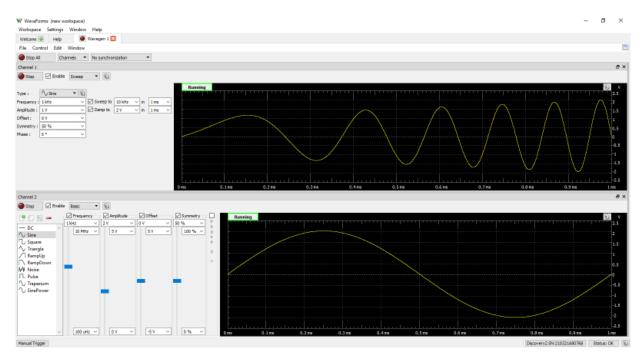


Analog Discovery Studio Reference Manual

The Analog Discovery Studio equipped with 13 test and measurement instruments providing the functionality of an entire benchtop worth of equipment in one device. The Oscilloscope, Waveform Generator, Logic Analyzer, Protocol Analyzer, Spectrum Analyzer, Power Supplies and more provide a device that can become a pop-up electronics laboratory anywhere. The physical design of the Analog Discovery Studio provides BNC connectors or MTE cables for the analog inputs and outputs, MTE cables for the digital I/O, triggers, and power supplies, and a large removable and breadboardable design surface supporting a large variety of designs or projects.

Oscilloscope

The Analog Discovery Studio can be used with WaveForms' Oscilloscope instrument to capture analog input data via the analog input ("Scope") channels, using either BNC cables or MTE cables. When this instrument is used, the Analog Discovery Studio's analog input channels act as a two-channel, 14-bit, 100 MS/s oscilloscope.


When used with BNC cables, the oscilloscope channels are single-ended, however, the circuit under test must still share a common ground with the Analog Discovery Studio. With BNC cables, the analog input channels have a bandwidth of 30+ MHz.

When used with MTE cables, the oscilloscope channels' + and - pins are differentially paired. The - pins can be attached to a non-ground circuit net, but the circuit under test must still share a common ground with the Analog Discovery Studio. With MTE cables, the analog input channels have a bandwidth of 9 MHz.

Since the Analog Discovery Studio's analog input channels are shared, the Oscilloscope instrument cannot be used at the same time as the Voltmeter, Data Logger, Spectrum Analyzer, Network Analyzer, or Impedance Analyzer instruments.

For more information on the analog input ("Scope") channels, please visit the Analog Discovery Studio Specifications. For a walkthrough of the different features of WaveForms' Oscilloscope instrument, please visit the Using the Oscilloscope guide.

Important Note: Grounding Circuitry

Waveform Generator

The Analog Discovery Studio can be used with WaveForms' Waveform Generator instrument to output analog voltage waves via either BNC cables or MTE cables. The Waveform Generator converts 14-bit digital samples to analog at a rate of up to 100 MS/s on each of two channels. When the Waveform Generator instrument is used, the Analog Discovery Studio's analog

output channels act as an Arbitrary Waveform Generator. The instrument supports everything from simple waveforms like Sine and Triangle waves, up to more complicated functions like AM and FM modulation. Custom sets of samples can be defined by the user in applications like Excel and imported to WaveForms.

Each waveform generator channel is considered a single ended pin, however, a connected circuit must share a ground with the Analog Discovery Studio. Each channel has a bandwidth of 8MHz through both the BNC and MTE connectors. AC amplitudes of +-5V and DC offsets of +-5V are supported.

Since the Analog Discovery Studio's analog output channels are shared, the Waveform Generator instrument cannot be used at the same time as the Network Analyzer, or Impedance Analyzer instruments.

For more information on the analog output ("Wavegen") channels, please visit the Analog Discovery Studio Specifications. For a walkthrough of the different features of WaveForms' Waveform Generator instrument, please visit the Using the Waveform Generator guide.

		_	
W Wawfarma (new workspace) Workspace Settings Window Help		- 0	×
management and the second			
File Centrel Window			
Plaster trable is On			
Positive Supply (V+) On	Voltagei	57	v
Hegetive Supply (V-) On	Voltager	-57	v
u U20 powersť, alloving up to 500 mW Istalio 7700 mA output per channel.			
Merual Trigger	scovery2 9N 21032149076	Status	OK D

Power Supplies

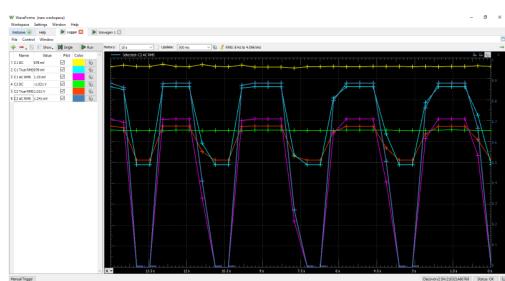
The Analog Discovery Studio has a variety of different power supply rails that are can be used to power circuits under test. The V+ and V- rails are variable, while the rest are fixed. The fixed rails are summarized in the table below:

Label	Voltage	Maximum Current
+12V	12V +/-5%	0.2A
-12V	-12V +/-5%	0.2A
5.0V	5V +/-5%	1.0A
3.3V	3.3V +/-5%	1.0A

Note: The 3.3V and 5.0V power supply rails are only available from pins located on the Canvas.

The Analog Discovery Studio also features two variable power supply rails, labeled V+ and V-, which can be set to voltage levels between 1 to 5V and -1 to -5V respectively, through the use of WaveForms' "Supplies" instrument. Each of these supplies can provide at most 2.1 W or 700 mA.

For more information on using the programmable power supplies, please visit the Analog Discovery Studio Specifications. For a walkthrough of the different features of WaveForms' Power Supplies instrument, please visit the Using the Power Supplies guide.


Voltmeter

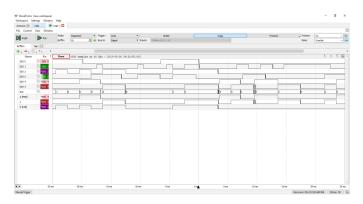
👻 Help 🕘 Voltmatar 🖸 👰 Wavep	en i 🔲			
ntrol Window				
e 🥚 Stop 🚯 RMS: 4Hz to 2.048 kHz				
	Channel 1		Channel 2	
977 mV		-1.018 V		
s 1.719 V		1.344 V		
1.415 V		878 mV		

The Analog Discovery Studio's analog input pins can be used with WaveForms' Voltmeter instrument to act as a simple voltmeter. DC voltages, AC RMS voltages, and True RMS voltages can be viewed for each of the two Scope channels.

Since the Analog Discovery Studio's analog input channels are shared, the Voltmeter instrument cannot be used at the same time as the Oscilloscope, Data Logger, Spectrum Analyzer, Network Analyzer, or Impedance Analyzer instruments.

For more information on the analog input ("Scope") channels, please visit the Analog Discovery Studio Specifications. For a walkthrough of the different features of WaveForms' Voltmeter instrument, please visit the Using the Voltmeter guide.

Data Logger


The Analog Discovery Studio can be used with WaveForms' "Logger" instrument in order to capture large buffers of analog input data on the Scope pins.

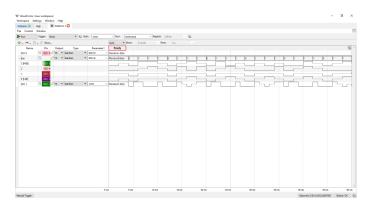
The Data Logger can capture buffers of data at update rates of up to 10 samples per second. The maximum duration of a log is dependent on the update rate, but at the extreme, can run for over a thousand hours.

Since the Analog Discovery Studio's analog input channels are shared, the Data Logger instrument cannot be used at the same time as the Oscilloscope, Voltmeter, Spectrum Analyzer, Network Analyzer, or Impedance Analyzer instruments.

For more information on the analog input ("Scope") channels, please visit the Analog Discovery Studio Specifications. For a walkthrough of the different features of WaveForms' Data Logger instrument, please visit the Using the Data Logger guide.

Logic Analyzer

The Analog Discovery Studio can be used with WaveForms' "Logic" instrument to act as a Logic Analyzer. When used this way, the 16 digital input/output channels are configured to capture high/low logic states on connected pins at a sample rate of up to 100 MS/s. These channels are capable of interfacing with 3.3V and 1.8V logic signals, and are tolerant to voltages of up to 5V.

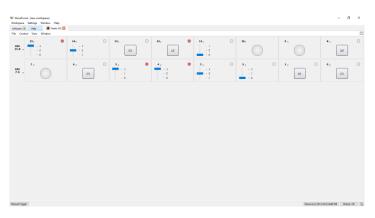

Individual input/output channels can be grouped as buses and protocols. Protocol groups can be used to view the decoded contents of packets of many common communications protocols, including SPI, I2C, UART, CAN, and I2S.

Signal states, decoded bus values, and decoded protocols can be used to trigger a Logic Analyzer capture. Protocol triggers include protocol-specific events, like start of transmission, end of transmission, or packet contents matching a value.

Digital input/output channels used by the Logic Analyzer instrument can still be used by other instruments using the same digital input/output channels.

For more information on the digital input/output channels, please visit the Analog Discovery Studio Specifications. For a walkthrough of the different features of WaveForms' Logic Analyzer instrument, please visit the Using the Logic Analyzer guide.

Pattern Generator


The Analog Discovery Studio can be used with WaveForms' "Patterns" instrument to generate logic signal sequences on the digital input/output pins.

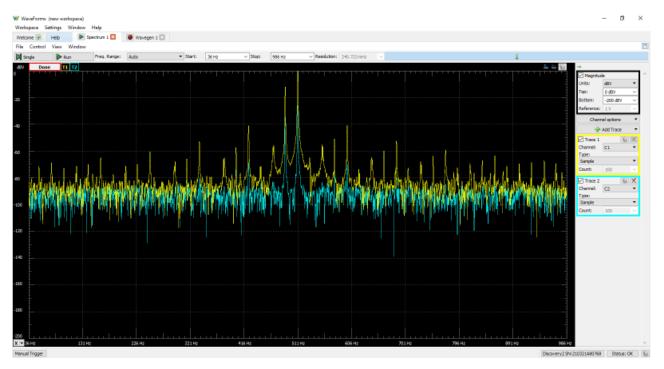
The pins can be configured to be push/pull, open drain, open source, or three-state logic. The logic high output voltage level is 3.3V. Sample rates can go as high as 100 MS/s.

Digital input/output channels used by the Pattern Generator instrument can still be used by other instruments using the same digital input/output channels, however, other instruments can only use these shared channels as inputs.

For more information on the digital input/output channels, please visit the Analog Discovery Studio Specifications. For a walkthrough of the different features of WaveForms' Pattern Generator instrument, please visit the Using the Pattern Generator guide.

Digital I/O

The Analog Discovery Studio can be used with WaveForms' Static I/O instrument to emulate a variety of user input/output devices on the digital input/output pins. Virtual LEDs, buttons, switches, sliders, and displays can be assigned to specific digital I/O pins, and interacted with within the WaveForms user interface.


The Analog Discovery Studio's digital input/output channels use a 3.3V logic standard for output, and can accept either 1.8V or 3.3V logic signals as inputs. The digital input/output pins are tolerant to input signals up to 5V.

Important Note: To prevent damage to the device, care must be taken not to drive input signals to the digital input/output channels over 5V.

Digital input/output channels used by the Static I/O instrument can still be used by other instruments using the same digital input/output channels, however, other instruments can only use these shared channels as inputs.

For more information on the digital input/output channels, please visit the Analog Discovery Studio Specifications. For a walkthrough of the different features of WaveForms' Static I/O instrument, please visit the Using the Digital I/O guide.

Spectrum Analyzer

The Analog Discovery Studio can be used with WaveForms' "Spectrum" instrument to view the power of frequency-domain components of analog signals captured on the analog input channels.

Signals with minimum/maximum frequencies between 0 Hz and 50Mhz can be plotted in units of peak voltage, RMS voltage, and various voltage level ratio units.

Since the Spectrum Analyzer instrument uses the same hardware resources as the Oscilloscope, Network Analyzer, and Impedance Analyzer instruments, it cannot be used at the same time as these other instruments.

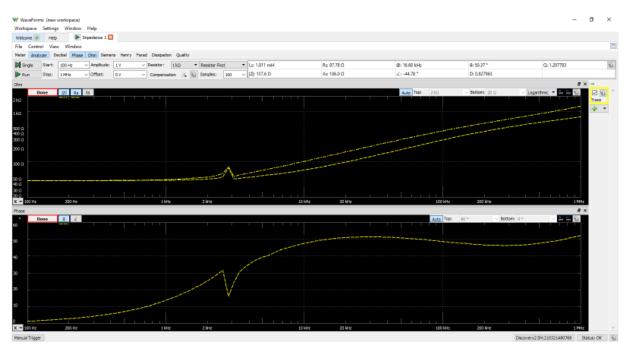
Since the Analog Discovery Studio's analog input channels are shared, the Oscilloscope instrument cannot be used at the same time as the Oscilloscope, Voltmeter, Data Logger, Network Analyzer, or Impedance Analyzer instruments.

For more information on the analog input channels, please visit the Analog Discovery Studio Specifications. For a walkthrough of the different features of WaveForms' Spectrum Analyzer instrument, please visit the Using the Spectrum Analyzer guide.

Network Analyzer

ne 🔹 Hel		ietvark 1 🔼													
Control Vie									_						
gla 🛛	Run	Scale: La	ogerithmic	♥ Starti	50 Hz	 Stopi 100 kHz 	 Samplesi 	300 1							
Done	CI C2 100	steps between	50 Hz and 100	kHz 2018-06-	26 10:01:13:381					Nyquist			$\sigma \times \rightarrow$		
					·						Auto v			eveGen	
										1 B			Offse		
														tude: 1V	
														agnitude	_
										a.s				Relative to Chan	mel 1
													Unita Topi		
										0.4			Botto		
															_
										0.2			Pt offar		
													Rang	-	
										a				uton One	_
										The second		1			-
														ustom Two	_
										1				💠 Add Cherr	nel
										-0.4				namel 1	
													Gain		
										-0.6					_
													M □ Offse	tannal 2 Sti DV	
										-0.8			Gaine		
														1411	_
										-1			-Ll		
	1 - 26:	-			. Line in the second se		1			300 kHz Nyquit	t Nichola	0			
													θ×		
uni 👍 pure	a — Remove	Al Show													
Position	a — Kellove Ref	ΔX		decade	C1	C1 AY	C1.437/438		C2.0Y	C2 67/88	City -	C2 Aphane	6		
Poetton 19 Hz	V none V	Δ×		cecand	-0.000 dB	CLAY	CI MIJAK	-1.495 dB	C2.07	C2 17/10	-31.18*	C2 Ophane			
	✓ name + ✓ 1 +	57.735 Hz	× 199.3	in i	-0.000 dB	-0.000 dB	-0.000 dB/dec	-3.012 dB	-1.516 dB	-7.609 dB/dec	-43.14 *	-11.96 *	-		
9 T IL		an in an the	- 1256.5		_ week op	1000 00	WHEN OD DOL	2012-00	1210 00	11003 007060	1014	1100			

The Analog Discovery Studio can be used with WaveForms' "Network" instrument to view the amplitude and phase response of a circuit under test. Nichols and Nyquist plots can also be viewed with this instrument.


Frequency sweeps can be performed in ranges between 1 mHz and 10 MHz with up to 10k samples per decade. The wave used for the sweep can be customized, and uses the same resources as the Waveform Generator instrument.

The Network Analyzer instrument uses the analog output and analog input channels of the Analog Discovery Studio to probe a test circuit. The Network Analyzer can be configured to use an external signal to provide input to the circuit under test, rather than using the analog output channels.

Since the Analog Discovery Studio's analog input and output channels are shared, the Network Analyzer instrument cannot be used at the same time as the Oscilloscope, Waveform Generator, Voltmeter, Data Logger, Spectrum Analyzer, or Impedance Analyzer instruments.

For more information on the analog output and analog input channels, please visit the Analog Discovery Studio Specifications. For a walkthrough of the different features of WaveForms' Network Analyzer instrument, please visit the Using the Network Analyzer guide.

Impedance Analyzer

The Analog Discovery Studio can be used with WaveForms' "Impedance" instrument to view a wide variety of frequency response characteristics of a circuit under test. Input, Phase, Voltage, Current, Impedance, Admittance, Inductance, Factor, and Nyquist plots are all available. In addition, Custom plots can be used to present the results of a wide variety of different mathematical operations on buffered data.

Frequency sweeps can be performed with in ranges between 100 uHz and 25 MHz, with as many as 10k samples per decade. The signal used to perform the sweep can be selected from a variety of preset, with configurable amplitude and offset. An external network analyzer reference circuit can be selected from a variety of options.

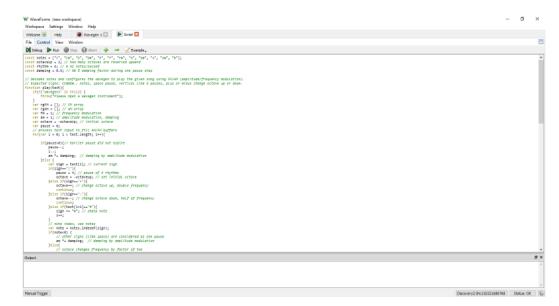
The Impedance Analyzer instrument uses the analog output channels and analog input channels of the Analog Discovery Studio to probe a test circuit.

Since the Analog Discovery Studio's analog input and output channels are shared, the Impedance Analyzer instrument cannot be used at the same time as the Oscilloscope, Waveform Generator, Voltmeter, Data Logger, Spectrum Analyzer, or Network Analyzer instruments.

For more information on the analog output and analog input channels, please visit the Analog Discovery Studio Specifications. For a walkthrough of the different features of WaveForms' Impedance Analyzer instrument, please visit the Using the Impedance Analyzer guide.

Protocol Analyzer

	otocal 🖂							
Control Window								
								De
RT SPI 12C CAN								De
Settings								
elect: 000 0 Act	tve: Low • Prequency:	100 kHz V DQ0: DE0 2	DQ2: DE0.4 C Pirat bit	MSBR 🔹 🚯				
ilodic DIO 1 😨 Poli	erity: () • Phase:	0 • DQ1: D(0 3	DQ3: D(0.5 C Piret we	rst: LSWard 🔹				
ipy Master Custom Ser	neor							
Execute Script, Script	z Z Example z							
<pre>r cbFlash = 16772216; slact.Active.value = 0; lock.rolarity.value = 0; lock.Phase.value = 0;</pre>								
<pre>((lot.respect) value > 20 ((lot.respect)) / end 3:</pre>	totus megister)) // Write in progress bit? ("~/DesHtop/data.bin"))							
<pre>ctile malprogets(){ set10; webs(), webs() // Road to the set10; webs(), webs(</pre>	totus megister)) // Write in progress bit? ("~/DesHtop/data.bin"))							
<pre>tion waitprogress(){ Start[]; start[]; bine(stift); bine(stift); bine(stift); bine(stift); bine(stift); break; } stap[]; read bine(stift); read b</pre>	totus neglister)) // write in progress bit? (*~/Des#top/dato.bin*)) [Start]	Rest(,)	•	pen(, /240)	sn0	aboQ	{	
<pre>ction mailporgetss(){ wells(s, owes), // Road % wells(s, owes), // Road % wells(s, owes), // Road % if([stealung), // Road %</pre>	totus neglister)) // write in progress bit? ("~/Desktop/data.din")) (Start0 Start0 Stap0	ReadD(,)		log(,base)	can()	round()	()	
<pre>ction saltprogress(){ series[: emergence] series[: emergence] series[: emergence] versit[: emergence]</pre>	totus neglister)) // write in progress bit? (*~/Des#top/dato.bin*)) [Start]	ReadD(,) Write(,)	*	log(,base) log10()	cost() tan()	round() floor()	() M	
<pre>ction adioporpess(){ start1; write(s, some); // Read s: write(s, some); vor status = read(s, ; if((stread);</pre>	totus neglister)) // write in progress bit? ("~/Desktop/data.din")) (Start0 Start0 Stap0	ReadD(,) Write(,) ReadDual(,)	*	log(,base) log10() logn()	cost() tan() astin()	rsund() floor() cell()	() Ff E	
<pre>tile astprogress(){ sets(), mon(), // Root S sets(), mon(), // Root S thick satt(); ver Status = neod(s, , if((status) = neod(s, , if((status) = neod(s, ,</pre>	totus neglister)) // write in progress bit? (*-/besktop/data.din*)) (Start0 Start0 Stap0	RaadD(,) Write(,) ReadDual(,) WriteDual(,)	- * 36 3050	log(,base) log10() log1() log2()	coxQ tanQ aximQ accsQ	round() floor() cell() trunc()		
<pre>til mailtongets(){ start1; write(s, som); // Food 1; write(s, som); if(start); write(s, som); if(start); if(start);</pre>	totus neglister)) // write in progress bit? (*-/besktop/data.din*)) (Start0 Start0 Stap0	ReadD(,) Wite(,) ReadDual(,) WiteDual(,) ReadQuad(,)	- * abs() ##0	log(,base) log10() logn() log2() min(,,)	con0 tan0 anim0 acce0 atar0	rsund) floor() cel() trunc) algn()	E	
tion astporogress(){ setting, need) // Road S withing need(); // Road S withing need(); // Road S if((standuc); // Road S stop(); // Road S read binary file // Road S read binary file // Road S read binary file // Road S registrat []; read S registrat []; read S registrat []; read S finert // Road S own rights(); // Road S finert // Road S Obox Road S district // Road S district // Road S	totus neglister)) // write in progress bit? (*-/besktop/data.din*)) (Start0 Start0 Stap0	RaadD(,) Write(,) ReadDual(,) WriteDual(,)	- * 36 3050	log(,base) log10() log1() log2()	coxQ tanQ aximQ accsQ	round() floor() cell() trunc()		


The Analog Discovery Studio can be used with WaveForms' "Protocol" instrument to work with common communications protocols. UART, SPI, I2C, and CAN transactions can be received, transmitted, and/or spied upon by the Analog Discovery Studio using any of the 16 digital input/output channels at a sample rate of 100 MS/s.

Custom scripts can be written within the Protocol Analyzer instrument to generate sequences of SPI or I2C transactions.

Since it uses the same hardware resources as the Logic Analyzer and Pattern Generator instruments, the Protocol Analyzer cannot be used at the same time as these instruments.

For more information on the digital input/output channels, please visit the Analog Discovery Studio Specifications. For a walkthrough of the different features of WaveForms' Protocol Analyzer instrument, please visit the Using the Protocol Analyzer guide.

WaveForms Script Editor

Each of WaveForms' instruments can be controlled through scripts within the WaveForms application itself. WaveForms' "Script" instrument allows the user to write and run javascript code that can control the rest of the application through an extensive API. This allows the user to configure and run many instruments at the same time, in an easily repeatable way.

A variety of code examples are available in the application to aid in learning to write WaveForms scripts. Additional resources for writing scripts can be found on the Scopes and Instruments Digilent Forum.

A plot pane within the Script instrument itself can be used to integrate data from many different instruments, and display it in a highly customizable way.

For a walkthrough of the different features of WaveForms' Script instrument, please visit the Using Scripts guide.

WaveForms Software Development Kit (SDK)

The WaveForms SDK is a set of software libraries and examples that can be used to develop custom applications that can control Digilent Test and Measurement devices. Supported languages include C, C++, C#, Visual Basic, and Python. Third party toolkits are available for LabVIEW and MATLAB. Instructions for using WaveForms with LabVIEW are available through the National Instruments forum. The MATLAB support package is available through the MathWorks website. More information about WaveForms SDK can be found through the WaveForms SDK Reference Manual.

https://reference.digilentinc.com/reference/instrumentation/analog-discovery-studio/hardware-reference-manual?_ga=2.153908984.113684049.1563310986-341180776.1529427923//7-17-1