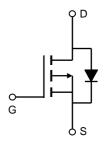
Product Summary

 $V_{DS} = -30V$

 $I_D = -10.5A$ $(V_{GS} = -20V)$

 $R_{DS(ON)}$ < 14m Ω (V_{GS} = -20V)


 $R_{DS(ON)} < 18m\Omega (V_{GS} = -10V)$


 $R_{DS(ON)} < 36m\Omega (V_{GS} = -5V)$

100% UIS Tested 100% Rg Tested

Absolute Maximum Ratings T_{Δ} =	25℃ unless otherwise noted
---	----------------------------

Doromotor		Cumbal	Marrimore	Linita
Parameter		Symbol	Maximum	Units
Drain-Source Voltage	!	V_{DS}	-30	V
Gate-Source Voltage		V_{GS}	±25	V
Continuous Drain	T _A =25℃		-10.5	
Current ^A	T _A =70℃	I _D	-8	Α
Pulsed Drain Current	В	I _{DM}	-80	
Dower Discipation A	T _A =25℃	P_{D}	3.1	W
Power Dissipation ^A	T _A =70℃	- D	2.0	VV
Avalanche Current ^B		I _{AR}	-20	А
Repetitive avalanche	energy 0.3mH ^B	E _{AR}	60	mJ
Junction and Storage	Temperature Range	T _J , T _{STG}	-55 to 150	C

Thermal Characteristics												
Parameter	Symbol	Тур	Max	Units								
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{ hetaJA}$	32	40	℃/W							
Maximum Junction-to-Ambient A Steady State		IN _θ JA	60	75	℃/W							
Maximum Junction-to-Lead ^C	$R_{ hetaJL}$	17	24	℃/W								

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, \ V_{GS} = 0 V$	-30			V
1	Zero Gate Voltage Drain Current	$V_{DS} = -30V, V_{GS} = 0V$			-1	μΑ
I _{DSS}	Zero Gate Voltage Drain Current	T _J = 55℃			-5	μΑ
I_{GSS}	Gate-Body leakage current	$V_{DS} = 0V, V_{GS} = \pm 25V$			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS} I_D = -250\mu A$	-1.7	-2.3	-3	V
$I_{D(ON)}$	On state drain current	$V_{GS} = -10V, V_{DS} = -5V$	-80			Α
		$V_{GS} = -20V, I_D = -11A$		11	14	
R _{DS(ON)}	Static Drain-Source On-Resistance	T _J =125℃		15	19	mΩ
DS(ON)	Static Dialif-Source Off-Nesistance	$V_{GS} = -10V, I_D = -10A$		15	18	11122
		$V_{GS} = -5V, I_D = -5A$		27	36	
g FS	Forward Transconductance	$V_{DS} = -5V, I_{D} = -10A$		22		S
V_{SD}	Diode Forward Voltage	$I_S = -1A, V_{GS} = 0V$		-0.74	-1	V
Is	Maximum Body-Diode Continuous Curr	ent			-3.5	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			1130	1400	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz		240		pF
C _{rss}	Reverse Transfer Capacitance			155		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	1	5.8	8	Ω
SWITCHI	NG PARAMETERS					
$Q_{g(10V)}$	Total Gate Charge			18	24	nC
Q _{g(4.5V)}	Total Gate Charge	V _{GS} =-10V, V _{DS} =-15V, I _D =-10A		9.5		
Q_{gs}	Gate Source Charge	VGS=-10V, VDS=-13V, 1D=-10A		5.5		nC
Q_{gd}	Gate Drain Charge			3.3		nC
t _{D(on)}	Turn-On DelayTime			8.7		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =1.5 Ω ,		8.5		ns
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =3 Ω		18		ns
t _f	Turn-Off Fall Time	<u> </u>		7		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-10A, dI/dt=100A/μs		25	30	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-10A, dI/dt=100A/μs		12		nC

A: The value of R BIA is measured with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with T A = 25°C.

Rev7: Nov. 2010

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

The value in any given application depends on the user's specific board design. The current rating is based on the $t \le 10s$ thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in ² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The SOA curve provides a single pulse rating.

F. The current rating is based on the $t \le 10s$ thermal resistance rating.

G. E_{AR} and I_{AR} ratings are based on low frequency and duty cycles to keep T_j =25C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

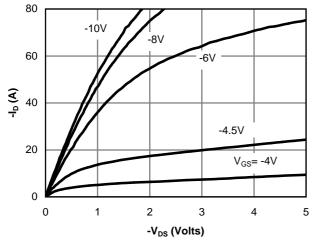


Figure 1: On-Region Characteristics

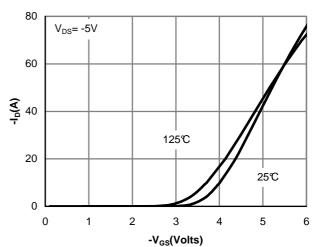


Figure 2: Transfer Characteristics

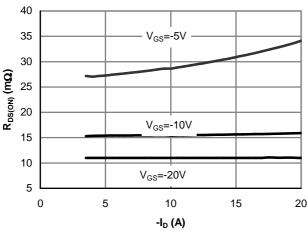


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

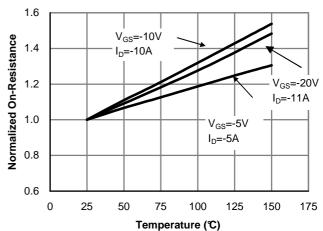


Figure 4: On-Resistance vs. Junction Temperature

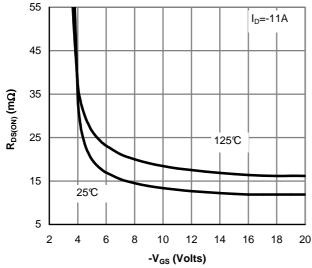


Figure 5: On-Resistance vs. Gate-Source Voltage

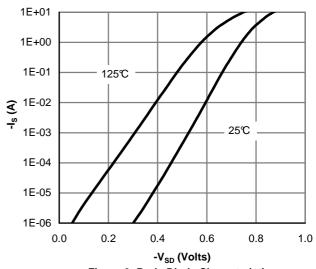


Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

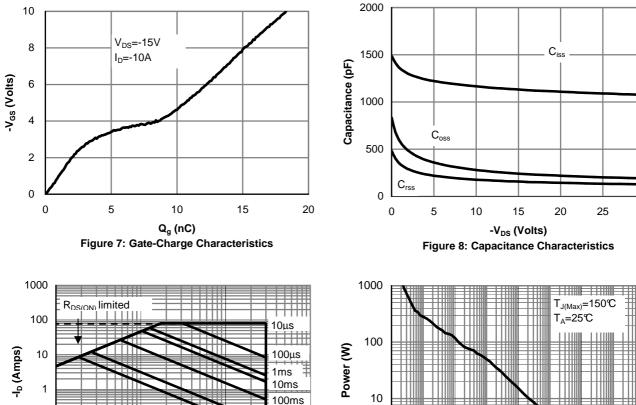
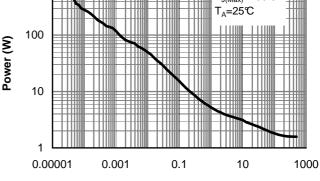


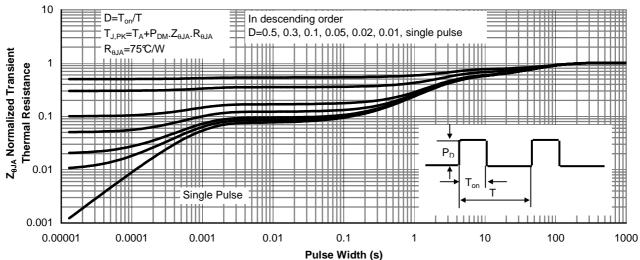
Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

-V_{DS} (Volts)


10

 $T_{J(Max)}=150$ °C $T_A=25$ °C

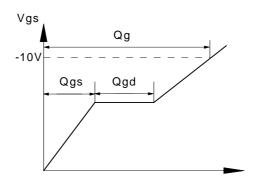
0.1


0.01

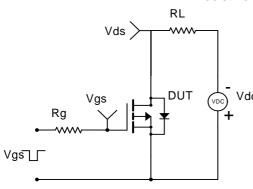
0.1

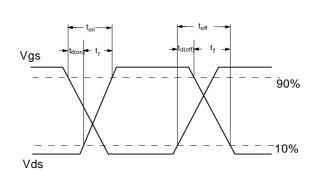
30

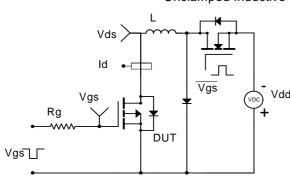

Pulse Width (s) Figure 10: Single Pulse Power Rating Junctionto-Ambient (Note E)

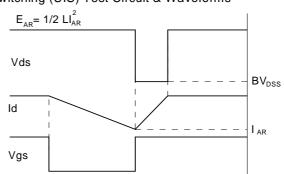


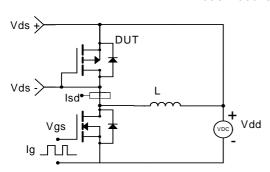
100

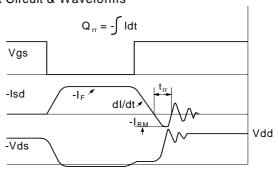

Figure 11: Normalized Maximum Transient Thermal Impedance(Note E)


Gate Charge Test Circuit & Waveform

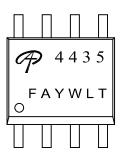



Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms



Document No.	PD-00690
Version	В
Title	AO4435 Marking Description

SO-8 PACKAGE MARKING DESCRIPTION

Green product

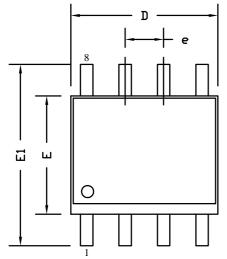
NOTE:

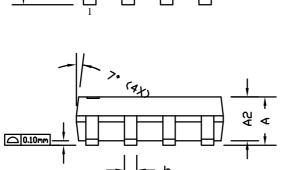
LOGO - AOS Logo

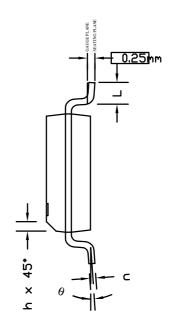
- Part number code

F - Fab code

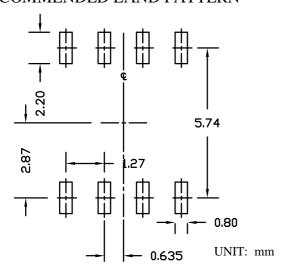
A - Assembly location code


Y - Year code W - Week code L&T - Assembly lot code


PART NO.	DESCRIPTION	CODE
AO4435	Green product	4435
AO4435L	Green product	4435



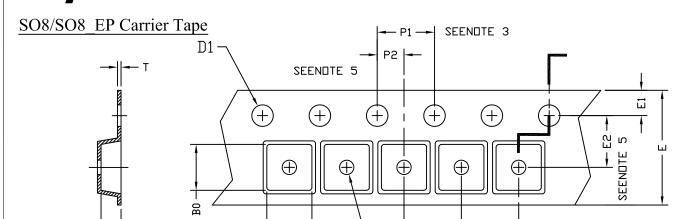
Document No.	PO-00004
Version	Ι


SO8 PACKAGE OUTLINE

RECOMMENDED LAND PATTERN

SYMBOLS	DIMENSIC	NS IN MILL	IMETERS	DIME	NSIONS IN IN	CHES
STWIDOLS	MIN	NOM	MAX	MIN	NOM	MAX
A	1.35	1.65	1.75	0.053	0.065	0.069
A1	0.10	0.15	0.25	0.004	0.006	0.010
A2	1.25	1.50	1.65	0.049	0.059	0.065
b	0.31	0.41	0.51	0.012	0.016	0.020
С	0.17	0.20	0.25	0.007	0.008	0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
Е	3.80	3.90	4.00	0.150	0.154	0.157
e	1	.27 BSC		(0.050 BSC	,
E1	5.80	6.00	6.20	0.228	0.236	0.244
h	0.25	0.30	0.50	0.010	0.012	0.020
L	0.40	0.69	1.27	0.016	0.027	0.050
θ	0°	4°	8°	0°	4°	8°

NOTE

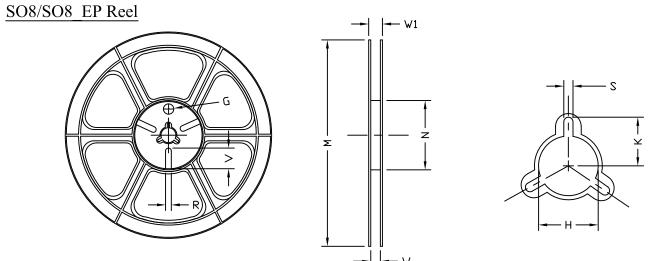

- 1. ALL DIMENSIONS ARE IN MILLMETERS.
- 2. DIMENSIONS ARE INCLUSIVE OF PLATING.
- 3. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS. MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH.
- 4. DIMENSION L IS MEASURED IN GAUGE PLANE.
- 5. CONTROLLING DIMENSION IS MILLIMETER.

CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

ALPHA & OME OF SEMICONDUCTOR, LTD.

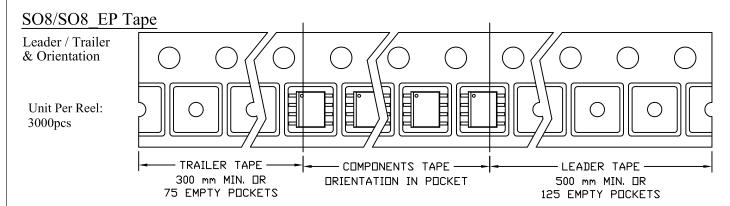
ALPHA & OMEGA SO8/SO8_EP Tape and Reel Data

FEEDING DIRECTION



UNIT: MM

K0 -


PACKAGE	Α0	В0	К0	D0	D1	E	E1	E2	P0	P1	P2	Т
SD-8	6.40	5.20	2.10	1.60	1.50	12.00	1.75	5.50	8.00	4.00	2.00	0.25
(12 mm)	±0.10	±0.10	±0.10	±0.10	+0.10	±0.30	±0.10	±0.05	±0.10	±0.10	±0.05	±0.05

DO

UNIT: MM

TAPE SIZE	REEL SIZE	М	N	W	W1	Ι	К	S	G	R	V
12 mm	ø330	ø330.00 ±0.50	ø97.00 ±0.10	13.00 ±0.30	17.40 ±1.00	ø13.00 +0.50 -0.20	10.60	2.00 ±0.50			

AOS Semiconductor Product Reliability Report

AO4435/L, rev C

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc www.aosmd.com

This AOS product reliability report summarizes the qualification result for AO4435/L. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO4435/L passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

- Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation

I. Product Description:

The AO4435/L uses advanced trench technology to provide excellent $R_{DS(ON)}$, and ultra-low low gate charge with a 25V gate rating. This device is suitable for use as a load switch or in PWM applications. AO4435 and AO4435L are electrically identical.

- -RoHS Compliant
- -AO4435L is Halogen Free

Detailed information refers to datasheet.

II. Die / Package Information:

AO4435/L

Process Standard sub-micron

Low voltage P channel

Package Type8 lead SOICLead FrameCopperDie AttachAg EpoxyBonding WireCu wire

Mold Material Epoxy resin with silica filler MSL (moisture sensitive level) Level 1 based on J-STD-020

Note * based on information provided by assembler and mold compound supplier

III. Result of Reliability Stress for AO4435/L

Test Item	Test Condition	Time	Lot	Total	Number	Standard
		Point	Attribution	Sample	of	
				size	Failures	
MSL Precondition	168hr 85℃ /85%RH +3 cycle reflow@260℃	-	29 lots	3575pcs	0	JESD22- A113
HTGB	Temp = 150 °c, Vgs=100% of	168hrs 500 hrs	1 lot	308pcs	0	JESD22- A108
	Vgsmax	1000 hrs	3 lots (Note A*)	77pcs / lot		
HTRB	Temp = 150 °c,	168hrs	1 lot	308pcs	0	JESD22-
5	Vds=80% of Vdsmax	500 hrs 1000 hrs	3 lots			A108
			(Note A*)	77pcs / lot		
HAST	130 +/- 2°c, 85%RH, 33.3 psi, Vgs = 80% of Vgs	100 hrs	16 lots	880pcs	0	JESD22- A110
	max		(Note A*)	55 pcs / lot		
Pressure Pot	121°c, 29.7psi, RH=100%	96 hrs	20 lots	1100pcs	0	JESD22- A102
			(Note A*)	55 pcs / lot		
Temperature Cycle	-65°c to 150°c, air to air	250 / 500 cycles	29 lots	1595pcs	0	JESD22- A104
			(Note A*)	55 pcs / lot		

Note A: The reliability data presents total of available generic data up to the published date.

IV. Reliability Evaluation

FIT rate (per billion): 7 MTTF = 15704 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AO4435/L). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate =
$$\text{Chi}^2 \times 10^9 / [2 \text{ (N) (H) (Af)}]$$

= 1.83 x 10⁹ / [2 x (2x77x168+3x2x77x1000) x 258] = 7
MTTF = 10^9 / FIT = 1.38 x 10⁸hrs = 15704 years

 Chi^2 = Chi Squared Distribution, determined by the number of failures and confidence interval N = Total Number of units from HTRB and HTGB tests

H = Duration of HTRB/HTGB testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55℃)

Acceleration Factor [Af] = Exp [Ea/k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	258	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u = The use junction temperature in degree (Kelvin), K = C+273.16

 $\mathbf{K} = \text{Boltzmann's constant}, 8.617164 \ \text{X} \ 10\text{-}5\text{eV} \ / \ \text{K}$