
Analog Devices ADXL343 Breakout Learning Guide
Created by Kevin Townsend

Last updated on 2021-05-06 08:30:32 AM EDT

2
3
4
5
5
5
7
8
9
9

11
11
11
11
12
12
12
13
15
17
17
17
18
18
19
22
24
25
25
26
27
27
27
28
29
30
31
31
31
31
31
31
31
32

Guide Contents

Guide Contents
Overview
Technical Characteristics
Pinout
Power Pins
Digital Pins
Assembly

Prepare the header strip:
Add the breakout board:
And Solder!

Special HW Features
Freefall Detection
Activity/Inactivity Detection
Tap/Double-Tap Detection

Arduino
Wiring
Installation
Load Example
Setting the Range
HW Interrupts

Interrupt Events
Mapping Interrupts to INT1/INT2
Enabling Interrupts
Connecting ADXL343 INT pins to the MCU
Complete Example

Single Tap Example
Arduino API
Python and CircuitPython

CircuitPython Microcontroller Wiring
Python Computer Wiring
Library Installation
Python Installation of the ADXL34x Library
CircuitPython & Python Usage
Full Example Code
Motion, Tap and Freefall

Python Docs
Downloads
Drivers
Design Files
Datasheet
Apps Notes

Full-Features Pedometer Design (Analog Devices)
Schematic
Board Layout

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 2 of 33

Overview
Analog Devices has followed up on their popular classic, the ADXL345, with this near-drop-in-

replacement, the ADXL343. Like the original, this is a triple-axis accelerometer with digital I2C and SPI

interface breakout. It has a wide sensitivity range and high resolution, operating with an 10 or 13-bit

internal ADC. Built-in motion detection features make tap, double-tap, activity, inactivity, and free-fall

detection trivial. There's two interrupt pins, and you can map any of the interrupts independently to either

of them

The ADXL343 is nearly identical in specifications to the ADXL345, and code written for the '345 will likely

work on the '343 as-is. This new accelerometer has some nice price improvements to stay within your

budget.

The sensor has three axes of measurements, X Y Z, and pins that can be used either as I2C or SPI digital

interfacing. You can set the sensitivity level to either +-2g, +-4g, +-8g or +-16g. The lower range gives more

resolution for slow movements, the higher range is good for high speed tracking. The ADXL343 is the

latest and greatest from Analog Devices, known for their exceptional quality MEMS devices.

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 3 of 33

We added an on-board 3.3V regulator and logic-level shifting circuitry, making it a perfect choice for

interfacing with any 3V or 5V microcontroller or computer such as Arduino or Raspberry Pi. We even have

library and example code for both Arduino/C++ and CircuitPython, so you can get started super fast with

any platform!

Each order comes with a fully tested and assembled breakout and some header for soldering to a PCB or

breadboard. Comes with 9 pin 0.1" standard header in case you want to use it with a breadboard or

perfboard. Two 2.5mm (0.1") mounting holes for easy attachment.You'll be up and running in under 5

minutes!

Thanks to Digi-Key (https://adafru.it/BJr) and Analog Devices (https://adafru.it/DPF) for sponsoring the

development of this breakout board - we've made the PCB "Digi-Key red (https://adafru.it/BJr)" in their

honor!

Technical Characteristics
3-axis MEMs digital accelerometer

Input voltage: 2.0-3.6 V

User-selectable output resolution:

+/- 2 g (10-bit data, or +/- 512)

+/- 4 g (11-bit data, or +/- 1024)

+/- 8g (12-bit data, or +/- 2048)

+/- 16 g (13-bit data, or +/- 4096)

User-selectable data rate (0.1 .. 3200 Hz)

Hardware support for free-fall detection, tap detection, and activity/inactivity

HW support for both I2C and SPI, although I2C is recommended for ease of use.

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 4 of 33

https://www.digikey.com/
https://www.analog.com/en/index.html
https://www.digikey.com/

Pinout
The ADXL343 breakout has the following pinout:

Power Pins
This breakout board can be run on 3.3V and 5V systems, although only the SCL and SDA lines are 5V

safe (other pins like INT will need to be manually level-shifted by you).

VIN - This is the input to the 3.3V voltage regulator, which makes it possible to use the 3.3V sensor

on 5V systems. It also determines the logic level of the SCL and SDA pins. Connect this to 3.3V on

the MCU for 3.3V boards (Adafruit Feathers), or 5.0V for 5V Arduinos (Arduino Uno, etc.).

3V3 - This is the OUTPUT of the 3.3V regulator, and can be used to provide 3.3V power to other

parts of your project if required (<100mA).

GND - Connect this to the GND pin on your development board to make sure they are sharing a

common GND connection, or the electrons won't have anywhere to flow!

� NOTE: Only SCL and SDA are 5V safe on this board. Using any other pins on a 5V system will

require manual level shifting of the pins used (INT, etc.)

Digital Pins
SCL - The clock line on the I2C bus. This pin has an internal pullup resistor on the PCB, which is

required as part of the I2C spec, meaning you don't need to add one externally yourself. This also

functions as SCK in SPI mode.

SDA - The data line on the I2C bus. This pin has an internal pullup resistor on the PCB, which is

required as part of the I2C spec, meaning you don't need to add one externally yourself. This also

functions as MISO in SPI mode.

SDO/ALT ADDR - This pin can be used as MOSI in SPI mode, but is more commonly used as an

optional bit in the I2C bus address. By default this pin is pulled down, meaning it has a value of 0 at

startup, which will results in an I2C address of 0x53. If you set this pin high (to 3.3V), and reset, the

I2C address will be updated to 0x1D.

CS: This dual purpose pin can be used as the chip select line in SPI mode, but also determines

whether the board will boot up into I2C or SPI mode. The default of logic high sets the board up for

I2C, and manually setting this pin low and resetting will cause the device to enter SPI mode. Please

note that SPI mode is not actively support and the SPI pins are not all 5V safe and level shifted, so

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 5 of 33

care will be required when using it!

INT1 and INT2: There are two optional interrupt output pins on this sensor, which can be configured

to change their state when one or more 'events' occur. For details on how to use these interrupts,

see the Arduino/HW Interrupts page later in this guide.

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 6 of 33

Assembly

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 7 of 33

Prepare the header strip:
Cut the strip to length if necessary. It will be easier to solder if

you insert it into a breadboard - long pins down

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 8 of 33

https://learn.adafruit.com//assets/73322
https://learn.adafruit.com//assets/73323
https://learn.adafruit.com//assets/73347

Add the breakout board:
Place the breakout board over the pins so that the short pins

poke through the breakout pads

And Solder!
Be sure to solder all 9 pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to

Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 9 of 33

https://learn.adafruit.com//assets/73351
https://learn.adafruit.com//assets/73330
https://learn.adafruit.com//assets/73332
https://learn.adafruit.com//assets/73334
http://learn.adafruit.com/adafruit-guide-excellent-soldering

You're done! Check your solder joints visually and continue

onto the next steps

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 10 of 33

https://learn.adafruit.com//assets/73336
https://learn.adafruit.com//assets/73344

Special HW Features
While the ADXL343 shares some things in common with most other general-purpose 3-axis

accelerometers, it has the following additional features to make it easier to use in certain situations.

Because these are implemented in HW inside the sensor, there is a lot less heavy lifting to do on the MCU

side.

Freefall Detection
You can use this accelerometer to detect a freefall condition (device falling off a desk, etc.) with user-

defined thresholds, and one or the two INT pins can be setup to fire when a freefall condition is detected,

allowing you to shut any motors or moving parts off, or indicate in a logging system that the data may not

be valid (such as a plant sensor in a pot that likely got knocked over by the wind).

Activity/Inactivity Detection
Rather that constantly polling an accelerometer to see if movement is detected, you can configure the

ADXL343 to let you know when their is (one or both of) activity or inactivity on the device, with user-

adjustable thresholds. This can be configure to fire an INT pin, which you could use to wakeup your

device, for example, or put it to sleep after a certain amount of inactivity.

Tap/Double-Tap Detection
Rather than having to do complex tap and double-tap detection of the device by anaylzing the magnitude

of acceleration changes over time, you can detect a 'tap' or 'double-tap' of your device in HW, and fire

one of the INT pins when the event is detected, significantly reducing the code and data parsing on the

MCU side.

See the HW Interrupts page later in this guide for details on how to use these features in practice!

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 11 of 33

Arduino
Wiring
Hooking up the ADXL343 to your Arduino is easy:

� For Arduino Metro and other 5V microcontrollers, use 5V for Vin. For Feather and other 3V

microcontrollers, use 3.3V

Connect SCL on the Metro to SCL on the ADXL343

Connect SDA on the Metro to SDA in the ADXL343

Connect GND on the Metro to GND on the ADXL343

For 3.3V LOGIC boards: connect 3.3V on the

Arduino/Metro to VIN on the ADXL343

For 5.0V LOGIC boards: Connect 5V on the

Arduino/Metro to VIN on the ADXL343

The final results should resemble the illustration above, showing an Adafruit Metro development board.

� Only the SCL and SDA pins on the ADXL343 are level shifted and safe to use on 5V systems like the

Arduino Uno. If you are using other pins on the breakout (INT, etc.) on a 5V system, you will need to

level shift these yourself. We have some tutorials on how to do this in the learning system, simply

search for 'level shifting'!

Installation
The Adafruit_ADXL345 library can be installed using the Arduino Library Manager, accessible through

the Manage Libraries ... menu item.

Click the Manage Libraries ... menu item, search for Adafruit ADXL343, and select the Adafruit ADXL343

library:

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 12 of 33

https://learn.adafruit.com//assets/71593

Load Example
To make sure that everything is wired up correctly, you can run the sensorttest example available in

the Adafruit_ADXL343 examples folder, loadable via the File -> Examples -> Adafruit ADXL343 -

> sensortest menu item.

Upload the sketch to your board and open up the Serial Monitor (Tools->Serial Monitor). You should see

some acceleration data for for X/Y/Z.

#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_ADXL343.h>

#define ADXL343_SCK 13
#define ADXL343_MISO 12
#define ADXL343_MOSI 11
#define ADXL343_CS 10

/* Assign a unique ID to this sensor at the same time */
/* Uncomment following line for default Wire bus */
Adafruit_ADXL343 accel = Adafruit_ADXL343(12345);

/* NeoTrellis M4, etc. */
/* Uncomment following line for Wire1 bus */
//Adafruit_ADXL343 accel = Adafruit_ADXL343(12345, &Wire1);

/* Uncomment for SPI */
//Adafruit_ADXL343 accel = Adafruit_ADXL343(ADXL343_SCK, ADXL343_MISO, ADXL343_MOSI, ADXL343_CS, 12345);

void displayDataRate(void)
{
 Serial.print ("Data Rate: ");

 switch(accel.getDataRate())
 {
 case ADXL343_DATARATE_3200_HZ:
 Serial.print ("3200 ");
 break;
 case ADXL343_DATARATE_1600_HZ:
 Serial.print ("1600 ");
 break;
 case ADXL343_DATARATE_800_HZ:
 Serial.print ("800 ");
 break;
 case ADXL343_DATARATE_400_HZ:
 Serial.print ("400 ");
 break;
 case ADXL343_DATARATE_200_HZ:
 Serial.print ("200 ");
 break;
 case ADXL343_DATARATE_100_HZ:
 Serial.print ("100 ");
 break;
 case ADXL343_DATARATE_50_HZ:
 Serial.print ("50 ");

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 13 of 33

 Serial.print ("50 ");
 break;
 case ADXL343_DATARATE_25_HZ:
 Serial.print ("25 ");
 break;
 case ADXL343_DATARATE_12_5_HZ:
 Serial.print ("12.5 ");
 break;
 case ADXL343_DATARATE_6_25HZ:
 Serial.print ("6.25 ");
 break;
 case ADXL343_DATARATE_3_13_HZ:
 Serial.print ("3.13 ");
 break;
 case ADXL343_DATARATE_1_56_HZ:
 Serial.print ("1.56 ");
 break;
 case ADXL343_DATARATE_0_78_HZ:
 Serial.print ("0.78 ");
 break;
 case ADXL343_DATARATE_0_39_HZ:
 Serial.print ("0.39 ");
 break;
 case ADXL343_DATARATE_0_20_HZ:
 Serial.print ("0.20 ");
 break;
 case ADXL343_DATARATE_0_10_HZ:
 Serial.print ("0.10 ");
 break;
 default:
 Serial.print ("???? ");
 break;
 }
 Serial.println(" Hz");
}

void displayRange(void)
{
 Serial.print ("Range: +/- ");

 switch(accel.getRange())
 {
 case ADXL343_RANGE_16_G:
 Serial.print ("16 ");
 break;
 case ADXL343_RANGE_8_G:
 Serial.print ("8 ");
 break;
 case ADXL343_RANGE_4_G:
 Serial.print ("4 ");
 break;
 case ADXL343_RANGE_2_G:
 Serial.print ("2 ");
 break;
 default:
 Serial.print ("?? ");
 break;
 }
 Serial.println(" g");
}

void setup(void)
{
 Serial.begin(115200);

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 14 of 33

 Serial.begin(115200);
 while (!Serial);
 Serial.println("Accelerometer Test"); Serial.println("");

 /* Initialise the sensor */
 if(!accel.begin())
 {
 /* There was a problem detecting the ADXL343 ... check your connections */
 Serial.println("Ooops, no ADXL343 detected ... Check your wiring!");
 while(1);
 }

 /* Set the range to whatever is appropriate for your project */
 accel.setRange(ADXL343_RANGE_16_G);
 // accel.setRange(ADXL343_RANGE_8_G);
 // accel.setRange(ADXL343_RANGE_4_G);
 // accel.setRange(ADXL343_RANGE_2_G);

 /* Display some basic information on this sensor */
 accel.printSensorDetails();
 displayDataRate();
 displayRange();
 Serial.println("");
}

void loop(void)
{
 /* Get a new sensor event */
 sensors_event_t event;
 accel.getEvent(&event);

 /* Display the results (acceleration is measured in m/s^2) */
 Serial.print("X: "); Serial.print(event.acceleration.x); Serial.print(" ");
 Serial.print("Y: "); Serial.print(event.acceleration.y); Serial.print(" ");
 Serial.print("Z: "); Serial.print(event.acceleration.z); Serial.print(" ");Serial.println("m/s^2 ");
 delay(500);
}

You should get something resembling the following output when you open the Serial Monitor at 9600

baud:

Setting the Range
You can adjust the response range of the accelerometer by setting an appropriate value in your setup

loop, using one of the lines in the code shown below:

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 15 of 33

/* Set the range to whatever is appropriate for your project */
accel.setRange(ADXL343_RANGE_16_G);
// accel.setRange(ADXL343_RANGE_8_G);
// accel.setRange(ADXL343_RANGE_4_G);
// accel.setRange(ADXL343_RANGE_2_G);

By default, the sensor will be set to the maximum range of +/- 16g.

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 16 of 33

HW Interrupts
Interrupt Events
The ADXL343 includes two configurable HW interrupt pins, where one or more of the following events

can be 'mapped' to one of the interrupt pins:

Overrun: The overrun bit is set when new data replaces unread data. This can be useful in situations

where it's important to know if any data samples were 'skipped', such as in sensor fusion algorithms

that depend on a specific sample rate for the best possible results.

Watermark: This can be used with register 0x38 (FIFO_CTL) to trigger an interrupt when a user-

specified number of samples are available in the internal FIFO buffer.

Freefall: The FREE_FALL bit is set when acceleration of less than the value stored in the THRESH_FF

register (Address 0x28) is experienced for more time than is specified in the TIME_FF register

(Address 0x29) on all axes (logical AND). The FREE_FALL interrupt differs from the inactivity interrupt

as follows: all axes always participate and are logically AND’ed, the timer period is much smaller

(1.28 sec maximum), and the mode of operation is always dc-coupled.

Inactivity: The inactivity bit is set when acceleration of less than the value stored in the

THRESH_INACT register (Address 0x25) is experienced for more time than is specified in the

TIME_INACT register (Address 0x26) on all participating axes, as set by the ACT_INACT_CTL

register (Address 0x27). The maximum value for TIME_INACT is 255 sec.

Activity: The activity bit is set when acceleration greater than the value stored in the THRESH_ACT

register (Address 0x24) is experienced on any participating axis, set by the ACT_INACT_CTL register

(Address 0x27).

Double Tap: The DOUBLE_TAP bit is set when two acceleration events that are greater than the

value in the THRESH_TAP register (Address 0x1D) occur for less time than is specified in the DUR

register (Address 0x21), with the second tap starting after the time specified by the latent register

(Address 0x22) but within the time specified in the window register (Address 0x23). See the Tap

Detection section for more details.

Single Tap: The SINGLE_TAP bit is set when a single acceleration event that is greater than the

value in the THRESH_TAP register (Address 0x1D) occurs for less time than is specified in the DUR

register (Address 0x21).

Data Ready: The DATA_READY bit is set when new data is available and is cleared when no new

data is available.

Mapping Interrupts to INT1/INT2
The first step to enable interrupts in your sketch is to 'map' one or more interrupt functions to either

the INT1 or INT2 pins. This can be accomplished with the following function in Adafruit_ADXL343:

bool mapInterrupts(int_config cfg);

`cfg` is an 8-bit bit-field where setting the individual interrupt bit to 1 will cause the interrupt to be mapped

to INT2, and setting the interrupt bit to 0 will map if to INT1. The following code shows how this works in

practice (based on the ` g_int_config_map ` variable in the interrupts.ino example sketch):

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 17 of 33

/* Map specific interrupts to one of the two INT pins. */
g_int_config_map.bits.overrun = ADXL343_INT1;
g_int_config_map.bits.watermark = ADXL343_INT1;
g_int_config_map.bits.freefall = ADXL343_INT1;
g_int_config_map.bits.inactivity = ADXL343_INT1;
g_int_config_map.bits.activity = ADXL343_INT1;
g_int_config_map.bits.double_tap = ADXL343_INT1;
g_int_config_map.bits.single_tap = ADXL343_INT1;
g_int_config_map.bits.data_ready = ADXL343_INT2;
accel.mapInterrupts(g_int_config_map);

Enabling Interrupts
After mapping specific interrupt events to either INT1 or INT2, you need to 'enable' the interrupt via a

second function:

bool enableInterrupts(int_config cfg);

An example of enabling the OVERRUN and DATA READY interrupts is shown below:

/* Enable interrupts on the accelerometer. */
g_int_config_enabled.bits.overrun = true; /* Set the INT1 */
g_int_config_enabled.bits.watermark = false;
g_int_config_enabled.bits.freefall = false;
g_int_config_enabled.bits.inactivity = false;
g_int_config_enabled.bits.activity = false;
g_int_config_enabled.bits.double_tap = false;
g_int_config_enabled.bits.single_tap = false;
g_int_config_enabled.bits.data_ready = true; /* Set to INT2 */
accel.enableInterrupts(g_int_config_enabled);

Connecting ADXL343 INT pins to the MCU
In order to 'detect' the interrupt generated by the ADXL, you also need to connect the INT1 and/or INT2

pins on the ADXL to an appropriate interrupt-enabled input pin on your MCU.

The interrupt input on the MCU needs to have the following pin characteristics:

Must have support for interrupt mode (if you want to automatically fire an interrupt service routine

when the ADXL's INT pins are triggered)

Must be configured as an input

Must be 'attached' to an interrupt service routine, which is the function that will be called when

a RISING edge is detected on the MCU's interrupt input.

Some sample code of setting these pins up properly is shown below (assumed an Adafruit Feather M0

Basic, see the documentation for pin selection on other boards):

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 18 of 33

/** The input pins to enable the interrupt on, connected to INT1 and INT2 on the ADXL. */
#define INPUT_PIN_INT1 (5) // Uno = (2)
#define INPUT_PIN_INT2 (6) // Uno = (3)

...

/** Interrupt service routine for INT1 events. */
void int1_isr(void)
{
 /* TODO: Do something! */
}

/** Interrupt service routine for INT2 events. */
void int2_isr(void)
{
 /* TODO: Do something! */
}

...

/* Attach interrupt inputs on the MCU. */
pinMode(LED_BUILTIN, OUTPUT);
pinMode(INPUT_PIN_INT1, INPUT);
pinMode(INPUT_PIN_INT2, INPUT);
attachInterrupt(digitalPinToInterrupt(INPUT_PIN_INT1), int1_isr, RISING);
attachInterrupt(digitalPinToInterrupt(INPUT_PIN_INT2), int2_isr, RISING);

Complete Example
To see how all of these pieces fit together, you can see the code for the interrupts example that is part of

the standard Adafruit driver, shown below for convenience sake.

This examples enables two interrupt events on two different pins, and tracks the number of times those

interrupt handlers are fired. The main loop of the program continually checks if a new interrupt event was

detected, and display some details on the interrupt source when an event it detected.

#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_ADXL343.h>

/* Assign a unique ID to this sensor at the same time */
Adafruit_ADXL343 accel = Adafruit_ADXL343(12345);

/** The input pins to enable the interrupt on, connected to INT1 and INT2 on the ADXL. */
#define INPUT_PIN_INT1 (5) // Uno = (2)
#define INPUT_PIN_INT2 (6) // Uno = (3)

/**
 * This struct is used to count the number of times that specific interrutps
 * have been fired by the ADXL and detected on the MCU. They will increment
 * by one for each event associated with the specified interrupt 'bit'.
 */
struct adxl_int_stats {
 uint32_t data_ready;
 uint32_t single_tap;
 uint32_t double_tap;
 uint32_t activity;
 uint32_t inactivity;
 uint32_t freefall;
 uint32_t watermark;
 uint32_t overrun;

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 19 of 33

 uint32_t overrun;
 uint32_t total;
};

/** Global stats block, incremented inside the interrupt handler(s). */
struct adxl_int_stats g_int_stats = { 0 };

/** Global counter to track the numbers of unused interrupts fired. */
uint32_t g_ints_fired = 0;

/** Global variable to determine which interrupt(s) are enabled on the ADXL343. */
int_config g_int_config_enabled = { 0 };

/** Global variables to determine which INT pin interrupt(s) are mapped to on the ADXL343. */
int_config g_int_config_map = { 0 };

/** Interrupt service routine for INT1 events. */
void int1_isr(void)
{
 /* By default, this sketch routes the OVERRUN interrupt to INT1. */
 g_int_stats.overrun++;
 g_int_stats.total++;
 g_ints_fired++;

 /* TODO: Toggle an LED! */
}

/** Interrupt service routine for INT2 events. */
void int2_isr(void)
{
 /* By default, this sketch routes the DATA_READY interrupt to INT2. */
 g_int_stats.data_ready++;
 g_int_stats.total++;
 g_ints_fired++;

 /* TODO: Toggle an LED! */
}

/** Configures the HW interrupts on the ADXL343 and the target MCU. */
void config_interrupts(void)
{
 /* NOTE: Once an interrupt fires on the ADXL you can read a register
 * to know the source of the interrupt, but since this would likely
 * happen in the 'interrupt context' performing an I2C read is a bad
 * idea since it will block the device from handling other interrupts
 * in a timely manner.
 *
 * The best approach is to try to make use of only two interrupts on
 * two different interrupt pins, so that when an interrupt fires, based
 * on the 'isr' function that is called, you already know the int source.
 */

 /* Attach interrupt inputs on the MCU. */
 pinMode(LED_BUILTIN, OUTPUT);
 pinMode(INPUT_PIN_INT1, INPUT);
 pinMode(INPUT_PIN_INT2, INPUT);
 attachInterrupt(digitalPinToInterrupt(INPUT_PIN_INT1), int1_isr, RISING);
 attachInterrupt(digitalPinToInterrupt(INPUT_PIN_INT2), int2_isr, RISING);

 /* Enable interrupts on the accelerometer. */
 g_int_config_enabled.bits.overrun = true; /* Set the INT1 */
 g_int_config_enabled.bits.watermark = false;
 g_int_config_enabled.bits.freefall = false;
 g_int_config_enabled.bits.inactivity = false;

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 20 of 33

 g_int_config_enabled.bits.inactivity = false;
 g_int_config_enabled.bits.activity = false;
 g_int_config_enabled.bits.double_tap = false;
 g_int_config_enabled.bits.single_tap = false;
 g_int_config_enabled.bits.data_ready = true; /* Set to INT2 */
 accel.enableInterrupts(g_int_config_enabled);

 /* Map specific interrupts to one of the two INT pins. */
 g_int_config_map.bits.overrun = ADXL343_INT1;
 g_int_config_map.bits.watermark = ADXL343_INT1;
 g_int_config_map.bits.freefall = ADXL343_INT1;
 g_int_config_map.bits.inactivity = ADXL343_INT1;
 g_int_config_map.bits.activity = ADXL343_INT1;
 g_int_config_map.bits.double_tap = ADXL343_INT1;
 g_int_config_map.bits.single_tap = ADXL343_INT1;
 g_int_config_map.bits.data_ready = ADXL343_INT2;
 accel.mapInterrupts(g_int_config_map);
}

void setup(void)
{
 Serial.begin(9600);
 while (!Serial);
 Serial.println("ADXL343 Interrupt Tester"); Serial.println("");

 /* Initialise the sensor */
 if(!accel.begin())
 {
 /* There was a problem detecting the ADXL343 ... check your connections */
 Serial.println("Ooops, no ADXL343 detected ... Check your wiring!");
 while(1);
 }

 /* Set the range to whatever is appropriate for your project */
 accel.setRange(ADXL343_RANGE_16_G);
 // displaySetRange(ADXL343_RANGE_8_G);
 // displaySetRange(ADXL343_RANGE_4_G);
 // displaySetRange(ADXL343_RANGE_2_G);

 /* Configure the HW interrupts. */
 config_interrupts();

 Serial.println("ADXL343 init complete. Waiting for INT activity.");
}

void loop(void)
{
 /* Get a new sensor event */
 sensors_event_t event;
 accel.getEvent(&event);
 delay(10);

 while (g_ints_fired) {
 Serial.println("INT detected!");
 Serial.print("\tOVERRUN Count: "); Serial.println(g_int_stats.overrun, DEC);
 Serial.print("\tDATA_READY Count: "); Serial.println(g_int_stats.data_ready, DEC);

 /* Decrement the unhandled int counter. */
 g_ints_fired--;
 }
}

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 21 of 33

Single Tap Example
A slightly simplified example that detects single taps is shown below as well:

#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_ADXL343.h>

/* Assign a unique ID to this sensor at the same time */
Adafruit_ADXL343 accel = Adafruit_ADXL343(12345);

/** The input pin to enable the interrupt on, connected to INT1 on the ADXL. */
#define INPUT_PIN_INT1 (5) // SAMD21/SAMD51 = 5 for interrupt pin

uint32_t g_tap_count = 0;
int_config g_int_config_enabled = { 0 };
int_config g_int_config_map = { 0 };

/** Interrupt service routine for INT1 events. This will be called when a single tap is detected. */
void int1_isr(void)
{
 g_tap_count++;
}

void setup(void)
{
 Serial.begin(9600);
 while (!Serial);
 Serial.println("ADXL343 Single Tap INT Tester"); Serial.println("");

 /* Initialise the sensor */
 if(!accel.begin())
 {
 /* There was a problem detecting the ADXL343 ... check your connections */
 Serial.println("Ooops, no ADXL343 detected ... Check your wiring!");
 while(1);
 }

 /* Set the range to whatever is appropriate for your project */
 accel.setRange(ADXL343_RANGE_16_G);

 /* Configure the HW interrupts. */
 pinMode(INPUT_PIN_INT1, INPUT);
 attachInterrupt(digitalPinToInterrupt(INPUT_PIN_INT1), int1_isr, RISING);

 /* Enable single tap interrupts on the accelerometer. */
 g_int_config_enabled.bits.single_tap = true;
 accel.enableInterrupts(g_int_config_enabled);

 /* Map single tap interrupts to INT1 pin. */
 g_int_config_map.bits.single_tap = ADXL343_INT1;
 accel.mapInterrupts(g_int_config_map);

 /* Reset tap counter. */
 g_tap_count = 0;

 Serial.println("ADXL343 init complete. Waiting for single tap INT activity.");
}

void loop(void)
{
 /* Get a new sensor event */

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 22 of 33

 /* Get a new sensor event */
 /* Reading data clears the interrupts. */
 sensors_event_t event;
 accel.getEvent(&event);
 delay(10);

 while (g_tap_count) {
 Serial.println("Single tap detected!");
 /* Clear the interrupt by check the source register.. */
 uint8_t source = accel.checkInterrupts();
 /* Decrement the local interrupt counter. */
 g_tap_count--;
 }
}

Running this singletap demo and tapping the device gently should give the following output:

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 23 of 33

Arduino API
Arduino API (https://adafru.it/E7b)

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 24 of 33

https://adafruit.github.io/Adafruit_ADXL343/html/class_adafruit___a_d_x_l343.html

Python and CircuitPython
It's easy to use the ADXL343 or the ADXL345 with Python and CircuitPython, and the Adafruit

CircuitPython ADXL34x (https://adafru.it/E5S) module. This module allows you to easily write Python code

that reads the acceleration, taps, motion and more from the breakout.

You can use this sensor with any CircuitPython microcontroller board or with a computer that has GPIO

and Python thanks to Adafruit_Blinka, our CircuitPython-for-Python compatibility

library (https://adafru.it/BSN).

� The pinouts on the ADXL343 and the ADXL345 are slightly different, but the chips are essentially

identical. This page includes different wiring diagrams for each. Other than initialising the proper chip,

the code will be the same for both!

CircuitPython Microcontroller Wiring
First, wire up the breakout exactly as shown in the previous pages. Here is an example of wiring the

ADXL343 to a Feather M0:

Connect SCL on the Feather to SCL on the ADXL343

Connect SDA on the Feather to SDA in the ADXL343

Connect GND on the Feather to GND on the ADXL343

Connect 3.3V on the Feather to VIN on the ADXL343

Here's an example of wiring the ADXL345 to a Feather M0:

Connect SCL on the Feather to SCL on the ADXL345

Connect SDA on the Feather to SDA in the ADXL345

Connect GND on the Feather to GND on the ADXL345

Connect 3.3V on the Feather to VIN on the ADXL345

Python Computer Wiring
Since there's dozens of Linux computers/boards you can use we will show wiring for Raspberry Pi. For

other platforms, please visit the guide for CircuitPython on Linux to see whether your platform is

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 25 of 33

https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/71598
https://learn.adafruit.com//assets/82173
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

supported (https://adafru.it/BSN).

The following shows a Raspberry Pi connected to the ADXL343:

Connect SCL on the RPi to SCL on the ADXL343

Connect SDA on the Rpi to SDA in the ADXL343

Connect GND on the Rpi to GND on the

ADXL343

Connect 3.3V on the Rpi to VIN on the ADXL343

The following shows a Raspberry Pi connected to the ADXL345:

Connect SCL on the RPi to SCL on the ADXL345

Connect SDA on the RPi to SDA in the ADXL345

Connect GND on the RPi to GND on the ADXL345

Connect 3.3V on the RPi to VIN on the ADXL345

Library Installation
You'll need to install the Adafruit CircuitPython ADXL34x (https://adafru.it/E5S) library on your

CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find

and install these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/ENC). Our

CircuitPython starter guide has a great page on how to install the library bundle (https://adafru.it/ABU).

For non-express boards like the Trinket M0 or Gemma M0, you'll need to manually install the necessary

libraries from the bundle:

adafruit_adxl34x.mpy

adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has

the adafruit_adxl34x.mpy, and adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL (https://adafru.it/pMf)so you are at the CircuitPython >>> prompt.

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 26 of 33

https://learn.adafruit.com//assets/71600
https://learn.adafruit.com//assets/82175
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/micropython-basics-how-to-load-micropython-on-a-board/serial-terminal

Python Installation of the ADXL34x Library
You'll need to install the Adafruit_Blinka library that provides the CircuitPython support in Python. This

may also require enabling I2C on your platform and verifying you are running Python 3. Since each

platform is a little different, and Linux changes often, please visit the CircuitPython on Linux guide to get

your computer ready (https://adafru.it/BSN)!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-adxl34x

If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to

use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage
To demonstrate the usage of the breakout we'll initialize it and read the acceleration and more from the

board's Python REPL.

Run the following code to import the necessary modules and create the I2C object:

import time
import board
import adafruit_adxl34x

i2c = board.I2C()

If you're using the ADXL343, run the following to initialise the I2C connection with the breakout:

accelerometer = adafruit_adxl34x.ADXL343(i2c)

If you're using the ADXL345, run the following to initialise the I2C connection with the breakout:

accelerometer = adafruit_adxl34x.ADXL345(i2c)

Now you're ready to read values from and enable features of the breakout using any of the following:

acceleration - The acceleration values on the x, y and z axes

enable_motion_detection - Enables motion detection. Allows for setting threshold. Threshold

defaults to 18.

enable_tap_detection - Enables tap detection. Allows for single or double-tap detection.

enable_freefall_detection - Enables freefall detection. Allows for setting threshold and time.

Threshold defaults to 10, time defaults to 25.

events - Used to read the events when motion detection, tap detection and freefall detection are

enables. Requires specifying which event you are trying to read.

To print the acceleration values:

while True:
 print(accelerometer.acceleration)
 time.sleep(0.2)

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 27 of 33

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

That's all there is to reading acceleration values from the ADXL343 and ADXL345 using CircuitPython!

Full Example Code
SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time
import board
import adafruit_adxl34x

i2c = board.I2C() # uses board.SCL and board.SDA

For ADXL343
accelerometer = adafruit_adxl34x.ADXL343(i2c)
For ADXL345
accelerometer = adafruit_adxl34x.ADXL345(i2c)

while True:
 print("%f %f %f" % accelerometer.acceleration)
 time.sleep(0.2)

Motion, Tap and Freefall
There are examples for enabling and using motion, tap and freefall available on GitHub:

Motion detection on the ADXL343 and ADXL345 (https://adafru.it/G7d)

Tap detection on the ADXL343 and ADXL345 (https://adafru.it/G7e)

Freefall detection on the ADXL343 and ADXL345 (https://adafru.it/G7f)

Save any of the files as code.py on your CircuitPython board, or run them from the Python REPL on your

Linux computer, to try them out.

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 28 of 33

https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x/blob/master/examples/adxl34x_motion_detection_test.py
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x/blob/master/examples/adxl34x_tap_detection_test.py
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x/blob/master/examples/adxl34x_freefall_detection_test.py

Python Docs
Python Docs (https://adafru.it/E7c)

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 29 of 33

https://circuitpython.readthedocs.io/projects/adxl34x/en/latest/

Downloads
Drivers

CircuitPython: Adafruit_CircuitPython_ADXL34x (https://adafru.it/E5S)

Arduino: Adafruit_ADXL343 (https://adafru.it/E5T)

Design Files
The latest PCB design files (for Autodesk Eagle) can be found on Github at:

Adafruit_ADXL343_PCB (https://adafru.it/E5U)

If you use Fritzing, the Fritzing object for this breakout is also available on Github at:

Adafruit ADXL343 Fritzing Object (https://adafru.it/E5X)

Datasheet
You can download the datasheet for the ADXL343 via the button below:

https://adafru.it/E5V

Apps Notes
Full-Features Pedometer Design (Analog Devices)
If you're interested in going one step further with the ADXL34x device family, you may find the following

app-note from Analog Devices useful for ideas of technical tips:

https://adafru.it/E5W

This app note details a method of performing 'step detection' with an algorithm using threshold crossing

and timing intervals, and may be a useful introduction to correlating sensor data with a specific behaviour

model.

Schematic

https://adafru.it/E5V

https://adafru.it/E5W

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 30 of 33

https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x
https://github.com/adafruit/Adafruit_ADXL343
https://github.com/adafruit/Adafruit_ADXL343_PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20ADXL343.fzpz
https://cdn-learn.adafruit.com/assets/assets/000/070/556/original/adxl343.pdf?1549287964
https://cdn-learn.adafruit.com/assets/assets/000/070/557/original/pedometer-design-3-axis-digital-acceler.pdf?1549288142

Board Layout
� All measurements below are in inches!

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 31 of 33

© Adafruit Industries https://learn.adafruit.com/adxl343-breakout-learning-guide Page 32 of 33

© Adafruit Industries Last Updated: 2021-05-06 08:30:31 AM EDT Page 33 of 33

	Guide Contents
	Overview
	Technical Characteristics
	Pinout
	Power Pins
	Digital Pins
	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Special HW Features
	Freefall Detection
	Activity/Inactivity Detection
	Tap/Double-Tap Detection

	Arduino
	Wiring
	Installation
	Load Example
	Setting the Range
	HW Interrupts
	Interrupt Events
	Mapping Interrupts to INT1/INT2
	Enabling Interrupts
	Connecting ADXL343 INT pins to the MCU
	Complete Example

	Single Tap Example
	Arduino API
	Python and CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	Library Installation
	Python Installation of the ADXL34x Library
	CircuitPython & Python Usage
	Full Example Code
	Motion, Tap and Freefall

	Python Docs
	Downloads
	Drivers
	Design Files
	Datasheet
	Apps Notes
	Full-Features Pedometer Design (Analog Devices)

	Schematic
	Board Layout

