NL17SHT126

Noninverting Buffer / CMOS Logic Level Shifter with LSTTL-Compatible Inputs

The NL17SHT126 is a single gate noninverting 3-state buffer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The NL17SHT126 requires the 3-state control input (OE) to be set Low to place the output into the high impedance state.

The device input is compatible with TTL-type input thresholds and the output has a full 5 V CMOS level output swing. The input protection circuitry on this device allows overvoltage tolerance on the input, allowing the device to be used as a logic-level translator from 3 V CMOS logic to 5 V CMOS Logic or from 1.8 V CMOS logic to 3 V CMOS Logic while operating at the high-voltage power supply.

The NL17SHT126 input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage. This allows the NL17SHT126 to be used to interface 5 V circuits to 3 V circuits. The output structures also provide protection when $V_{CC} = 0$ V. These input and output structures help prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc.

Features

- High Speed: $t_{PD} = 3.5 \text{ ns} (Typ) \text{ at } V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 1 \ \mu A \ (Max)$ at $T_A = 25^{\circ}C$
- TTL-Compatible Inputs: $V_{IL} = 0.8 V$; $V_{IH} = 2 V$
- CMOS–Compatible Outputs: $V_{OH} > 0.8 V_{CC}$; $V_{OL} < 0.1 V_{CC}$ @Load
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- These are Pb–Free Devices

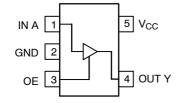


Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

R = Specific Device Code M = Month Code

PIN ASSIGNMENT							
1 IN A							
2 GND							
3 OE							
4	OUT Y						
5 V _{CC}							

FUNCTION TABLE

A Input	OE Input	Y Output
L	н	L
Н	н	Н
Х	L	Z

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Characteristics	Value	Unit
V _{CC}	DC Supply Voltage	–0.5 to +7.0	V
V _{IN}	DC Input Voltage	–0.5 to +7.0	V
V _{OUT}	DC Output Voltage	–0.5 to V _{CC} + 0.5	V
I _{IK}	Input Diode Current	-20	mA
I _{OK}	$\label{eq:output} Output \ Diode \ Current \qquad \qquad V_{OUT} < GND; \ V_{OUT} > V_{CC}$	±20	mA
I _{OUT}	DC Output Current	±25	mA
I _{CC}	DC Supply Current, V _{CC} and GND	50	mA
PD	Power Dissipation in Still Air	50	mW
ΤL	Lead Temperature, 1 mm from Case for 10 s	260	°C
TJ	Junction Temperature Under Bias	+150	°C
T _{stg}	Storage Temperature	-65 to +150	°C
I _{Latchup}	Latchup Performance Above V _{CC} and Below GND at 125°C (Note 1)	±100	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit
V _{CC}	DC Supply Voltage	3.0	5.5	V
V _{IN}	DC Input Voltage	0.0	5.5	V
V _{OUT}	DC Output Voltage	0.0	V _{CC}	V
T _A	Operating Temperature Range	-55	+125	°C
t _r , t _f	Input Rise and Fall Time $$V_{CC}$$ = 5.0 V \pm 0.5 V	0	20	ns/V

Device Junction Temperature versus Time to 0.1% Bond Failures

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

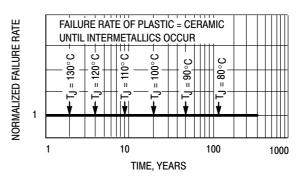


Figure 3. Failure Rate vs. Time Junction Temperature

NL17SHT126

DC ELECTRICAL CHARACTERISTICS

			V _{CC}	٦	Γ _A = 25°	°C	T _A ≤	85°C	$-55 \leq T_{A} \leq 125^{\circ}C$					
Symbol	Symbol	Parameter	Parameter	Test Conditions	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	Minimum High-Level Input Voltage		3.0 4.5 5.5	1.4 2.0 2.0			1.4 2.0 2.0		1.4 2.0 2.0		V			
V _{IL}	Maximum Low-Level Input Voltage		3.0 4.5 5.5			0.53 0.8 0.8		0.53 0.8 0.8		0.53 0.8 0.8	V			
V _{OH}	Minimum High-Level Output Voltage		3.0 4.5	2.9 4.4	3.0 4.5		2.9 4.4		2.9 4.4		V			
V _{IN} = V _{IH} or V _{IL}	$v_{IN} = v_{IH} \text{ or } v_{IL}$		3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66					
V _{OL}	Maximum Low-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \ \mu A$	3.0 4.5		0.0 0.0	0.1 0.1		0.1 0.1		0.1 0.1	V			
	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52				
I _{IN}	Maximum Input Leak- age Current	V _{IN} = 5.5 V or GND	0 to 5.5			±0.1		±1.0		± 1.0	μA			
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			1.0		20		40	μA			
I _{CCT}	Quiescent Supply Current	Input: V _{IN} = 3.4 V Other Input: V _{CC} or GND	5.5			1.35		1.50		1.65	mA			
I _{OPD}	Output Leakage Current	V _{OUT} = 5.5 V	0.0			0.5		5.0		10	μA			
I _{OZ}	Maximum 3-State Leakage Current	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or } GND$	5.5			± 0.25		± 2.5		± 2.5	μA			

AC ELECTRICAL CHARACTERISTICS Input $t_r = t_f = 3.0 \text{ ns}$

				Т	A = 25°	С	T _A ≤	85°C	-55 ≤ T _A	≤ 125°C	
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, A to Y	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	$C_L = 15pF$ $C_L = 50pF$		5.6 8.1	8.0 11.5	1.0 1.0	9.5 13.0		12.0 16.0	ns
	(Figures 3 and 5)	$V_{CC} = 5.0 \pm 0.5 \text{ V}$	$C_L = 15 pF$ $C_L = 50 pF$		3.8 5.3	5.5 7.5	1.0 1.0	6.5 8.5		8.5 10.5	
t _{PZL} , t _{PZH}	Maximum Output Enable Time, OE to Y	$\begin{array}{c} V_{CC} = 3.3 \pm 0.3 \ V \\ R_L = R_l = 500 \ \Omega \end{array}$	$C_L = 15 pF$ $C_L = 50 pF$		5.4 7.9	8.0 11.5	1.0 1.0	9.5 13.0		11.5 15.0	ns
	(Figures 4 and 5)	$\begin{array}{l} V_{CC} = 5.0 \pm 0.5 \; V \\ R_L = R_{I} = 500 \; \Omega \end{array}$			3.6 5.1	5.1 7.1	1.0 1.0	6.0 8.0		7.5 9.5	
t _{PLZ} , t _{PHZ}	Maximum Output Disable Time,OE to Y	$\begin{array}{c} V_{CC} = 3.3 \pm 0.3 \ V \\ R_L = R_l = 500 \ \Omega \end{array}$			6.5 8.0	9.7 13.2	1.0 1.0	11.5 15.0		14.5 18.0	ns
	(Figures 4 and 5)	$\begin{array}{l} V_{CC} = 5.0 \pm 0.5 \; V \\ R_L = R_{I} = 500 \; \Omega \end{array}$			4.8 7.0	6.8 8.8	1.0 1.0	8.0 10.0		10.0 12.0	
C _{in}	Maximum Input Capacitance				4	10		10		10	pF
C _{out}	Maximum Three–State Output Capacitance (Output in High Impedance State)				6						pF
	Typical @ 25°C, V _{CC} = 5.0 V					/					
C _{PD}	Power Dissipation Capacitance (Note 2)							14			pF

2. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}/4$ (per buffer). C_{PD} is used to determine the no-load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

NL17SHT126

SWITCHING WAVEFORMS

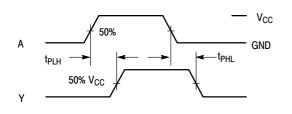
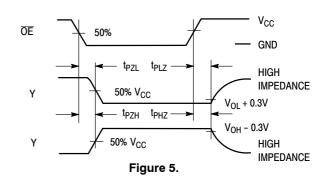
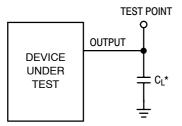




Figure 4. Switching Waveforms

*Includes all probe and jig capacitance

*Includes all probe and jig capacitance

CONNECT TO V_{CC} WHEN

TESTING t_{PLZ} AND t_{PZL}. CONNECT TO GND WHEN

TESTING tPHZ AND tPZH.

TEST POINT

OUTPUT

DEVICE

UNDER

TEST

 $1 k\Omega$

 C_L^*

Figure 7. Test Circuit

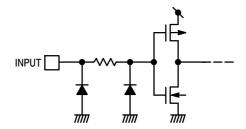


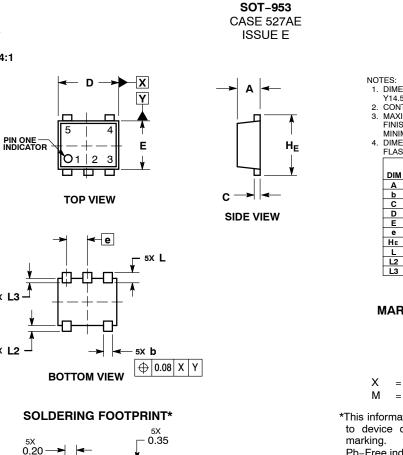
Figure 8. Input Equivalent Circuit

ORDERING INFORMATION

Device	Package	Shipping [†]
NL17SHT126P5T5G	SOT-953 (Pb-Free)	8000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SCALE 4:1


5X L3

5X L2

PACKAGE OUTLINE

0.35 PITCH

DATE 02 AUG 2011

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS								
DIM	MIN NOM MAX								
Α	0.34	0.37	0.40						
b	0.10	0.15	0.20						
С	0.07	0.17							
D	0.95 1.00	1.00	1.05						
E	0.75	0.80	0.85						
е		0.35 BS	С						
ΗE	0.95	1.00	1.05						
L	(0.175 RE	F						
L2	0.05	0.10	0.15						
L3			0.15						

GENERIC **MARKING DIAGRAM***

= Specific Device Code

= Month Code

*This information is generic. Please refer to device data sheet for actual part

Pb-Free indicator, "G" or microdot " .", may or may not be present.

L

1.20

DOCUMENT NUMBER:	98AON26457D Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOT-953		PAGE 1 OF 1			
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically			

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative