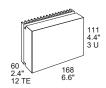


240 - 300 Watt AC-DC and DC-DC Converters

An input over- and undervoltage lockout circuitry disables the outputs if the input voltage is outside of the specified range. Input inrush current limitation is included to prevent circuit breakers and fuses from tripping at switch-on.

The outputs are open- and short-circuit proof.

Full input-to-output, input-to-case, output-to-case, and output to output isolation is provided. Particularly the outputs exhibit an extended insulation to the case.


- · Class I equipment
- · Universal AC input voltage range with PFC and DC input
- · Inrush current limitation
- · 2 isolated, adjustable outputs
- · No load, overload, and short-circuit proof
- Rectangular current limiting characteristic with flexible load distribution
- · Inhibit function
- · Parallel operation with active current sharing
- · Interruption time 20 ms
- Immunity according to EN 61000-4-2, -3, -4, -5, -6, -8
- RoHS-compliant
- Fire & smoke according to EN 45545
- · All PCB boards protected by lacquer
- · Very high reliability
- 5 year warranty
- AREMA compliant

Safety-approved to the latest edition of IEC/EN 62368-1 and UL/CSA 62368-1

Table of Contents

Description	1
Model Selection	
Functional Description	3
Electrical Input Data	
Electrical Output Data	5
Auxiliary Functions	9

Electromagnetic Compatibility (EMC)	12
mmunity to Environmental Conditions	
Mechanical Data	16
Safety and Installation Instructions	19
Description of Options	20
Accessories	21

240 - 300 Watt AC-DC and DC-DC Converters

Description

All PCB boards are coated with a protective lacquer.

The case design allows for operation at nominal load up to 71 °C with natural cooling. If forced cooling is provided, the ambient temperature may exceed 71 °C, but the case temperature must remain below 95 °C.

A temperature sensor generates an inhibit signal, which disables the outputs when the case temperature T_c exceeds the limit. The outputs are automatically re-enabled when the temperature drops below the limit.

LED indicators display the status of the converter and allow for visual monitoring of the system at any time.

The converters can either be plugged into a 19" rack system according to IEC 60297-3, or be chassis mounted. Two heat sinks of different size and cooling plates for chassis mounting (option B, B1) are available.

Model Selection

Table 1: Model selection

Out	put 1	Outp	out 2	Power	Operating Input Voltage		Effici	iency		Model	Options
V _{o nom}	I _{o nom}	V _{o nom}	I _{o nom}	P _{o nom}	$V_{\rm icont}$	η,	1 10	η₂	2 30		
[V]	[A]	[V]	[A]	[W]		min [%]	typ [%]	min [%]	typ [%]		
12	10	12	10	240	90 – 264 VAC	90	91	90	92	LR2320-9	
12	12.5	12	12.5	300	125 – 300 VDC	90	91	90	92	LRP2320-9	F0, F2,
15	8	15	8	240	125 – 300 VDC	90	91	90	92	LR2540-9	B, B1
15	10	15	10	300		90	91	90	92	LRP2540-9	

Efficiency at $T_{\rm A}$ = 25 °C, $V_{\rm I}$ = 110 VAC, $I_{\rm o,nom}$, $V_{\rm o,nom}$ Efficiency at $T_{\rm A}$ = 25 °C, $V_{\rm I}$ = 230 VAC, $I_{\rm o,nom}$, $V_{\rm o,nom}$

Part Number Description

LR 2 3 20 -9 B1 Operating input voltage $V_{i cont}$ (continuously): 90 - 264 VAC. 125 - 300 VDCLR. LRP Number of outputs2 Nominal voltage of main output $V_{\text{ol nom}}$ 12 V3 15 V5 Other voltages 11 - 9 Nominal voltage of tracking output V_{2}^{2} 12 V20 15 V40 Other specifications or additional features 1 11 – 99 Operational temperature range: T_{Δ} : $T_{\rm A} = -40$ to 71 °C, $T_{\rm C} \le 95$ °C-9 Other 1-0, -5, -6 Auxiliary functions and options: Fuse options F0, F2 Cooling plate standard case......B, B1

Note: The sequence of options must follow the order above.

Example: LR2320-9B1: AC-DC converter, operating input voltage range 90 to 264 VAC, 2 isolated outputs, each providing 12 V, 10 A, cooling plate B1, RoHS-compliant for all six substances.

Product Marking

Basic type designation: applicable approval marks, CE mark, warnings, pin designation, patents and company logo, identification of LEDs. Specific type designation: input voltage range, nominal output voltages and currents, degree of protection, batch no., serial no., and data code including production site, modification status, and date of production.

tech.support@psbel.com belfuse.com/power-solutions

BCD.00580 Rev AF, 26-Jul-2019

Customer-specific models. No safety-relevant changes compared to the respective basic model, e.g. different mechanical details, special markings, mounted front plates, reduced output voltage, etc.

The nominal voltages of both outputs are always equal.

240 - 300 Watt AC-DC and DC-DC Converters

Functional Description

The input voltage is fed via an efficient filter and a bridge rectifier to the PFC-corrected step-up converter, which generates the intermediate voltage across the bulk capacitor $C_{\rm b}$. The inrush current is limited by the resistor $R_{\rm inr}$, which is shorted by $V_{\rm inr}$, after the bulk capacitor was charged.

The bulk capacitor sources a half bridge DC-DC converter and provides the power during the specified hold-up time.

The main transformer exhibits two secondary windings for the two outputs. The resultant voltages are rectified by synchronous rectifiers in order to provide the best efficiency. Their ripple voltages are smoothed by a dual choke and output filters. The control logic senses the main output voltage V_{o1} and generates the gate signals for the DC-DC converter, which are transferred by isolated drivers to the primary side.

The second output is tracking the main output voltage, but has its own current limiting circuit. If the main output voltage drops due to over current, the second output voltage will drop as well and vice versa. Primary current sensing limits the sum of both output currents, such allowing for loading the main output up to 140% of I_{older} .

The output voltages can be adjusted by external means. Parallel operation of several converters is possible by connecting the T-pins together, in order to provide active current sharing. Both outputs can be connected in parallel or in series. They exhibit a rectangular current limitation characteristic. Switchable preloads ensure good regulation even with no load at one output.

A control output (D) and two LEDs signal correct operation of the converter. In case of an output overvoltage of the main output, the converter is disabled by a latch.

When the input voltage is too high, the overvoltage lockout disables the DC-DC converter and protects it from damage.

Temperature sensors on the primary and secondary side prevent the converter from excessive warm-up.

A cooling plate for chassis-mounting is available (opt. B, B1).

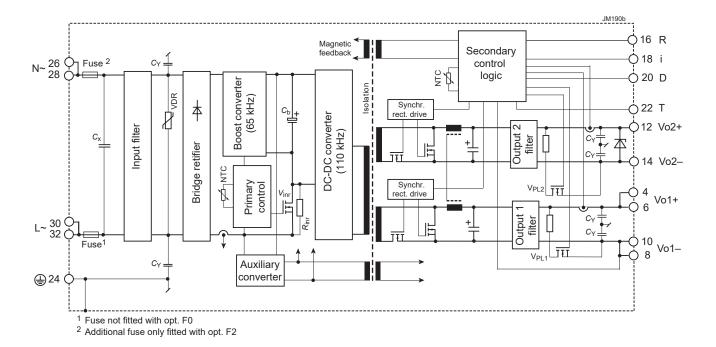


Fig. 1 Block diagram

240 - 300 Watt AC-DC and DC-DC Converters

Electrical Input Data

General conditions:

- T_A = 25 °C, unless T_C is specified.
- Pîn 18 (i) connected to pin 8, pin 16 (R), pin 18 (D), and pin 22 (T) left open-circuit.

Table 2: Input data

Mod	el			LR			LRP		Unit
Chai	racteristics	Conditions	min	typ	max	min	typ	max	
V _i	Rated input voltage range	1-0-1	100		240	100		240	VAC 1
V _{i cont}	Operating input voltage range	$I_{o} = 0 - I_{o \text{ nom}}$	90		264	90		264	VAC
V _{i DC}	Continuous DC input voltage range	$T_{\rm Cmin}$ to $T_{\rm Cmax}$	125		300	125		300	VDC
$V_{_{\mathrm{i}\mathrm{nom}}}$	Nominal input voltage 1	50 – 60 Hz		(110) 230			(110) 230		VAC
I _i	Input current	V _{i nom} , I _{o nom}		(2.5) 1.2			(3.1) 1.5		Α
P_{i0}	No-load input power	$V_{\text{i min}} - V_{\text{i max}} I_{\text{o}} = 0$			15			15	W
$P_{i inh}$	Idle input power	Converter inhibited		1.3	2		1.3	2] vv
C _b	Boost capacitance			360			360		μF
t _{hu}	Interruption time	$V_i = 0$ AC or DC, $I_{o \text{ nom}}$	20			20			ma
t_{on}	Start-up time	$V_{\rm i} = 0 \rightarrow V_{\rm i nom}, I_{\rm o nom}$		500			500		ms
$V_{_{\mathrm{i}\mathrm{abs}}}$	Input voltage limits without damage	< 2 s	-400		400	-400		400	V _{peak}

¹ Rated input frequency: 50 – 60 Hz, operating frequency: 47 – 63 Hz.

Input Fuse and Protection

A VDR together with the input fuse and a symmetrical input filter form an effective protection against high input transient voltages.

If option F0 was chosen, the installer has to provide an external circuit breaker or fuse according to table 3. Without option F, a fuse is incorporated in the phase line (pins 30 + 32). A second fuse in the neutral line may be necessary in certain applications (option F2); see *Options* and *Installation Instructions*.

Table 3: Fuse specification (AC input voltage)

Model	Fuse rating (AC input)	Reference
LR2320, LR2540	6.3 A, 250 V, slow, 5 × 20 mm	SCHURTER 0001.2512.PT
LRP2320, LRP2540	6.3 A, 250 V, slow, 5 × 20 mm	SCHURTER 0001.2512.PT

Input Under-/Overvoltage Lockout

If the input voltage is below approx. 80 VAC or exceeds $V_{i \text{ op max}}$, an internally generated inhibit signal disables the outputs. If V_i is below $V_{i \text{ min}}$, but above the undervoltage lockout level, the output voltage may be below the value specified in the tables *Electrical Output Data*.

Inrush Current Limitation

All models exhibit an electronic inrush current limitation to protect connectors and switching devices against damage.

Efficiency

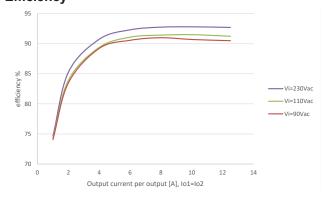


Fig. 2
Efficiency versus V, and I (LRP2320, both outputs connected in series)

tech.support@psbel.com belfuse.com/power-solutions

BCD.00580 Rev AF, 26-Jul-2019

240 - 300 Watt AC-DC and DC-DC Converters

Electrical Output Data

General Conditions:

- $T_{\rm A}$ = 25 °C, unless $T_{\rm C}$ is specified.
- Pin 18 (i) connected to pin 8, pin 16 (R), pin 20 (D), and pin 22 (T) left open-circuit.

Table 4a: Output data of LR2320 and LRP2320

Mode	l (Nom. outp	ut voltage)			L	R2320	2 x 12 \	/)			L	RP2320	(2 x 12 \	V)		Unit
Chara	-4		Conditions	Output 1			Output 2		Output 1			Output 2				
Chara	cteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	min	typ	max	
V _o	Output volta	age	V _{i nom} , 0.5 I _{o nom}	11.93	12.0	12.07		12.0		11.93	12.0	12.07		12.0		
V _{o BR}	Output prote (suppressor		Output 2		-		14.3		15.8		-		14.3		15.8	V
I _{o nom}	Output curre	ent nom. 1	., .,		10 ⁷			10			12.5 ⁷			12.5		
I _{o1L,} I _{o2L}	Output curre	ent limit1	$V_{i \min} - V_{i \max}$	10.5		17 ⁷	10.5			13		21.257	13			Α
I _{o12L}	Output curre	ent limit 1, 2	T _{C min} — T _{C max}	21 ²			-			26²			-			
V _o	Output nois spikes 6	e incl.	V _{i nom} , I _{o nom} BW = 20 MHz			60			60			60			60	mV _{pp}
V _{o adj}	Adjustment	by R-input ⁴	14 14	6.0		13.21		3		6.0		13.2 ¹		3		V
$\Delta V_{\rm ou}$	Static line/lo (total deviat	ad regulation ion of V_{o})	$V_{\text{i min}} - V_{\text{i max}}$ $(0.1 - 1) I_{\text{o nom}}$			±120		3				±120		3		- mV
V _{od}	Dynamic load	Voltage deviation ⁵	$V_{\text{i nom,}} 0.5 I_{\text{o2 nom}}$ $I_{\text{o1 nom}} \leftrightarrow 0.5 I_{\text{o1 nom}}$		±200			±200			±250			±250		IIIV
t _{od}	regulation	Recovery time ⁵	and after turn on		1			3			1			3		ms
ανο	Temperature of output vo	e coefficient oltage	I _{o nom} T _{C min} - T _{C max}			0.02		-				0.02		-		%/K

- ¹ If V_o is increased above $V_{o \text{ nom}}$ through R-, or T-input, the output currents should be reduced so that $P_{o \text{ nom}}$ is not exceeded. ² Both outputs connected in parallel
- See Output voltage regulation
- For battery charger application, a defined negative temp. coefficient can be provided by using a temp. sensor (see Accessories)
- ⁵ See Dynamic load regulation
- ⁶ Measured with a ceramic cap of 1 μF across each output.
- $I_{\rm o1}$ can be increased to 140% of $I_{\rm o1\,nom}$ if $I_{\rm o2}$ is reduced accordingly

240 - 300 Watt AC-DC and DC-DC Converters

Table 4b: Output data of LR2540 and LRP2540. General conditions as per table 4a

Model	(Nom. outp	out voltage)			L	.R2540 (2	2 x 15 \	/)			LI	RP2540 ((2 x 12 \	V)		Unit
Chara	cteristics		Conditions	Output 1			Output 2		Output 1			Output 2				
Cnara	cteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	min	typ	max	
V _o	Output volta	age	V _{i nom} , 0.5 I _{o nom}	14.91	15.0	15.09		15.0		14.91	15.0	15.09		15.0		
V _{o BR}	Output prote (suppressor		Output 2		-		17.1		18.9		-		17.1		18.9	V
I _{o nom}	Output curre	ent nom. 1	.,		87			8			9.67			9.6		
I _{o1L,} I _{o2L}	Output curre	ent limit1	$ \begin{vmatrix} V_{i \min} - V_{i \max} \\ T_{C \min} - T_{C \max} \end{vmatrix} $	8.4		13.6 ⁷	8.4			10.1		16.32 ⁷	10.1			A
I _{012L}	Output curre	ent limit 1, 2	Cmin Cmax	16.8 ²			-			19.7 ²			-			
V _o	Output nois	e incl. spikes ⁶	$V_{\text{i nom}}, I_{\text{o nom}}$ BW = 20 MHz			75			75			75			75	mV _{pp}
V _{o adj}	Adjustment	by R-input ⁴	V V	7.5		17.25 ¹		3		7.5		17.25 ¹		3		V
ΔV_{ou}	Static line/lo	pad regulation ion of V_{o})	$\begin{cases} V_{\text{i min}} - V_{\text{i max}} \\ (0.1 - 1) I_{\text{o nom}} \end{cases}$			±150		3				±150		3		mV
V _{od}	Dynamic load	Voltage deviation ⁵	$V_{\text{i nom,}} 0.5 I_{\text{o2 nom}}$ $I_{\text{o1 nom}} \leftrightarrow 0.5 I_{\text{o1 nom}}$		±250			±250			±300			±300		IIIV
t _{od}	regulation	Recovery time ⁵	and after turn on		1			3			1			3		ms
ανο	Temperature of output vo	e coefficient oltage	I _{o nom} T _{C min} - T _{C max}			0.02		-				0.02		-		%/K

If the output voltages are increased above V_{o nom} through R-input control, or option T, the output currents should be reduced accordingly so that P_{o nom} is not exceeded.

- Both outputs connected in parallel
- ³ See Output voltage regulation
- ⁴ For battery charger applications, a defined negative temperature coefficient can be provided by using a temperature sensor (see Accessories)
- ⁵ See Dynamic load regulation
- ⁶ Measured with a ceramic cap of 1 µF across each output.
- 7 $I_{\rm o1}$ can be increased to 140% of $I_{\rm o1\,nom}$ if $I_{\rm o2}$ is reduced accordingly

Thermal Considerations

If a converter is located in free, quasi-stationary air (convection cooling) at the indicated maximum ambient temperature $T_{\rm A\,max}$ (see table *Temperature specifications*) and is operated within the specified input voltage range with nominal load, the temperature measured at the *Measuring point of case temperature* $T_{\rm C}$ (see *Mechanical Data*) will approach the indicated value $T_{\rm C\,max}$ after the warm-up phase. However, the relationship between $T_{\rm A}$ and $T_{\rm C}$ depends heavily upon the conditions of operation and integration into a system. The thermal conditions are influenced by input voltage, output current, airflow, and temperature of surrounding components and surfaces. $T_{\rm A\,max}$ is therefore, contrary to $T_{\rm C\,max}$, an indicative value only.

Caution: The installer must ensure that under all operating conditions $T_{\rm C}$ remains within the limits stated in the table *Temperature specifications*.

Notes: Sufficient forced cooling or enhanced cooling with the help of cooling plates (options B, B1) allows for T_A higher than 71 °C (e.g. 85 °C), as long as $T_{C \text{ max}}$ is not exceeded.

Thermal Protection

Two temperature sensors generate an internal inhibit signal, which disables the converter in the case of overtemperature. The outputs automatically recover when the temperature drops below the limit.

Interruption Time

The integrated storage capacitor (C_b) is loaded to the boost voltage and ensures full output voltage with nominal load during the specified interruption time of 20 ms.

240 - 300 Watt AC-DC and DC-DC Converters

Output Protection

The 2nd output is protected by a suppressor diode against overvoltage, which could occur due to a failure of the internal control circuit. This suppressor diode was not designed to withstand externally applied overvoltages. Overload at any of the outputs will cause both outputs to shut-down.

Note: V_{oBR} of the suppressor diode is specified in *Electrical Output Data*. If this voltage is exceeded, the suppressor diode generates losses and may become a short circuit.

Note: The output voltage of the first output is monitored. If it exceeds typ. 140% of $V_{o \text{ nom}}$ for 10 ms, the converter is inhibited by a latch. To reactivate, V_i must be removed or the converter disabled through an inhibit signal to pin 18.

Each output has its own current limiting circuit, providing a rectangular output characteristic and protecting against short circuit. There is no limitation for the capacitive load, and battery charging is possible as well.

Series and Parallel Connection

Both outputs of the same converter can be series-connected or parallel-connected in order to double the output current or the output voltage respectively.

Outputs of different converters of the same model type may be series-connected.

In parallel connection of several converters, the T-pins should be interconnected so that all converters share the output current equally.

If both outputs of each converter are connected in series, Vo1– of both converters should be connected together. Interconnect the T-pins as well; see fig. 3.

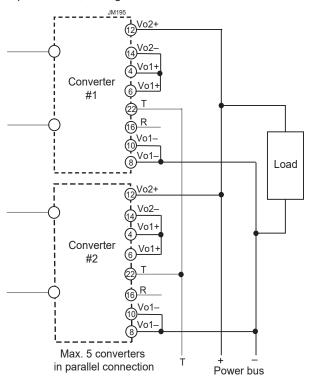


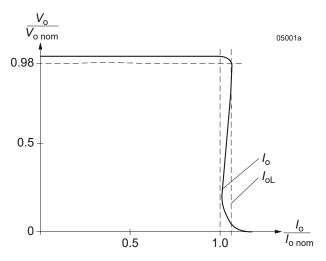
Fig. 3
Parallel connection of double-output models with both outputs connected in series.
T-pins and R-pins are referenced to Vo1—.

Notes:

- Not more than 5 converters should be connected in parallel.
- If several outputs are connected in series, the resulting voltage may exceed the SELV level.
- The R-pins should be left open-circuit. If not, the output voltages must individually be adjusted prior to paralleling within 1 to 2%, or the R-pins should be interconnected.
- Series connection of second outputs without involving their main outputs should be avoided, as regulation may be poor.

240 - 300 Watt AC-DC and DC-DC Converters

Output Voltage Regulation


If both outputs are connected in parallel or in series, the converter exhibits a rectangular output characteristic; see fig. 4.

The typ. dynamic load regulation illustrates fig. 5.

Output 1 is under normal conditions regulated to $V_{o \text{ nom}}$, irrespective of the output currents.

However, V_{02} depends upon the load distribution; see fig. 6. The converters have incorporated switchable preloads and do not need a minimum load.

Note: If output 2 is not used, connect it in parallel with output 1! This ensures good regulation and efficiency.

 V_{o} V_{o

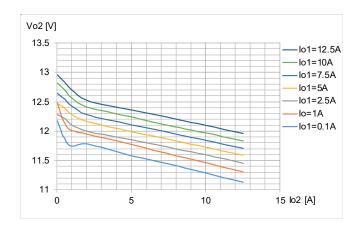

Fig. 4
Output characteristic V_o versus I_o
(both outputs connected in parallel or in series)

Fig. 5 Typical dynamic load regulation of V_{o} .

In a symmetrical configuration the output 1 is regulated to $V_{o1 \text{ nom}}$, regardless of the output currents. If the load on output 2 is too small (<10% of $I_{o \text{ nom}}$), its voltage will rise and may activate the overvoltage protection (Suppressor diode).

 V_{o2} depends upon the load distribution: If each output is loaded with at least 10% of $I_{o \text{ nom}}$, the deviation of V_{o2} remains within ±5% of $V_{o \text{ nom}}$. The following figures explain the regulation with different load distributions. If $I_{o1} = I_{o2}$ or the two outputs are connected in series, the deviation of V_{o2} remains within ±1% of the value of $V_{o \text{ nom}}$.

Note: If output 2 is not used, we recommend to connect it in parallel to $V_{\rm nt}$. This results in improved efficiency and stability.

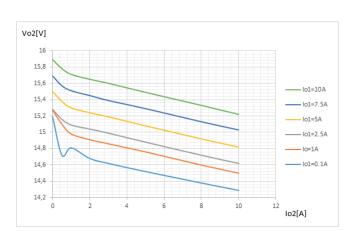


Fig. 6a Models LR2320: $V_{\rm o2}$ versus $I_{\rm o2}$ with various $I_{\rm o1}$

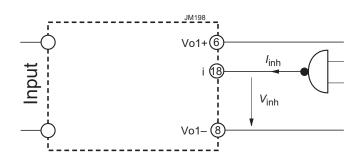
Fig. 6b Models LR2540: V_{o2} versus I_{o2} with various I_{o1}

240 - 300 Watt AC-DC and DC-DC Converters

Auxiliary Functions

Inhibit for Remote On/Off

The outputs may be enabled or disabled by means of a logic signal (TTL, CMOS, etc.) applied between the inhibit pin 18 (i) and pin 10 or 8 (Vo1–). In systems with several converters, this feature can be used to control the activation sequence of the converters. If the inhibit function is not required, connect the inhibit pin 18 with pin 10 or 8 (Vo1–).


The inhibit disables the DC-DC converter immediately, without respecting the hold-up time. The input section of the converter is not disabled.

 $V_{\rm o}/V_{\rm o nom}$

Note: If pin 18 is not connected, the outputs are disabled.

Table 5: Inhibit characteristics

Cha	aracteristics		Conditions	min	typ	max	Unit
1/	Inhibit voltage	V_{\circ} = on	\/ \/	-10		8.0	V
V _{inh}	irinibit voltage	$V_{\circ} = \text{off}$	$V_{\text{i min}} - V_{\text{i max}}$	2.4		50	V
I _{inh}	Inhibit current		V _{inh} = 0			-600	μA
t _r	Rise time				40		
t _d	Delay time				5		ms
t _f	Fall time		Dep	ending o	n I		

 $t_{\rm don}$ $t_{\rm don}$ $t_{\rm fon}$ $t_{\rm f}$ $t_{\rm M196a}$

Fig. 7 Definition of V_{inh} and I_{inh} .

Fig. 8
Output response as a function of inhibit control

Output Voltage Adjust

As a standard feature, the converters offer an adjustable output voltage. The control input R (pin 16) accepts either a control voltage V_{ext} or a resistor R_{ext} to adjust the output voltage. When input R is not connected, the output voltage is set to $V_{\text{o nom}}$.

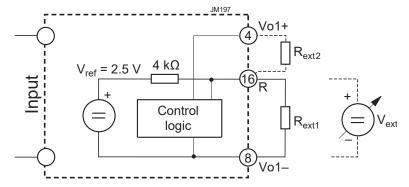


Fig. 9 Output voltage adjustment

240 - 300 Watt AC-DC and DC-DC Converters

a) Adjustment by means of an external control voltage V_{ext} between pin 16 (R) and pin 10 or 8 (Vo1–):

The control voltage range is 0.75 V to 2.85 V and allows for an adjustment in the range of approx. 50 - 110% of $V_{o \text{ nom}}$.

$$V_{\text{ext}} \approx \frac{V_{\text{o}} \cdot 3.5 \text{ V}}{V_{\text{o nom}}} - 1$$

Caution: Applying an external control voltage >3 V may damage the converter.

b) Adjustment by means of an external resistor:

Depending on the value of the required output voltage, the resistor shall be connected

either: between pin 16 (R) and pin 10 or 8 (Vo1–) to adjust the output voltage in the range of approx. 50-100% of $V_{0.000}$

$$R_{\rm ext1} \approx 4 \text{ k}\Omega \cdot \frac{V_{\rm o}}{V_{\rm o nom} - V_{\rm o}}$$

or: between pin 16 (R) and pin 4 or 6 (Vo1+) to adjust the output voltage in the range of 100 - 110% of $V_{o \text{ nom}}$.

$$R_{\rm ext2} \approx 4 \text{ k}\Omega \cdot \frac{(V_{\rm o} - 2.5 \text{ V})}{2.5 \text{ V} \cdot (V_{\rm o}/V_{\rm o nom} - 1)}$$

Caution: To prevent the converter from damage, the value of R'_{ext} shall never be less than the value for increasing V_{o1} to 110%!

Notes

- If the output voltages are increased above V_{o nom} via R-input control or option T, the output currents should be reduced, so that P_{o nom} is not exceeded.
- The second output of double-output models follows the voltage of the controlled main output.

Output Voltage Monitor

The output voltage monitor generates a logic "low" signal (NPN open-collector output) at the D-output (pin 20), when $V_{o1} \ge 0.96~V_{onom}$ and $\le 1.04~V_{onom}$ (typ. values). Then, a green LED (Out OK) at the frontplate is illuminated. If the output voltage is adjusted by the R-input, the trigger levels are corrected accordingly.

At low D-output, I_D should be ≤ 50 mA. If the D-output is high (open collector), V_D should be ≤ 50 V.

Note: Output overvoltage activates a latch; see Output Protection.

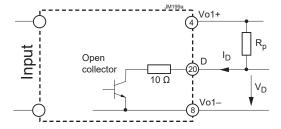


Fig. 10 Output voltage monitor

LED Indicators

Two green indicators are visible at the front plate:

- Out OK; see Output Voltage Monitor
- In OK. This signal is activated, when V_i is in range and the converter is not disabled by the inhibit signal.

240 - 300 Watt AC-DC and DC-DC Converters

Battery Charging / Temperature Sensor

All converters with an R-input are suitable for battery charger application. For optimal battery charging and life expectancy of the battery an external temperature sensor can be connected to the R-input. The sensor is mounted as close as possible to the battery and adjusts the output voltage according to the battery temperature.

Depending upon cell voltage and the temperature coefficient of the battery, different sensor types are available, see Accessories.

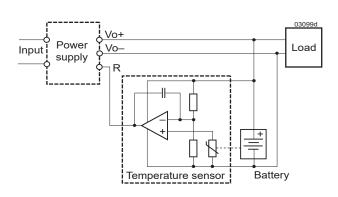


Fig. 11
Connection of a temperature sensor

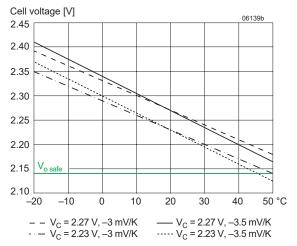


Fig. 12 Trickle charge voltage versus temperature for defined temperature coefficient. $V_{o \text{ nom}}$ is the output voltage with open R-input.

240 - 300 Watt AC-DC and DC-DC Converters

Electromagnetic Compatibility (EMC)

The LR Series has been successfully tested to the following specifications:

Electromagnetic Immunity

Table 6: Electromagnetic immunity (type tests). Corresponds or Exceeds EN50121-3-2:2016 and AREMA

Phenomenon	Standard	Level	Coupling mode 1	Value applied	Waveform	Source imped.	Test procedure	In oper.	Perf. crit. ²
Electrostatic	IEC/EN	4	contact discharge	±6000 V _p	1/50 ns	330 Ω	10 pos. & 10 neg.	VOS	Α
discharge (to case)	61000-4-2	4	air discharge	±8000 V _p	1/30 118	150 pF	discharges	yes	_ ^
Electromagnetic	IEC/EN	Х	antenna	20 V/m	AM 80% / 1 kHz	N/A	80 – 800 MHz	yes	Α
field	61000-4-3			20 V/m			800 – 1000 MHz		
			antenna	20 V/m	AM 80% / 1 kHz	N/A	1400 – 2000 MHz	yes	Α
			antenna	5 V/m	AIVI 60% / T KHZ	IN/A	2000 – 2700 MHz		
				3 V/m			5100 – 6000 MHz	yes	Α
Electrical fast	IEC/EN	3	capacitive, o/c	±2000 V _p	bursts of 5/50 ns;		60 s positive		
transients / burst	61000-4-4	4	±i/c, +i/–i direct	±4000 V _p	2.5 / 5 kHz over 15 ms; burst period: 300 ms	50 Ω	50 Ω 60 s negative transients per coupling mode		A
Surges	IEC/EN		i/c	±2000 V _p		12Ω/9μF	5 pos. & 5 neg.		Α
	61000-4-5	3	i/c, +i/-i	±2000 V _p	1.2 / 50 µs	2Ω/18 μF	surges per coupling mode	yes	В
			+i/—i	±1000 V _p		2Ω/18 μF			Α
Conducted disturbances	IEC/EN 61000-4-6	3	i, o, signal wires	10 VAC (140 dBμV)	AM 80% / 1 kHz	150 Ω	0.15 – 80 MHz	yes	А
Power frequency magnetic field	IEC/EN 61000-4-8	3	-	300 A/m	0 to 50 Hz		60 s in all 3 axes	yes	А

i = input, o = output, c = case

² A = normal operation, no deviation from specs.; B = normal operation, temporary loss of function or deviation from specs possible

240 - 300 Watt AC-DC and DC-DC Converters

Electromagnetic Emissions

All models comply with Class A according to EN 55011/55032 for conducted and radiated emissions.

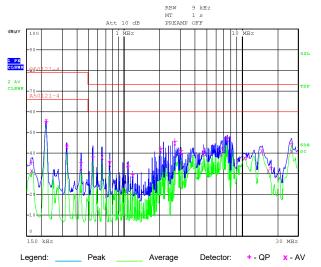


Fig. 15a
Typ. conducted emissions (peak/quasipeak and average) at the input according to EN 55011/32, measured at $V_i = 230 \text{ V}$ and $I_{o \text{ nom}}$ (LR2320-9).

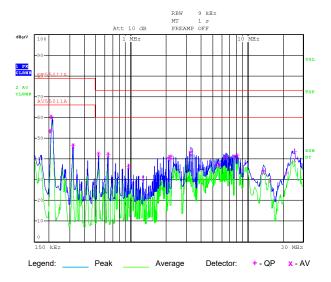


Fig. 15b Typ. conducted emissions (peak/quasipeak and average) at the input according to EN 55011/32, measured at $V_i = 230 \text{ V}$ and $I_{o \text{ nom}}$ (LRP2320-9).

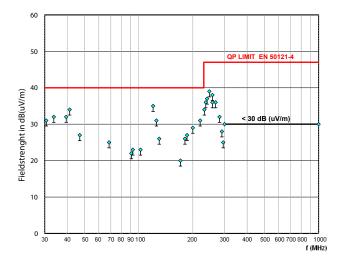


Fig. 16a
Typ. radiated emissions accord. to EN 55011/32, antenna 10 m distance, measured at $V_i = 230 \text{ V}$ and $I_{0,nom}$ (LR2320-9).

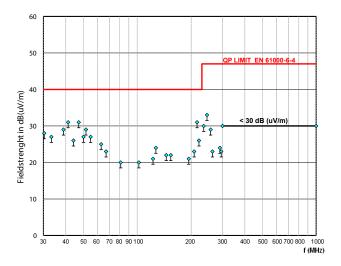


Fig. 16b
Typ. radiated emissions accord. to EN 55011/32, antenna 10 m distance, measured at V_i = 230 V and $I_{0.00m}$ (LRP2320-9).

Table 7: Electromagnetic Emission Tests

Phenomenon	Standard	Test procedure	In operation	Result Class
Harmonic currents	IEC/EN 61000-3-2	V _{i nom} , I _{o nom}	yes	А
Voltage fluctuation and flicker	IEC/EN 61000-3-3	V _{i nom} , I _{o nom}	yes	Pass

240 - 300 Watt AC-DC and DC-DC Converters

Immunity to Environmental Conditions

Table 8: Mechanical and climatic stress

Test ı	method	Standard	Test Conditions		Status
Cab	Damp heat	IEC/EN 60068-2-78	Temperature:	40 ±2 °C	
	steady state	MIL-STD-810D section 507.2	Relative humidity:	93 +2/-3 %	Converter not operating
			Duration:	56 days	not operating
Db	Cyclic damp heat	EN 50155:2017, clause 13.4.7	Temperature:	55 °C and 25 °C	
	test	IEC/EN 60068-2-30	Cycles (respiration effect)	2	Converter
			Duration:	2x 24 h	not operating
Ве	Dry heat test	EN 50155:2017, clause 13.4.5	Temperature:	70 °C	Converter
	steady state	IEC/EN 60068-2-2	Duration:	6 h	operating
Ad	Low temperature	EN 50155:2017, clause 13.4.4	Temperature, duration:	-40 °C, 2 h	Converter
	start-up test	IEC/EN 60068-2-1	Performance test:	+25 °C	not operating
Ka	Salt mist test	EN 50155:2017, clause 13.4.10	Temperature:	35 ±2 °C	Camurantan
	sodium chloride	IEC/EN 60068-2-11	Duration:	48 h	Converter not operating
	(NaCl) solution	class ST2			1 3
Fh	Random vibration broad band (digital	IEC/EN 60068-2-64	Acceleration spectral density:	0.05 g _n ² /Hz	
	control) & guidance		Frequency band:	8 – 500 Hz	Converter
			Acceleration magnitude:	4.9 g _{n rms}	operating
			Test duration:	1.5 h (0.5 h in each axis)	
Fc	Vibration (sinusoidal)	IEC/EN 60068-2-6 MIL-STD-810D section 514.3	Acceleration amplitude:	0.35 mm (10 – 60 Hz)	
	(Siriusoidai)	WIL-STD-STOD SECTION 514.5		$5 g_n = 49 \text{ m/s}^2 (60 - 2000 \text{ Hz})$	Converter
			Frequency (1 Oct/min):	10 – 2000 Hz	operating
			Test duration:	7.5 h (2.5 h in each axis)	
-	Vibration	AREMA Part. 11.5.1 class B, C, D, E, I, J	Displacement amplitude:	0.3" (5 – 10 Hz) 0.1" (5 – 20 Hz)	
			Acceleration amplitude:	$2 g_n = 19.6 \text{ m/s}^2 (10 - 200 \text{ Hz})$	Converter operating
			Frequency (1 Oct/min):	5 – 200 Hz	operating
			Test duration:	12 h (4 h in each axis)	
Ea	Shock	IEC/EN 60068-2-27	Acceleration amplitude:	50 g _n = 490 m/s ²	
	(half-sinusoidal)	MIL-STD-810D section 516.3	Bump duration:	11 ms	Converter operating
			Number of bumps:	18 (3 in each direction)	operating
-	Shock	EN 50155:2017 clause 13.4.11,	Acceleration amplitude:	5.1 g _n	
		EN 61373 sect. 10,	Bump duration:	30 ms	Converter
		class B, body mounted ¹	Number of bumps:	18 (3 in each direction)	operating
	Mechanical shock	AREMA Part. 11.5.1	Acceleration amplitude:	$10 g_n = 98 \text{ m/s}^2$	
		class B, C, D, E, I, J	Bump duration:	11 ms	Converter
			Number of bumps:	18 (3 in each direction)	operating
-	Simulated long life	EN 50155:2017 clause 13.4.11.2,	Acceleration spectral density:	0.02 g _n ² /Hz	
	testing at increased	EN 61373 sect. 8 and 9,	Frequency band:	5 – 150 Hz	Converter
	random vibration levels	class B, body mounted ¹	Acceleration magnitude:	0.8 g _{n rms}	operating
	104619		Test duration:	15 h (5 h in each axis)	

¹ Body mounted = chassis of a railway coach

240 - 300 Watt AC-DC and DC-DC Converters

Temperatures

Table 9: Temperature specifications, valid for an air pressure of 800 – 1200 hPa (800 – 1200 mbar)

Model				Unit		
Characte	eristics	Conditions	min	typ	max	
T _A	Ambient temperature	Converter operating	- 40		71 ¹	
T _C	Case temperature		- 40		95 ^{1,2}	°C
T _s	Storage temperature	Not operating	- 55		85	

¹ See Thermal Considerations.

Reliability

Table 10: MTBF

Reliability prediction standard	Model	MTBF	
According to Siemens SN 29500 2013-07	LR2320-9	806 000	

 $^{^2}$ Overtemperature lockout at $T_{\rm c}\!>\!95$ °C. (An NTC resistor on primary and secondary heatsink).

240 - 300 Watt AC-DC and DC-DC Converters

Mechanical Data

Dimensions in mm. The converters are designed to be inserted into a 19" rack, 160 mm long, according to IEC 60297-3.

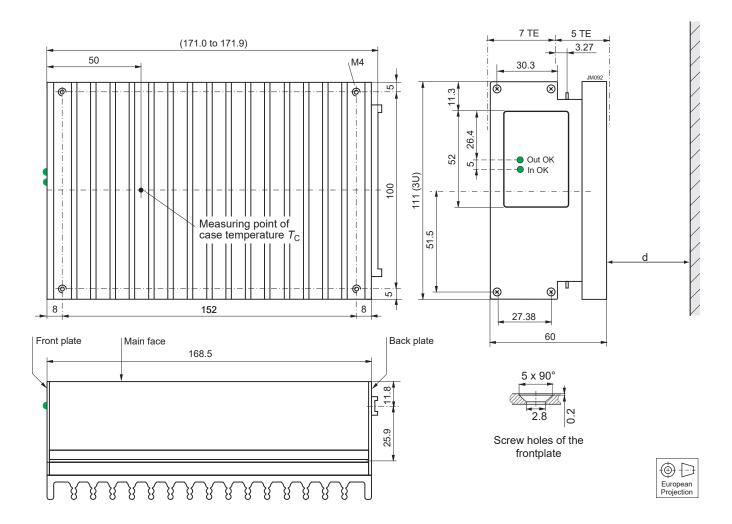


Fig. 17
Aluminum case of LR models with heat sink; black finish (EP powder coated); weight approx. 1.5 kg

Notes:

- d ≥ 15 mm, recommended minimum distance to next part in order to ensure proper air circulation at full output power.
- free air location: the converter should be mounted with fins in a vertical position to achieve maximum airflow through the heat sink.

240 - 300 Watt AC-DC and DC-DC Converters

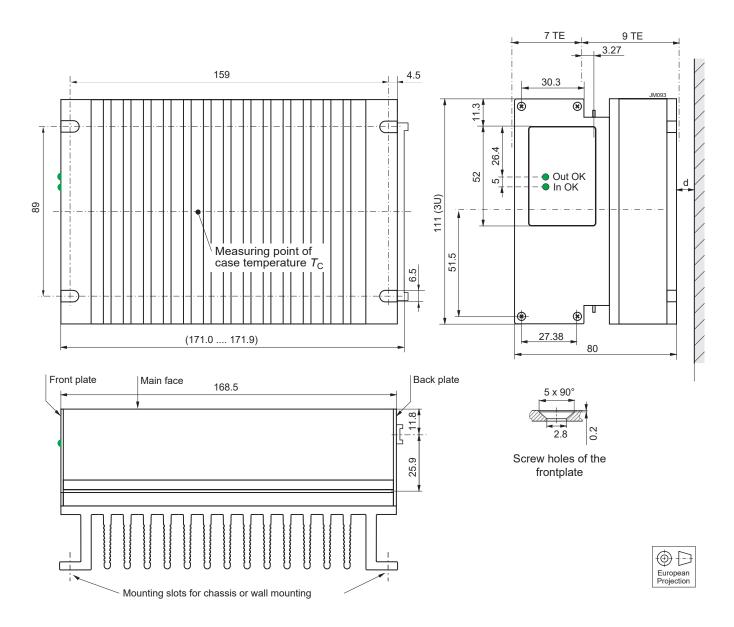


Fig. 18
Aluminum case of LRP models with heat sink; black finish (EP powder coated); weight approx. 1.8 kg

Notes:

- d ≥ 15 mm, recommended minimum distance to next part in order to ensure proper air circulation at full output power.
- free air location: the converter should be mounted with fins in a vertical position to achieve maximum airflow through the heat sink.

240 - 300 Watt AC-DC and DC-DC Converters



Fig. 19
Option B: Aluminum case S with large cooling plate; black finish (EP powder coated).
Suitable for front mounting.
Total weight approx. 1.5 kg

Note: Long case with option B2, elongated by 60 mm for 220 mm rack depth, is available on request (no LEDs, no test sockets).

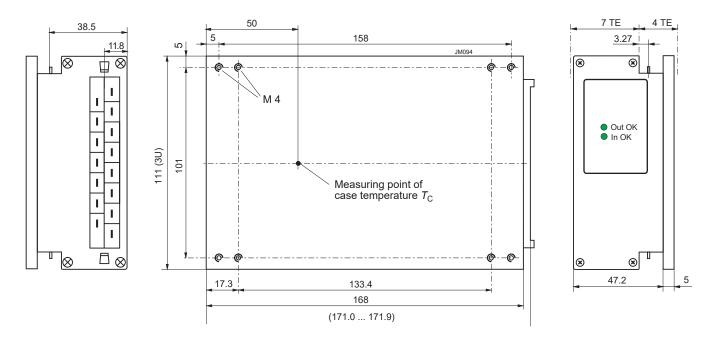


Fig. 20
Option B1: Aluminum case S with small cooling plate; black finish (EP powder coated).
Suitable for mounting with access from the backside.
Total weight approx. 1.4 kg.

240 - 300 Watt AC-DC and DC-DC Converters

Safety and Installation Instructions

Connector Pin Allocation

The connector pin allocation table defines the electrical potentials and the physical pin positions on the H15 connector. The protective earth is connected by a leading pin (no. 24), ensuring that it makes contact with the female connector first.

Table 11: Pin allocation

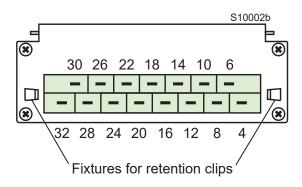


Fig. 21
View of module's male connector

Pin No. Name **Function** 4 Vo1+ Positive Output 1 6 Vo1+ Positive Output 1 8 Vo1-Negative Output 1 10 Vo1-Negative Output 1 12 Vo2+ Positive Output 2 Vo2-14 Negative Output 2 16 R Output voltage adjust i 18 Inhibit 20 D Out OK Т 22 Current share (<u>I</u>) 241 Protection earth PE and case 26 + 28N~ Neutral line

Phase line

I ~

30 + 32

Installation Instructions

The converters are components, intended exclusively for inclusion within other equipment by an industrial assembly operation or by professional installers. Installation must strictly follow the national safety regulations in compliance with the enclosure, mounting, creepage, clearance, casualty, markings, and segregation requirements of the end-use application.

Connection to the system shall be made via the female connector H15; see *Accessories*. Other installation methods may not meet the safety requirements.

Pin no. 24 (🏵) is connected with the case. For safety reasons it is essential to connect this pin reliably to protective earth.

Notes:

- Pin 18 (inhibit) must be connected to pin 8 / 10 (Vo1-) to enable the converter.
- Do not open the converter, or warranty will be invalidated.
- If the second output is not used, connect it parallel with the main output.

Caution: For operation at DC source voltage above 150 VDC, an external fuse or a circuit breaker at system level must be installed.

Make sure that there is sufficient airflow available for convection cooling and verify it by measuring the case temperature T_{c} , when the converter is installed and operated in the end-use application; see *Thermal Considerations*.

Ensure that a converter failure (e.g. an internal short-circuit) does not result in a hazardous condition.

Standards and Approvals

The converters are safety-approved to UL/CSA 62368-1 and IEC/EN 62368-1.

The converters correspond to Class I equipment (case connected to ground). They have been evaluated for:

- Building-in
- Basic insulation between input and case based on 250 VA; basic insulation between outputs and case; double or reinforced insulation between input and outputs
- · Functional insulation between outputs
- Overvoltage category II
- Pollution degree 2 environment
- Max. altitude: 2000 m
- The converters fulfil the requirements of a fire enclosure.

The output voltage is considered as SELV. The converters are subject to manufacturing surveillance in accordance with the above mentioned safety standards and with ISO 9001:2015, IRIS ISO/TS 22163:2017 certified quality and business management system. CB-scheme is available on request.

Leading pin (pre-connecting)

240 - 300 Watt AC-DC and DC-DC Converters

Railway Application and Fire Protection

The converters have been designed by observing the railway standards EN 50155 and EN 50121-4. All boards are coated with a protective lacquer.

The converters comply with EN 45545-1, EN 45545-2 (2016), if installed in a technical compartment or cabinet.

Protection Degree and Cleaning Liquids

In order to avoid possible damage, any penetration of cleaning fluids has to be prevented, since the power supplies are not hermetically sealed.

The protection degree is IP 40, provided that the female connector is fitted to the converter.

Isolation and Protective Earth

The electric strength test is performed in the factory as routine test according to EN 50514 and IEC/EN 62368-1 and should not be repeated in the field. The company will not honor any warranty claims resulting from incorrectly executed electric strength field tests. The resistance between case and earth pin ($<0.1~\Omega$) is tested as well.

Table 12: Isolation

Characteristics	Input to Output(s) to Case + Output(s) Case and Input		Output 1 to Output 2	Unit	
Electric strength test	Factory test 10 s	2.84 1	4.3	0.5	kVDC
	AC test voltage equivalent to factory test	2.0 1	3.0	0.3	kVAC
Insulation resistance a	t 500 VDC	>300 >300 >300		ΜΩ	
Creepage distances		≥ 3.5 ²	≥ 4.5		mm

According to EN 50514 and IEC/EN 62368-1, subassemblies connecting input to output are pre-tested with 5.6 kVDC or 4 kVAC.

Description of Options

F0, F2 Fuse Options (not for DC input)

The converters exhibit an AC-rated fuse in the input phase line (L, pins 30 and 32). For operation with DC input, choose option F0 (no fuse) and provide an external fuse or circuit breaker in series to L. This is also recommended in EN 50155.

Option F0 means that there is no fuse incorporated.

Option F2 (AC-rated fuses in both input lines) is required for operation with AC in several countries, but especially if the converter is operated between phases, or if the neutral line cannot be allocated (e.g., for German "Schuko" connectors).

Table 3 shows the type of the fuse.

B, B1 Cooling Plates

Where a cooling surface is available, we recommend the use of a cooling plate instead of the standard heat sink. The mounting system should ensure that the maximum case temperature $T_{\text{C max}}$ is not exceeded. The cooling capacity is calculated by (η see *Model Selection*):

$$P_{\text{Loss}} = \frac{(100\% - \eta)}{\eta} \cdot V_{\circ} \cdot I_{\circ}$$

For the dimensions of the cooling plates; see Mechanical Data.

² Input to outputs: 7.0 mm

240 - 300 Watt AC-DC and DC-DC Converters

Accessories

A variety of electrical and mechanical accessories are available including:

- Front panels for 19" DIN-rack: Schroff or Intermas, 12 or 16TE /3U; see fig. 22.
- Mating H15 connectors with screw, solder, faston, or press-fit terminal; see fig. 23.
- Coding clips for connector coding HZZ00202
- Pair of connector retention clips HZZ01209-G; see fig.25
- Connector retention brackets HZZ01216-G (CRB-HKMS)
- Cable hood for H15 connectors:
 - HZZ00141-G, screw version
 - HZZ00142-G, use with retention brackets HZZ01218-G
 - HZZ00143-G, metallic version providing fire protection
- Cage clamp adapter HZZ00144-G; see fig. 26.
- DIN-rail mounting assembly HZZ0615-G (DMB-K/S)
- Wall-mounting plate K02 (HZZ01213-G) for models with option B1
- Additional external input and output filters
- Different battery sensors S-KSMH... for using the converter as a battery charger. Different cell characteristics can be selected; see fig. 30, table 12, and Battery Charging/Temperature Sensors.

For additional accessory product information, see the accessory data sheets listed with each product series or individual model at our web site.

Fig. 22 Different front panels

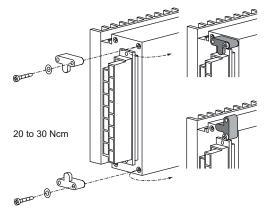


Fig. 25 Connector retention brackets HZZ01216-G (CRB-HKMS)

Fig. 23
Different mating connectors

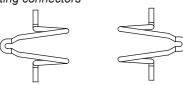


Fig. 24 Connector retention clips to fasten the H15 connector to the rear plate; see fig. 24. HZZ01209-G consists of 2 clips.

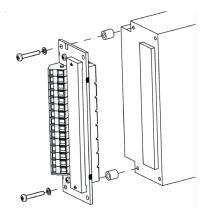


Fig. 26 Cage clamp adapter HZZ00144-G

240 - 300 Watt AC-DC and DC-DC Converters

Fig. 27 Different cable hoods

Fig. 28 Chassis- or wall-mounting plate HZZ01213-G (Mounting plate K02)

Fig. 29
DIN-rail mounting assembly HZZ00615-G (DMB-K/S)

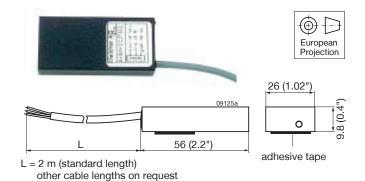


Fig. 30 Battery temperature sensor

Table 13: Battery temperature sensors

Battery voltage nom. [V]	Sensor type	Cell voltage [V]	Cell temp. coefficient [mV/K]	Cable length [m]
12	S-KSMH12-2.27-30-2	2.27	-3.0	2
12	S-KSMH12-2.27-35-2	2.27	-3.5	2
24	S-KSMH24-2.27-30-2	2.27	-3.0	2
24	S-KSMH24-2.27-35-2	2.27	-3.5	2
24	S-KSMH24-2.31-35-0	2.31	-3.5	4.5
24	S-KSMH24-2.31-35-2	2.31	-3.5	2
24	S-KSMH24-2.35-35-2	2.35	-3.5	2
48	S-KSMH48-2.27-30-2	2.27	-3.0	2
48	S-KSMH48-2-27-35-2	2.27	-3.5	2

Note: Other temperature coefficients and cable lengths are available on request.

NUCLEAR AND MEDICAL APPLICATIONS - These products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

