

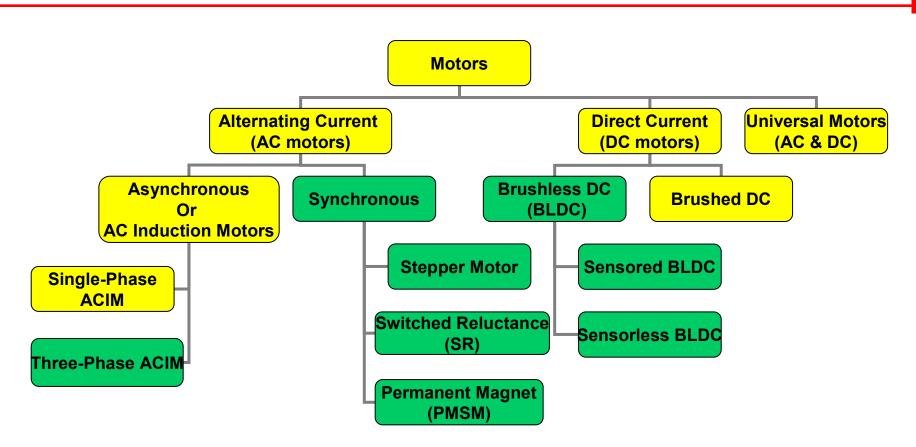
An Exploration of Ultra-Low Cost Motor Drive Design

By

Patrick Heath, Marketing Manager Daniel Torres, Applications Engineer High-Performance Microcontroller Division Microchip Technology Inc.

Agenda

• Explore the design trade-offs associated with creating ultra-low cost motor drives, without compromising control techniques, energy efficiency or safety


• Examine three designs:

dsPICDEM[™] MSCM—a simple stepper-motor drive dsPICDEM[™] MCLV—a standard low-voltage sensorless drive dsPICDEM[™] MCHV—a complex isolated high-voltage drive

Compare the actual Bill of Material (BOM) costs, control techniques, energy efficiency and safety features of the three designs

Targeted Motor Types

While many different types of motors exist, we focused on supporting the motors in the green blocks. The motors in the yellow blocks can be run without any intelligent control.

Targeted Motor-Control Algorithms

Motor Type	Algorithm		
	Full and Microstepping, Position Control		
Stepper Motor	Open Loop and Current Control Closed Loop		
	Trapezoidal Drive, Hall-Effect Sensor Commutation		
BLDC and	Sinusoidal Drive, Hall-Effect Sensor Commutation		
PMSM	Trapezoidal Drive, Sensorless BEMF Commutation		
	Field Oriented Control, Sensorless Commutation		
	Open Loop Volts/Hertz		
ACIM	Field Oriented Control with a Shaft Encoder		
	Field Oriented Control, Sensorless		
	Power Factor Correction (PFC)		

Our goal was to support the most common algorithms and the most common hardware feedback circuits.

Efficiency Considerations

Motor	Improve Efficiency by	Circuit Requirements
Stepper	Using closed-loop current control	 2 current shunt-resistor circuits for current feedback DSC with motor-control PWMs and fast Analog-to- Digital Converter (DSC)
BLDC	Moving from trapezoidal to sensorless Field-Oriented Control (FOC)	 2 current shunt-resistor circuits for current feedback DSC with motor-control PWMs and fast ADC
PMSM	Moving to dual-shunt Sensorless FOC with field weakening	 2 current shunt-resistor circuits for current feedback DSC with motor-control PWMs and fast ADC
ACIM	Moving to FOC with field weakening and Power Factor Correction (PFC)	Current Feedback: • 2 current shunt-resistor circuits for current feedback • DSC with motor-control PWMs and fast ADC PFC: • Boost inductor, MOSFET and driver circuit • 2-Voltage reference and op amp circuit • Current shunt-resistor circuit for current feedback • Zero-cross detection for VAc circuit

Safety Considerations

Issue	Improve Safety With	Circuit Requirements
Motor Bus, PFC and Gate Driver Over-Current	PWM fault shutdown	 Current shunt-resistor or a current transformer, and current reference and comparator circuit DSC with PWM fault-shutdown input
Motor Bus, PFC and Gate Driver Over-Voltage	PWM fault shutdown	 Over-voltage reference and comparator circuit DSC with PWM fault-shutdown input
Gate Driver Under-Voltage	PWM fault shutdown	 Under-voltage reference and comparator circuit DSC with PWM fault-shutdown input
User Interface	Isolation from high voltages	 Isolation transformer circuit for digital power and ground Opto-isolator for each signal

Note that one fault pin can be used for all fault conditions.

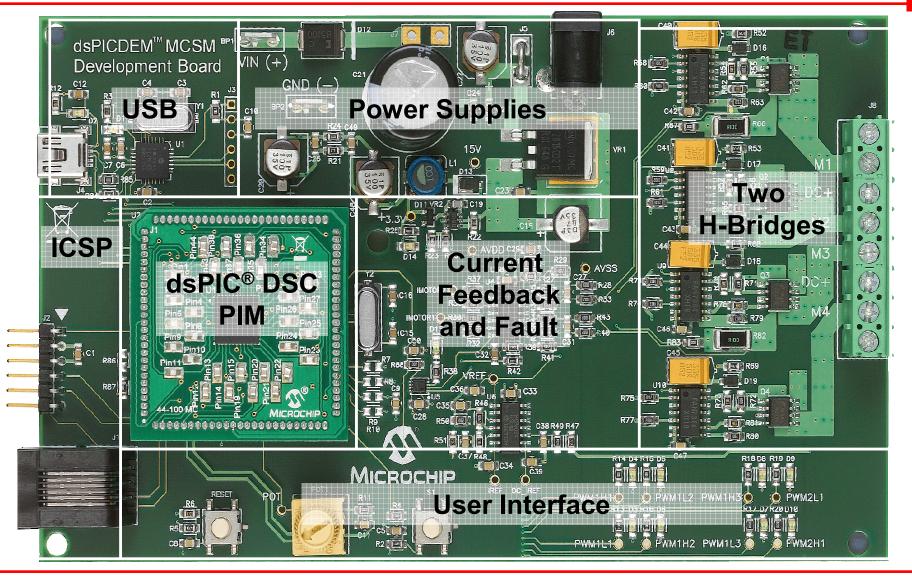
Agenda

• Explore the design trade-offs associated with creating ultra-lowcost motor drives, without compromising control techniques, energy efficiency or safety

•Examine three designs:

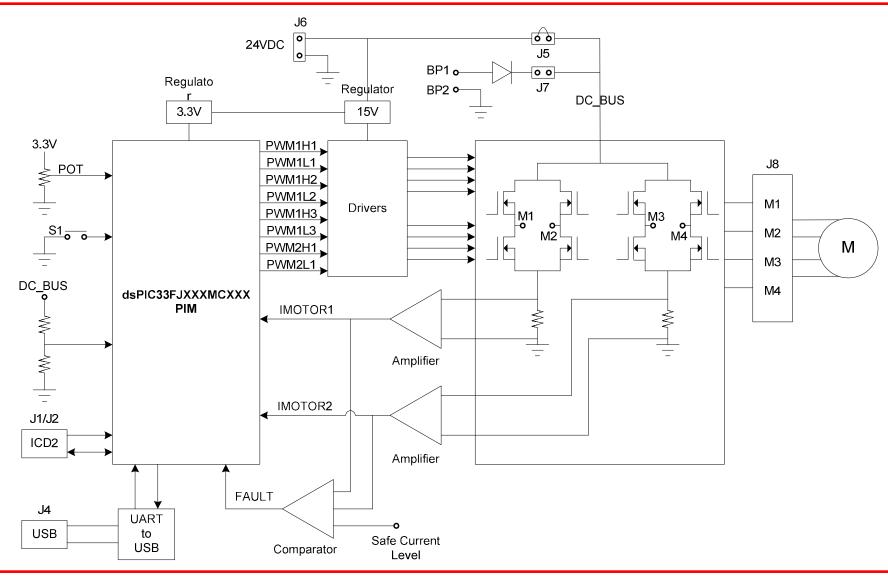
dsPICDEM[™] MSCM—a simple stepper-motor drive dsPICDEM[™] MCLV—a standard low-voltage sensorless drive dsPICDEM[™] MCHV—a complex isolated high-voltage drive

 Compare the actual Bill of Material (BOM) costs, control techniques, energy efficiency and safety features of the three designs



MCSM Specifications

Voltage:	0V to 24V
Peak Current:	20 A
Cont. Current:	12 A
Power:	100 W
Estimated Resell:	\$130

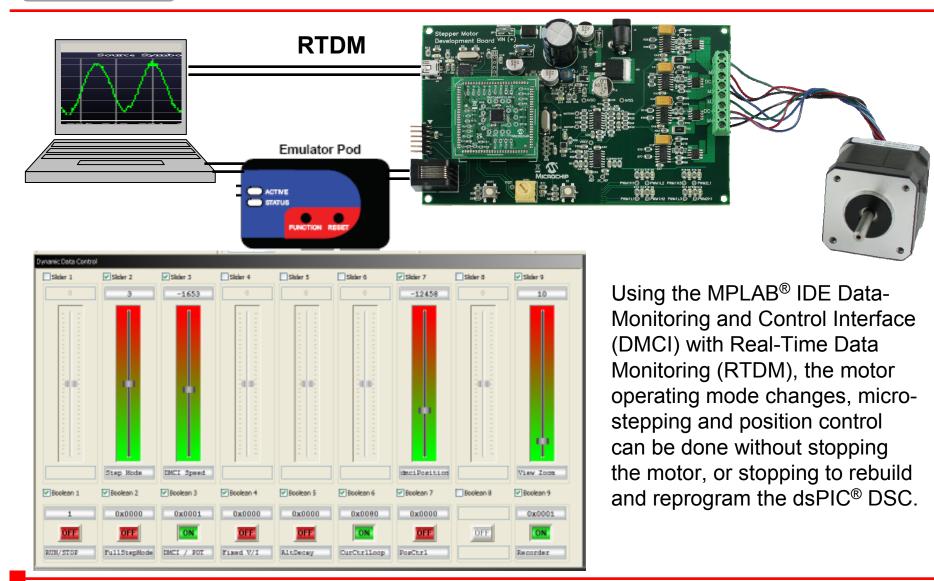


MCSM Board Layout

MCSM Block Diagram

Stepper Motor Control Algorithms

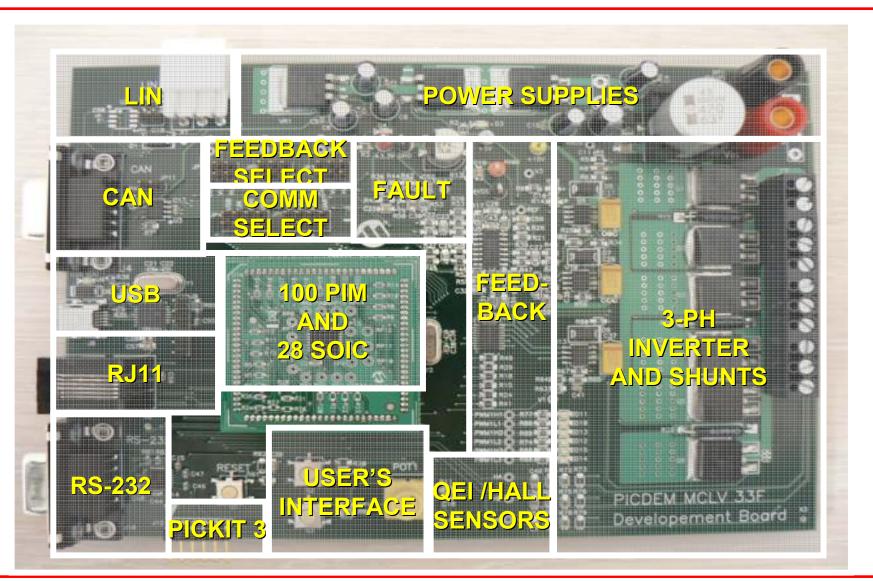
Motor	Control Technique Used by dsPIC [®] Digital Signal Controller (DSC)	Benefits
Unipolar, Bipolar	Full Stepping, Half Stepping, Micro-Stepping, Position - Open Loop Control (Fixed Voltage or Fixed Current)	Easiest
Unipolar, Bipolar	Full Stepping, Half Stepping, Micro-Stepping, Position - Closed Loop Current PI Control Loop	Faster Speed, Quieter, Smoother Most Efficient


Test Results

Closed-loop control is more efficient than open loop. Here, you can see that the actual measured motor current (in cyan) closely tracks the reference current commanded by the dsPIC[®] DSC software (in blue).

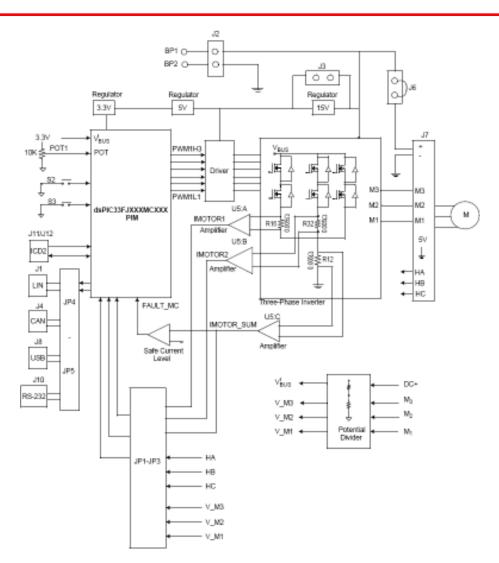
Development Environment MICROCHIP With Real-Time Data Monitoring

e-Drive Motor, Drive & Automation Systems Conference 2010



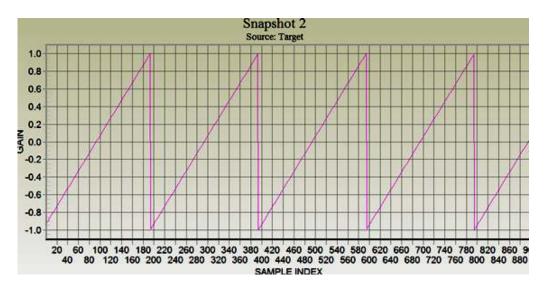
MCLV Specifications

Voltage:	0V to 48V
Peak Current:	20 A
Cont. Current:	12 A
Power:	200 W
Estimated Resell:	\$150

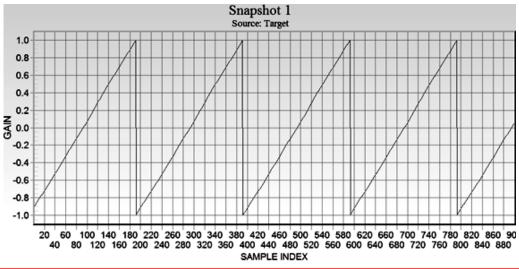

MCLV Board Layout

e-Drive Motor, Drive & Automation Systems Conference 2010

MCLV Block Diagram

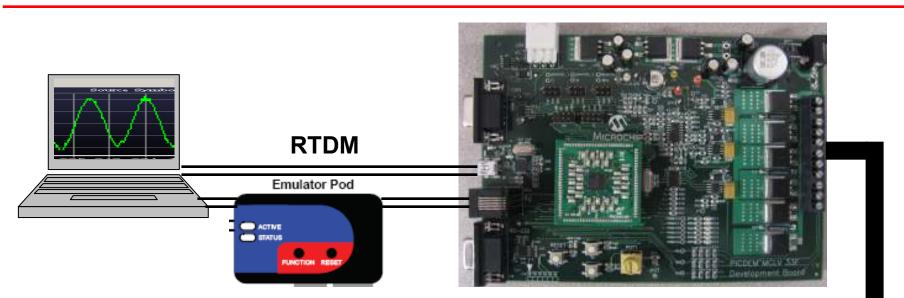

Low-Voltage Motor Control Algorithms

Motor	Control Technique Used by dsPIC [®] DSC	Benefits
BLDC	Sensored (Hall Effect) (Trapezoidal/120°) - High-speed operation (5 to 20K RPM) - Rapid load changes requiring fast torque response - Fast or high accuracy on a servo-position response	Better Torque Control than BDC
BLDC/PMSM	Sensored (Hall Effect) (Sinusoidal/180°)	Lower Noise
BLDC	Sensorless (requires moderate tuning) (Trapezoidal/120°) - Back EMF with ADC - FIR filtered BEMF with ADC - FIR filtered BEMF with ADC and Majority Detect function	Lower Cost
PMSM	Sensorless (requires advanced tuning) - FOC with single- or dual-shunt circuits - Sliding Mode Observer (SMO) or PLL Estimator - Field Weakening, Adaptive Filters, PFC	Highest Efficiency, Best Torque Control



Sensorless SMO FOC for PMSM Measured Results

 Actual Rotor
 Position



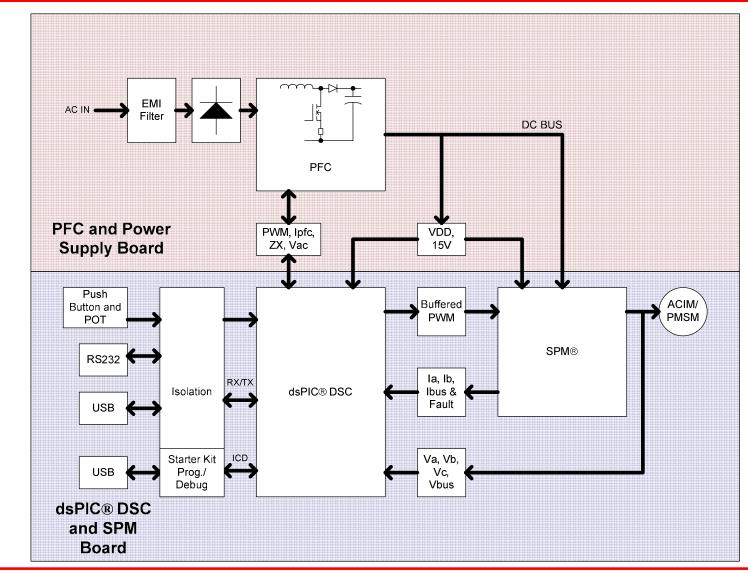
 Estimated Rotor
 Position

Development Environment With Real-Time Data Monitoring

Using the MPLAB[®] IDE Data-Monitoring and Control Interface (DMCI) with Real-Time Data Monitoring (RTDM), the motor operating mode changes, microstepping and position control can be done without stopping the motor, or stopping to rebuild and reprogram the dsPIC[®] DSC.

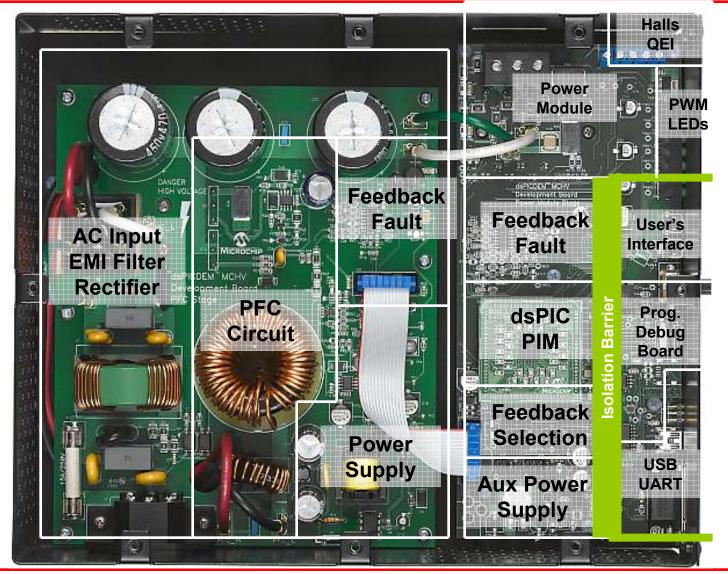
MCHV Specifications

• PFC Stage


Parameter	Min	Typical	Max.	Units
DC Bus	90	380	400	VDC
Current	0.1	2.6	3.5	A
Power Rating	9	1000	1400	Watts
Switching Freq.	0	50	100	kHz

Inverter Stage

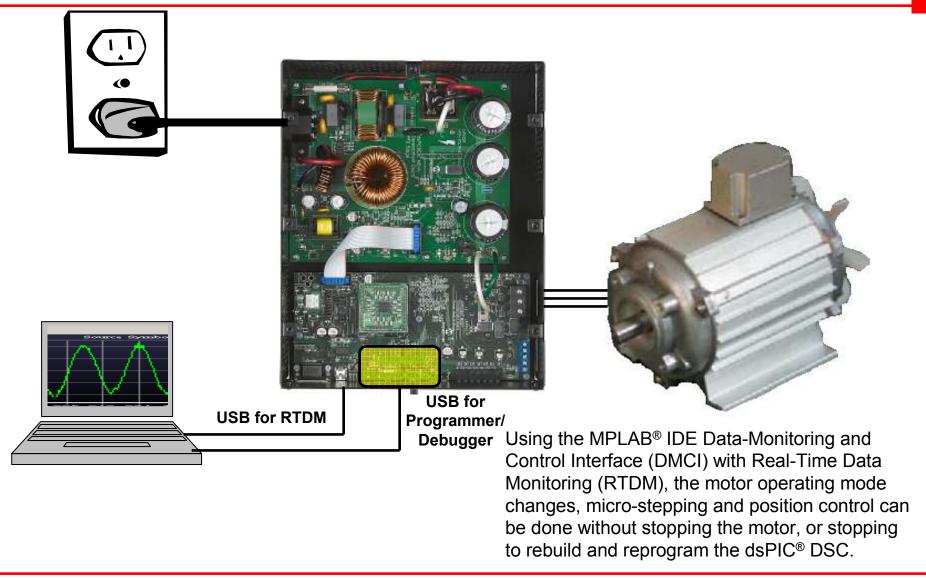
Parameter	Min	Typical	Max.	Units
DC Bus	40	310	400	VDC
Current	0.1	6.5	10	A
Power Rating	4	2015	4000	Watts
Switching Freq.	0	-	20	kHz



MCHV Block Diagram

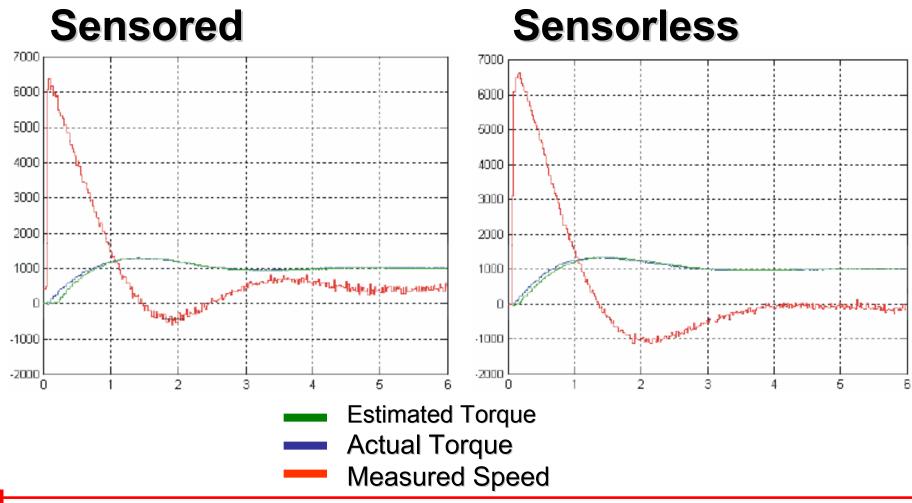
MCHV Board Layout

e-Drive Motor, Drive & Automation Systems Conference 2010



High-Voltage Motor Control Algorithms

Motor	Best Control Technique Used by dsPIC [®] DSC	Benefits
3-phase ACIM	Open Loop (V/F) with variable speed	Low Cost
3-phase ACIM	Closed Loop - Sensored (QEI) - Sensorless FOC (Vector Control/180°) with PLL estimator and dual shunts	Better Control
BLDC	Sensored (Hall Effect) (Trapezoidal/120°) - High speed operation (5 to 20K RPM) - Rapid load changes requiring fast torque response - Fast or high accuracy on a servo position response	Better Torque Control than ACIM
BLDC/PMSM	Sensored (Hall Effect) (Sinusoidal/180°)	Lower Noise
BLDC	Sensorless (requires moderate tuning) (Trapezoidal/120°) - Back EMF with ADC - FIR filtered BEMF with ADC - FIR filtered BEMF with ADC and Majority Detect function	Lower Cost
PMSM	Sensorless (requires advanced tuning) - FOC with single- or dual-shunt circuits, PLL or SMO estimator and field weakening	Highest Efficiency, Best Torque Control



Development Environment With Real-Time Data Monitoring

Sensorless PLL FOC for ACIM Step Response

e-Drive Motor, Drive & Automation Systems Conference 2010

Agenda

• Explore the design trade-offs associated with creating ultra-lowcost motor drives, without compromising control techniques, energy efficiency or safety

• Examine three designs:

dsPICDEM[™] MSCM—a simple stepper-motor drive dsPICDEM[™] MCLV—a standard low-voltage sensorless drive dsPICDEM[™] MCHV—a complex isolated high-voltage drive

• Compare the actual Bill of Material (BOM) costs, control techniques, energy efficiency and safety features of the three designs

Summary of Motor-Control Algorithms

Motor	Control Technique Used	Benefits
3-phase ACIM	Open Loop (V/F) with variable speed	Low Cost
3-phase ACIM	Closed Loop - Sensored (QEI) - Sensorless FOC (Vector Control/180°) with PLL estimator and dual shunts	Better Control
BLDC	Sensored (Hall Effect) (Trapezoidal/120°) - High speed operation (5 to 20K RPM) - Rapid load changes requiring fast torque response - Fast or high accuracy on a servo-position response	Better Torque Control than ACIM
BLDC/PMSM	Sensored (Hall Effect) (Sinusoidal/180°)	Lower Noise
BLDC	Sensorless (requires moderate tuning) (Trapezoidal/120°) - Back EMF with ADC - FIR filtered BEMF with ADC - FIR filtered BEMF with ADC and Majority Detect function	Lower Cost
PMSM	Sensorless (requires advanced tuning) - FOC with single or dual shunt circuits, PLL or SMO estimator and field weakening	Highest Efficiency, Best Torque Control
Stepper	Full Stepping, Half Stepping, Micro-Stepping, Position Control - Open Loop Control (Fixed Voltage or Fixed Current) - Closed Loop Current PI Control Loop	Easiest Faster Speed, Most Efficient

MICROCHIP Motor Control Application Notes

Motor Type	App. Note	Description		
Stepper Motor	AN907	Stepper Motor Fundamentals		
	AN1307	dsPIC33F Stepper Motor Control		
Brushed DC Motor	AN905	Brushed DC Motor Fundamentals		
BLDC and PMSM	AN857	Brushless DC Motor Control Made Easy		
	AN885	Brushless DC (BLDC) Motor Fundamentals		
	AN901	Sensorless Control of BLDC Motor using dsPIC30F6010		
	AN992	Sensorless Control of BLDC Motor using dsPIC30F2010		
	AN957	Sensored Control of BLDC Motor using dsPIC30F2010		
	AN1017	Sinusoidal Control of PMSM Motors with dsPIC30F		
	AN1083	Sensorless Control of BLDC with Back-EMF Filtering		
	AN1078	Dual Shunt Sensorless FOC for PMSM		
	AN1160	Sensorless BLDC Control with Back-EMF Filtering Using a Majority Function		
	AN1208	Integrated PFC and Sensorless FOC System		
	AN1292	Dual Shunt Sensorless FOC PSMS PLL Field Weakening		
	AN1299	Single Shunt Sensorless FOC PMSM SMO		
AC Induction Motor	AN887	AC Induction Motor Fundamentals		
	AN908	Using the dsPIC30F for Vector Control of an ACIM		
	AN984	Introduction to ACIM Control using the dsPIC30F		
	AN1162	Sensorless Field Oriented Control (FOC) of an ACIM		
	AN1206	Field Weakening Sensorless FOC for ACIM		
Other	AN1106	Power Factor Correction on dsPIC® DSC		
	AN1229	Meeting IEC 60730 Class B Compliance with dsPIC® DSC		

Low-Cost Development Tools

Stepper ->

dsPICDEM[™] MCSM (DM330022) \$130 (resell)

BLDC →

dsPICDEM[™] MCLV (DM330021) \$150 (resell)

dsPICDEM[™] MCHV (DM330023) \$650 (resell)

e-Drive Motor, Drive & Automation Systems Conference 2010

Drive Comparison

Drive	Motor Types	Control Techniques	Feedback Circuits	Safety	Benefits/ Efficiency	BOM Cost (@ 100 units)
MCSM	Stepper • Unipolar • Bipolar - Series • Bipolar - Parallel • Bipolar - Half- Winding	 Open-Loop Fixed Voltage Open-Loop Fixed Current Closed-Loop Current PI Control Loop Multiple Decay Modes 	• 2 current shunt-resistor circuits for current feedback	Over-current protection	 Optimized for torque, high-speed and noise One drive platform supports multiple motor types and control techniques 	\$32
MCLV	3-Phase BLDC & PMSM	Sensored Trapezoidal or Sinusoidal, Sensorless Back EMF or Field Oriented Control with Field Weakening	 2 current shunt-resistor circuits for current feedback Resistor divider chain for voltage feedback 	Over-current protection	 Efficiency ≤ 95% One drive platform supports multiple motor types and control techniques 	\$55
MCHV	3-Phase ACIM or High- Voltage BLDC or PMSM	Open-Loop Volts/Hertz, Sensored Vector Control or Sensorless FOC with single or dual shunts, PFC and Field Weakening	 2 current shunt-resistor circuits for current feedback Resistor divider chain for voltage feedback PFC: Inductor, MOSFET and driver circuit Voltage reference and op amp circuit Current shunt-resistor circuit for current feedback Zero Cross Detection for Vac circuit 	 Over-voltage protection Over-current protection Gate Driver under- voltage protection Isolated digital power and ground Opto-isolated user interface 	 ●Efficiency ≤ 95% One drive platform supports multiple motor types and control techniques plus PFC 	\$215

- For more information please download the User Guide (includes schematics) and the application notes (includes source code) from:
- <u>http://www.microchip.com/dscmotor</u>
- For actual Bill Of Materials, please contact us directly:
 - daniel.torres@microchip.com
 - patrick.heath@microchip.com

Conclusion

- We have met our goals of designing a trio of ultra lowcost but safe drive hardware for the most common types of motors—stepper, low-voltage BDLC or PMSM, and highvoltage ACIM or BLDC/PMSM.
- These drives support all of the common control algorithms and feedback circuits.
- Additionally, we have shown that low-cost does not mean skimping on efficiency or benefits. DSCs such as the Microchip dsPIC33F are competitively priced and provide the processing capabilities needed to run the most efficient control algorithms.

Note: The Microchip name and logo, dsPIC and MPLAB are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. dsPICDEM is a trademark of Microchip Technology Inc. in the U.S.A. and other countries. All other trademarks mentioned herein are property of their respective companies.