Product Document

Published by ams OSRAM Group

austriamicrosystems AG

is now

ams AG

The technical content of this austriamicrosystems datasheet is still valid.

Contact information:

Headquarters: ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten, Austria Tel: +43 (0) 3136 500 0 e-Mail: ams_sales@ams.com

Please visit our website at www.ams.com

Data Sheet

AS3683 1A Backlight and Camera LED Power Charge Pump

1 General Description

The AS3683 is a low-noise, high-current 1A charge pump designed for camera flash LEDs and LCD backlighting applications. The current sinks are capable of driving up to 960mA of load current.

The AS3683 integrates two independent current source blocks for driving a single flash LED (CURR11 to CURR13) with up to 480mA, and general purpose LEDs (CURR2 to CURR4) with up to 160mA/LED. The general purpose LEDs are controlled individually and can be used for backlighting, but also in support of an RGB funlight or a movie indicator lamp. To meet high-flash current requirements (up to 960mA), both current source blocks can be connected together (CURR11 to CURR13 and CURR2 to CURR4).

The AS3683 utilizes austriamicrosystems' patentpending Intelligent Adaptive Mode Setting (IAMS) to switch between 1:1, 1:1.5, and 1: 2 modes. In combination with very-low-drop-out current sinks, the device achieves high efficiency over the full single-cell Li+ battery voltage range. The charge pump operates at a fixed frequency of 1MHz allowing for tiny external components and its design ensures low EMI and low input-ripple.

The ultra-flexible brightness control scheme allows for simple adaptation of the device to different system architectures.

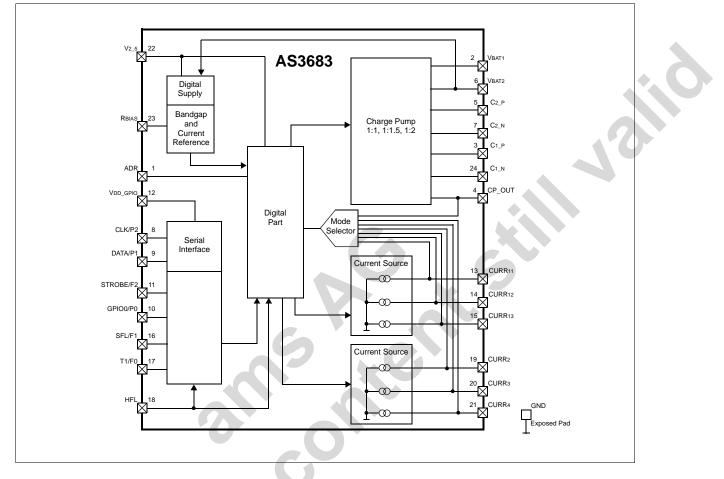
In Soft Flash Mode the device is controlled by an I2C interface. In these modes the LED brightness, flash duration, GPIOs and various charge pump states are controlled by internal register settings. The GPIO pins can act as programmable input or output pins and can also be set to trigger preview and flash light directly by a camera module.

In Hard Flash Mode the LED brightness is controlled by the Enable pins. These programming pins can be used as simple enable pins, or as PWM input, again offering ample flexibility for setting the LED brightness.

The AS3683 is available in a 24-pin QFN package.

2 Key Features

- High-Power 1A Charge Pump
 - 1:1, 1:1.5, and 1:2 Intelligent Adaptive Mode Setting (IAMS)
 - Efficiency up to 95%
 - Soft Start to Reduce Inrush Current
- Low-Noise Constant-Frequency Operation
- Current Sinks
 - 400mA Continuous Current (@VIN = 3.2 to 5V, VOUT = 5V)
 - Up to 960mA Pulsed Flash Current
 - Programmable: 0 to 160mA, 0.625mA Resolution
- Flexible Brightness Control
 - Three 0 to 160mA LEDs
 - Individually Addressable via I2C Interface
- 2 Operating Modes
 - Soft Flash Mode (I²C Interface)
 - Hard Flash Mode (Dedicated Control Pins)
- 2 General Purpose Inputs/Outputs in Soft Flash Mode
 - Digital Input, Output, and Tristate
 - Programmable Pull-Up and Pull-Down
 - Strobe Pin can be used for Camera Flash Control
- LED Disconnect in Shutdown
- Open LED Detection
- Low Stand-By Current (6µA), Interface Fully Operating
- Low Shut-Down Current (0.2µA)
- Wide Battery Supply Range: 3.0 to 5.5V
- Thermal Protection
- 24-Pin, Small Form-Factor QFN Package
 - 4 x 4 x 0.85mm, 0.5mm Pitch
 - Enhanced Thermal Characteristics


3 Application

Lighting management for cameras, mobile telephones, PDAs, and other 1-cell Li+ or 3-cell NiMH powered devices.

4 Block Diagram

Figure 1. AS3683 Block Diagram

5 Application Diagrams

Figure 2. Soft Flash Mode Application Diagram

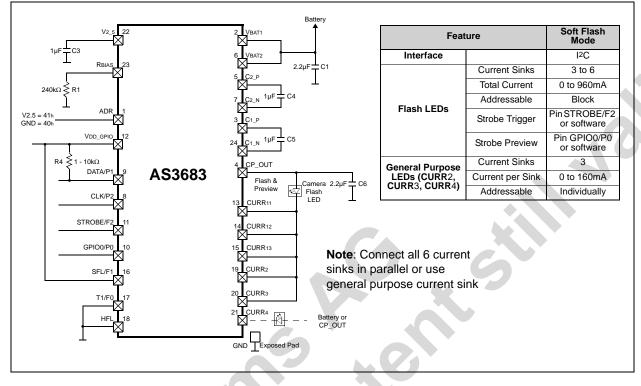
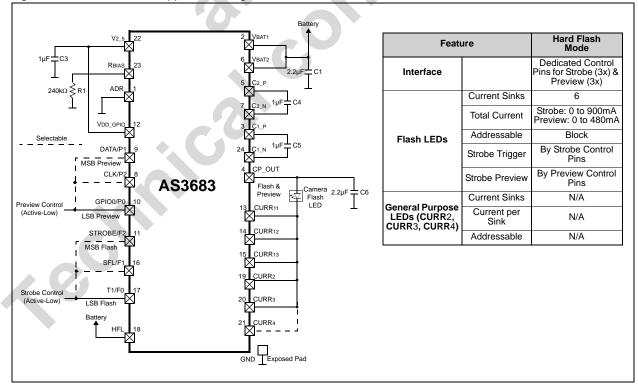



Figure 3. Hard Flash Mode Application Diagram

Contents

1 General Description	1
2 Key Features	1
3 Application	1
4 Block Diagram	2
5 Application Diagrams	3
6 Characteristics	5
6.1 Absolute Maximum Ratings (Non-Operating)	5
6.2 Operating Conditions	5
6.3 Electrical Characteristics	6
7 Typical Operation Characteristics	8
8 Detailed Functional Description	
8.1 Charge Pump	
8.1.1 Intelligent Adaptive Mode Switching (IAMS)	10
8.1.2 Soft Start	
8.1.3 Open LED Detection	
9 Mode Settings	
10 Hard Flash Mode	
11 Soft Flash Mode	14
11.1 Current Settings	15
11.2 Timing Control of CURR11, CURR12, CURR13 in Soft Flash Mode	15
11.3 Control of CURR2, CURR3, CURR4 in Soft Flash Mode	
11.4 Charge Pump Control Registers	
11.5 General Purpose Inputs/Outputs	
11.6 Power-On Reset	
11.7 Temperature Supervision	
11.8 Serial Interface	
11.8.1 Features	
11.8.2 Device Address Selection 11.8.3 Data Transfer Formats	
11.8.4 Fixed ID Register	
11.9 Register Map	
12 External Components	
12.1 Capacitor and Resistor Selection	
12.2 Usage of PCB Wire Inductance	
12.3 External Component Specifications	
13 Pinout and Packaging	
13.1 Hard Flash Mode Pin Descriptions	
13.2 Soft Flash Mode Pin Descriptions	
13.3 Package Drawings and Markings	
14 Ordering Information	

6 Characteristics

6.1 Absolute Maximum Ratings (Non-Operating)

Stresses beyond those listed in Table 1 may cause permanent damage to the device. These are stress ratings only, and functional operation of the device beyond those indicated in Section 6.2 is not implied.

Caution: Exposure to absolute maximum rating conditions may affect device reliability.

Table 1. Absolute Maximum Ratings

Symbol	Parameter	Min	Мах	Unit	Note
Vin_mv	5V Pins	-0.3	7.0	V	Applicable for 5V pins 1
VIN_LV	3.3V Pins	-0.3	5.0, Vdd_gpio + 0.3	V	Applicable for 3.3V pins 2
lin	Input Pin Current	-25	+25	mA	At 25°C, Norm: Jedec 17
TSTRG	Storage Temperature Range	-55	125	°C	
	Humidity	5	85	%	Non condensing
Vesd	Electrostatic Discharge	-1000	1000	V	Norm: MIL 883 E Method 3015
			1		Тамв = 70°
PT	Total Power Dissipation		2	W	TAMB = 70°, max 800ms
			4		TAMB = 70°, max 400ms
TBODY	Body Temperature		260	0	IPC/JEDEC J-STD-020C

Notes:

- 1. 5V pins are VBAT1, VBAT2, HFL, current sink pins (CURR11, CURR12, CURR13, CURR2, CURR3, and CURR4) and the charge pump pins (C1_N, C2_N, C1_P, C2_P, and CP_OUT).
- 2. 3.3V pins are GPIO0/P0, STROBE/F2, interface pins (CLK/P2, DATA/P1, ADR) and all other pins.

6.2 Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit	Note
VBAT	Battery Voltage	3.0	3.6	5.5	V	VBAT1 and VBAT2
VDD_GPIO	Periphery Supply Voltage	1.5		3.3	V	
V2_5	Voltage on Pin V2_5	2.4	2.5	2.6	V	Internally generated; Hard Flash Mode: always on; Soft Flash Mode: always on except in shutdown.
Тамв	Ambient Temperature	-30	25	85	°C	
Іват	Operating Current			1	A	Depending on load current and charge pump mode.
				2		Limited lifetime, max 20,000s
	Standby Mode Current		6	10.5	μA	Current consumption in standby mode; Only 2.5V regulator on; temperature supervision off. VDD_GPIO (page 7) > VGPIO_Vdd_TH_RISII (page 7).
ISTANDBY	Standby Mode Current including Temperature Supervision		8	14.5	μA	Current consumption in standby mode; Only 2.5V regulator on and temperature supervision on. VDD_GPIO > VGPIO_Vdd_TH_RISING. This is also the minimum current consumption in Hard Flash Mode.
SHUTDOWN	Shutdown Mode Current		0.2	1.5	μA	Current consumption in shutdown mode VDD_GPIO < 0.3V.

6.3 Electrical Characteristics

Table 3.	Charge Pump Electric	al Characteristics
----------	----------------------	--------------------

Symbol	Parameter	Min	Тур	Max	Unit	Note	
	Output Voltage Without Load			VBAT X CP-mode	V		
VCPOUT	Output Limitation		5.3	5.6	V	Internally regulated.	
			3.32			1:1 Mode; VBAT = 3.5V	
	Output Voltage With Load (I = 400mA)		4.31			1:1.5 Mode; VBAT = 3.5V	
			5.24			1:2 Mode; VBAT = 3.5V	
				1.0		1:1 Mode; VBAT = 3.2V, ILOAD = 100mA, VLOAD = 2.83V	
Rcp	Charge Pump Effective Resistance			3.5	Ω	1:1.5 Mode; VBAT = 3.3V, ILOAD = 400mA, VLOAD = 3.32V	
				3.5		1:2 Mode; VBAT = 3.3V, ILOAD = 960mA, VLOAD = 3.74V	
_	Continuous Output Current			400	mA	In automatic mode (see bit cp_man (page 21)) only; VBAT \leq 4.2V	
ICPOUT	Pulsed Output Current ¹			1000	mA	$ton \le 400ms$, $toFF \ge 2s$, automatic mode, total ton lifetime max 20,000s.	
			0.1			1;1 mode	
ICP	Power Consumption Without Load, FCLK = 1 MHz		4.5		mA	1:1.5 mode	
			5			1:2 mode	
Eta_1	Efficiency1 2	75		93	%	VIN = 3.0 to 4.5V, IOUT = 100mA	
Eta_2	Efficiency2 ²	65		82	%	VIN = 3.0 to 4.5V, IOUT = 10 to 350mA	
tR	Rising Time			1.0	ms		
Vorip	Output Ripple		10		mVpp	VIN = 3.0 to 4.5V, IOUT = 350mA, CP = 2.2uF, X5R	
f CLK	Clock Frequency	-20%	1.0	20%	MHz		

Notes:

- 1. See the austriamicrosystems *Temperature Characteristic QFN4x4 AS3682/83/83B Application Note*. Actual lifetime tests are performed with toN = 500ms and toFF = 500ms. Only the sum of the tON time limits the total lifetime.
- 2. This parameter describes the efficiency of the charge pump only.

Table 4. Current Sink Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Note
CURR1x-MAX	CURR1x Maximum Output Current		160		mA	Soft Flash Mode
ICURR I X-IVIAX	CORRECT Maximum Output Current		150		ШA	Hard Flash Mode
CURR1x-RES			0.625		mA	Soft Flash Mode
ICURR12-RES	CURR1x Resolution		20		ШA	Hard Flash Mode
	CURR2,3,4 Maximum Output Current		160		mA	Soft Flash Mode
CURR2,3,4-MAX			150		ШA	Hard Flash Mode
			0.625		A	Soft Flash Mode
CURR2,3,4-RES	CURR2,3,4 Resolution		20		mA	Hard Flash Mode
Delta-abs	Absolute Accuracy	-20		+20	%	All current sinks
Delta-rel	Relative Accuracy		5		%	
VPROTECT	Voltage Above VBAT for Protection			VBAT + 2.0	V	ISINK ≥ 20mA
VCOMPL	Voltage Compliance	0.2		VBAT + 0.5	V	During normal operation
V_low	Under-Voltage Detection	50	150	200	mV	

Symbol	Parameter	Min	Max	Unit	Notes
DD_GPIO	Supply Voltage	1.5	3.3	V	
Vih	High Lovel Input Veltage	0.7 x VDD_GPIO		V	VDD_GPIO > 1.85V
VIH	High Level Input Voltage	1.3V	VDD_GPIO	V	VDD_GPIO < 1.85V
Vil	Low Level Input Voltage	0.0	0.3 x VDD_GPIO	V	
VHYS	Hysteresis	0.1 x VDD_GPIO	0.4	V	
ILEAK	Input Leakage Current (if not configured as Pullup/Pulldown)	-5	5	μA	To VDD_GPIO and Vss.
IPD	Pulldown Current (if configured as Pulldown)	50	150	μA	To Vss.
IPU	Pullup Current (if configured as Pullup and in Hard Flash Mode)	20	347	μA	To VDD_GPIO (1.5 to 3.3V)
Vон	High Level Output Voltage	0.8 x VDD_GPIO		V	500µA load
Vol	Low Level Output Voltage		0.2 x VDD_GPIO	V	500µA load
Ιουτ	Driving Capability	4		mA	VDD_GPIO = 2.8V
CL	Capacitive Load		50	pF	

Table 5. GPIO0/P0 and STROBE/F2 Electrical Characteristics

Table 6. CLK/P2, DATA/P1, SFL/F1, and T1/F0 Electrical Characteristics

Symbol	Parameter	Min	Max	Unit	Notes
VDD_GPIO	Supply Voltage	1.5	3.3	V	
Vін	High Level Input Voltage	0.7 x VDD_GPIO	VDD GPIO	V	VDD_GPIO > 1.85V
VIN	r ligh Level linput voltage	1.3V	VDD_GPIO	v	Vdd_gpio < 1.85V
VIL	Low Level Input Voltage	0.0	0.3 x VDD_GPIO	V	
VHYS	Hysteresis	0.07 x VDD_GPIO	0.5	V	
ILEAK	Input Leakage Current (in Soft Flash Mode)	-5	5	μA	To VDD_GPIO and Vss.
Rpu	Pullup Resistor (in Hard Flash Mode)	50k	200k	Ω	To VDD_GPIO.

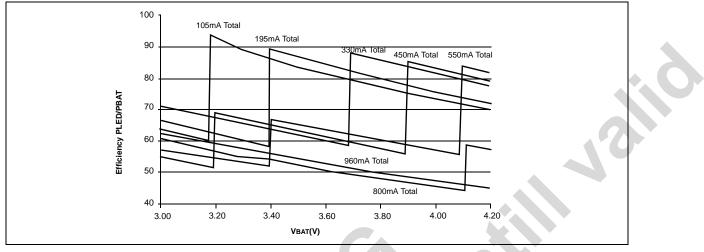
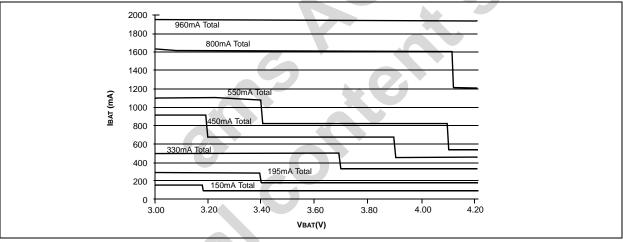
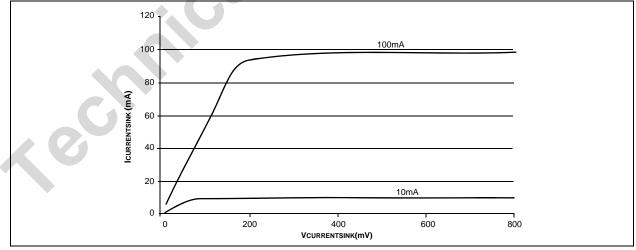
Table 7. Power-On Reset Electrical Characteristics
--

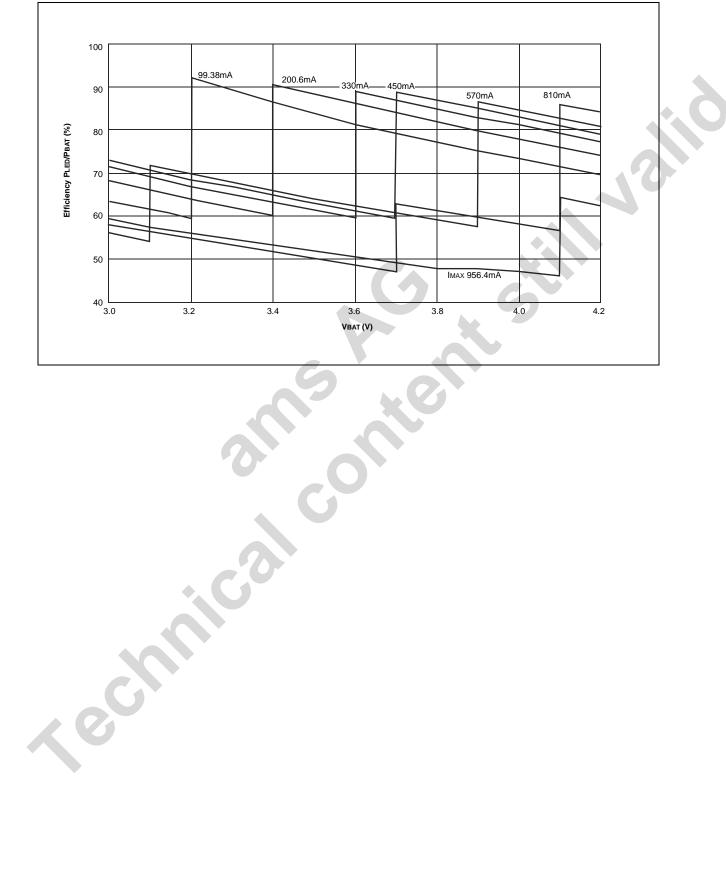
Symbol	Parameter	Min	Тур	Max	Unit	Notes
VPOR_VBAT	Overall Power-On Reset	1.5	2.0	2.38	V	Monitors voltage on pin V2_5; power-on reset for all internal functions.
VVDD_GPIO_TH_ RISING	Reset Level for VDD_GPIO Rising		1.3		V	Monitors voltage on VDD_GPIO; rising level.
VVDD_GPIO_TH_ FALLING	Reset Level for VDD_GPIO Falling		1.0		V	Monitors voltage on VDD_GPIO; falling level.

Table 8. Over-Temperature Detection Electrical Characteristics

Symbol	Parameter	Min	Тур	Мах	Unit	Notes
T 140	ov_temp Rising Threshold	130	140	150	°C	
THYST	ov_temp Hysteresis		5		°C	

7 Typical Operation Characteristics


Figure 5. Battery Current vs. VBAT (with 1 Flash LED, Type: Osram LWW5SG)

Data Sheet - Typical Operation Characteristics

8 Detailed Functional Description

8.1 Charge Pump

The AS3683 charge pump uses two external flying capacitors to generate output voltages higher than the battery voltage.

The charge pump can operate in three different modes:

- 1:1 Bypass Mode
 - Battery input and output are connected by a low-impedance switch
 - Battery current = output current
- 1:1.5 Mode
 - The output voltage is 1.5 times the battery voltage (without load)
 - Battery current = 1.5 times output current
- 1:2 Mode
 - The output voltage is 2 times the battery voltage (without load)
 - Battery current = 2 times output current

8.1.1 Intelligent Adaptive Mode Switching (IAMS)

The integrated charge pump determines the best compromise between the required LED supply voltage (Vf) and the lowest internal power dissipation. The AS3683 examines the voltage at each current sink and automatically switches into a higher charge pump mode; the switch-down procedure is achieved after the AS3683 performs analog signal processing of all relevant parameters: the battery voltage, the actual charge pump voltage, the load current, and the resistance of the next charge pump mode. By predicting the efficiency of the next state, the AS3683 will accurately determine the switching point.

8.1.2 Soft Start

An implemented soft start mechanism reduces the inrush current. Battery current is smoothed when switching the charge pump on and also at each switching condition. This precaution reduces electromagnetic radiation significantly.

8.1.3 Open LED Detection

The voltages at the current sinks are used to determine the mode switching of the charge pump up, thus an open wire to the LED could lead to a to high-power dissipation of the circuit.

The AS3683 scans and compares all voltages on the current sinks continuously, so that if the charge pump is already at 1:2 mode and the required current cannot be provided, the circuit stops that current sink sensing until the next power-on condition. Using the circuit via the I²C interface (Soft Flash Mode) the system can get information on the failing path from the **GPIO_output** (page 22) register.

Scanning occurs automatically upon first entering 1:2 mode.

9 Mode Settings

The AS3683 can be operated in two different application modes which can be easily selected by external pins.

Soft Flash Mode – The AS3683 is fully programmable via an I2C interface allowing for access to all control registers. The maximum total Flash Current of 960mA can be set in 1.875mA steps. Preview and strobe timing can be controlled either by internal registers or by dedicated pins (STROBE/F2, GPIO0/P0) connected to the BB or a Camera Module. The 3 Flash LED current sinks can only be addressed as a single block.

The three General Purpose LED current sinks can be addressed individually allowing for the realization of Backlighting, Movie Indicator LEDs or an RGB Fun Light or can be connected to the Flash LED. The maximum current. per sink is 160mA, and the current can be set in 2.5mA steps per channel.

Hard Flash Mode – All AS3683 functions are controlled by dedicated Enable Pins. Seven different current levels can be set independently for Preview and Flash by the Preview pins (GPIO0/P0, DATA/P1, CLK/P2) and the Flash pins (T1/F0, SFL/F1, STROBE/F2). The maximum total current is 900mA for Strobe and 480mA for Preview when connecting six current sinks to the LED.

Feature		Soft Flash Mode	Hard Flash Mode
Interface		I2C	Dedicated Control Pins for Strobe (3x) and Preview (3x)
	Current Sinks	3 to 6	6
	Total Current	0 to 960mA	Strobe: 0 to 900mA Preview: 0 to 480mA
Flash LEDs	Addressable	Block	Block
	Strobe Trigger	GPIO pin or software	By Strobe Control Pins
	Strobe Preview	GPIO pin or software	By Preview Control Pins
	Current Sinks	3	N/A
General Purpose LEDs (CURR2, CURR3, CURR4)	Current per Sink	0 to 160mA	N/A
	Addressable	Individual	N/A

Table 9. AS3683 Function Settings

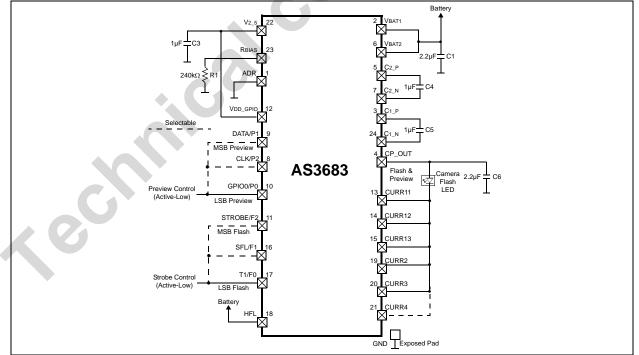
Note: The AS3683 has been designed and qualified for the following operating conditions:

- Continuous output current of 400mA if operated in automatic mode (see bit cp_man (page 21)) at VBAT ≤ 4.2V. - Maximum pulsed output current: 960mA.

10 Hard Flash Mode

Hard Flash Mode allows for simple and efficient control of the AS3683 using dedicated Enable Pins. Hard Flash Mode can be selected by defined pin connections (see Table 10 Hard Flash Mode Setting by Pin Configuration). Hard Flash Mode allows for individual control of Strobe and Preview signals as in Flash and Torch engaging all six current sinks.

An integrated temperature sensor provides over-temperature protection for the AS3683. If the device temperature exceeds the value of T140 (page 7), the current sources will be switched off. The device will resume operation when the temperature drops below T140 - THYST (page 7).


Note: In Hard Flash Mode, pins STROBE/F2, SFL/F1, T1/F0, CLK/P2, DATA/P1, and GPIO0/P0 are active-low (with internal pull-up resistors).

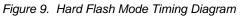

Pin HFL	Pin SFL/F1	Mode
GND	VDD_GPIO	Soft Flash Mode
VBAT	Don't Care	Hard Flash Mode

Table 10. Hard Flash Mode Setting by Pin Configuration

Featu	re	Hard Flash Mode	
Interface		Dedicated Control Pins for Strobe (3x) and Preview (3x)	
	Current Sinks	6	
	Total Current	Strobe: 0 to 900mA; Preview: 0 to 480mA	
Flash LEDs	Total Current Resolution	Strobe: 60mA; Preview: 30mA	
FIASII LEDS	Addressable	Block	
	Strobe Trigger	By Strobe Control Pins	
	Strobe Preview	By Preview Control Pins	
	Current Sinks	N/A	
General Purpose LEDs (CURR2, CURR3, CURR4)	Current per Sink	N/A	
	Addressable	N/A	

Figure 8. Hard Flash Mode Functional Diagram

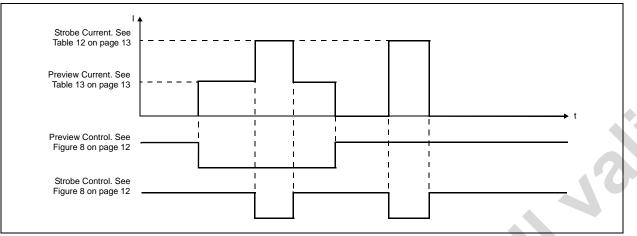


Table 12. Hard Flash Mode Strobe Current

Table 12. H									
STROBE/	SFL/F1	T1/F0	Current/		Cum	ulative Acti	ve Curren	t Sink	
F2 Bit 2	Bit 1	Bit 0	Current Sink	CURR11	CURR12	CURR13	CURR2	CURR 3	CURR4
1	1	1	0mA	0mA	0mA	0mA	0mA	0mA	0mA
1	1	0	30mA	30mA	60mA	90mA	120mA	150mA	180mA
1	0	1	50mA	50mA	100mA	150mA	200mA	250mA	300mA
1	0	0	70mA	70mA	140mA	210mA	280mA	350mA	420mA
0	1	1	90mA	90mA	180mA	270mA	360mA	450mA	540mA
0	1	0	110mA	110mA	220mA	330mA	440mA	550mA	660mA
0	0	1	130mA	130mA	260mA	390mA	520mA	650mA	780mA
0	0	0	150mA	150mA	300mA	450mA	600mA	750mA	900mA

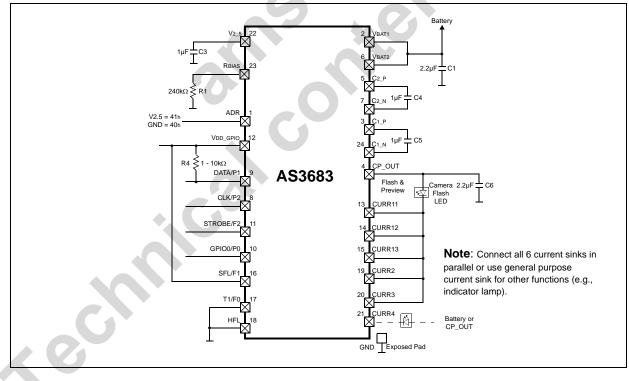
Tabla 12	Hard Flash Mode Preview Current
Table 13.	Tialu Flash Node Fleview Culteri

CLK/P2	DATA/P1	GPIO0/P0	Current/		Cum	ulative Act	ve Curren	t Sink	
Bit 2	Bit 1	Bit 0	Current Sink	CURR11	CURR12	CURR 13	CURR2	CURR 3	CURR4
1	1	1	0mA	0mA	0mA	0mA	0mA	0mA	0mA
1	1	0	20mA	20mA	40mA	60mA	80mA	100mA	120mA
1	0	1	30mA	30mA	60mA	90mA	120mA	150mA	180mA
1	0	0	40mA	40mA	80mA	120mA	160mA	200mA	240mA
0	1	1	50mA	50mA	100mA	150mA	200mA	250mA	300mA
0	1	0	60mA	60mA	120mA	180mA	240mA	300mA	360mA
0	0	1	70mA	70mA	140mA	210mA	280mA	350mA	420mA
0	0	0	80mA	80mA	160mA	240mA	320mA	400mA	480mA

Note: Do not exceed maximum current of 400mA continuous operation.

The AS3683 allows for the parallel connection of up to six current sinks to obtain the desired current range (unused current sinks can be left open). For example, to obtain 280mA for Preview current, connect CURR11, CURR12, CURR13, and CURR2 together and set CLK/P2 and DATA/P1 = 0 and GPIO0/P0 = 1.

11 Soft Flash Mode


Table 14. Soft Flash Mode Settings

Pin HFL	Pin SFL/F1	Mode
GND	VDD_GPIO	Soft Flash Mode
Vbat	Do not Care	Hard Flash Mode

Table 15. Soft Flash Mode Functions

Feature	9	Soft Flash Mode	
Interface		I2C	
	Current Sinks	3 to 6	
	Total Current	0 to 960mA	
Flash LEDs	Total Current Resolution	8-Bit: 1.875mA	
	Addressable	Block	
	Strobe Trigger	Pin STROBE/F2 (active-low) or software	
	Strobe Preview	Pin GPIO0/P0 (active-low) or software	
	Current Sinks	3	
General Purpose LEDs (CURR2,	Current per Sink	0 to 160mA	
CURR3, CURR4)	Current Resolution per Sink	8-Bit: 0.625mA	
	Addressable	Individual	

Figure 10. Soft Flash Mode Functional Diagram

11.1 Current Settings

Addr:	01	Current1_preview	,	
This register sets the current values of the current sinks CURR1x used during			the current sinks CURR1x used during Preview.	
Bit	Bit Name	Default Access		Description
7:0	current1_preview	0	R/W	00h = 0mA
7.0	current preview	0	K/ VV	FFh = 160mA per current sink

Table 16. Current Sink_1x Preview Current Definition Register

Table 17. Current Sink_1x Strobe Current Definition Register

Addr:	0.2	Current1_strobe		
This register sets the current values of the cu			the current sinks CURR1x used during Strobe.	
Bit	Bit Name	Default	Access	Description
7:0	current1 strobe	0	R/W	00h = 0mA
7.0	current1_strobe	0	R/W	FFh = 160mA per current sink

Table 18. Current Sink_2 Control Register

		Current2			
Addr:	06	This register sets the	ne current values of	current sink CURR ₂ . Any value \neq 0 activates the	
	sink Exceptions are Curr234_gpio0_ctrl (page 20) and Curr234_strobe_ctrl (page 20)				
Bit	Bit Name	Default	Access	Description	
7:0	current2	0	R/W	00h = 0mA	
7.0	currentz	0	R/W	FFh =160mA	

Table 19. Current Sink_3 Control Register

		Current3				
Addr:	07	This register sets the current values of current sink CURR ₃ . Any value \neq 0 activates the				
		sink Exceptions are Curr234_gpio0_ctrl (page 20) and Curr234_strobe_ctrl (page 20).				
Bit	Bit Name	Default	Description			
7.0	current3		R/W	00h = 0mA		
7:0	currento	0	R/VV	FFh = 160mA		

Table 20. Current Sink_4 Control Register

		Current4				
Addr:	08	This register sets the current values of current sink CURR4. Any value \neq 0 activates the				
		sink Exceptions are Curr234_gpio0_ctrl (page 20) and Curr234_strobe_ctrl (page 20).				
Bit	Bit Name	Default	Access	Description		
7:0	current4		R/W	00h = 0mA		
7.0	current4	0	N/ VV	FFh = 160mA		

11.2 Timing Control of CURR11, CURR12, CURR13 in Soft Flash Mode

Connecting the Current Sinks

The load of current sinks CURR11, CURR12, and CURR13 must be connected to the charge pump output (CP_OUT).

Setting the Current Values

Current sinks CURR11, CURR12, and CURR13 are all programmed by the same register settings (registers **Current1_preview** (page 15) and **Current1_strobe** (page 15)). They should be connected in parallel (pins CURR11, CURR12, and CURR13 must be connected externally) to increase the driving capability, e.g., for a photo camera flash LED.

The current defined in these registers (Current1_preview and Current1_strobe) is the total current, which means each current sink contributes one-third of the preset current value.

Turning the Current Sinks On/Off in Preview Mode

The current sinks in preview mode are controlled programmatically by bit **preview_on** (page 17) or by pin GPIO0/P0. Bit **preview_on** defines which sink is selected.

Turning the Current Sinks On/Off in Strobe Mode

The current sinks in strobe mode are controlled by pin STROBE/F2. This signal is called STROBE_SIGNAL. The duration of the strobe current is dependent on the following parameters:

- In Mode 1 (selected by bit Strobe_mode (page 17)) the strobe current is started by the rising edge of the STROBE_SIGNAL. The duration of the strobe current is defined by the value in register Strobe_mode1 (page 17) only. The minimum duration of the strobe current is 100ms, the maximum is 800ms.
- In Mode 2 (selected by bit Strobe_mode (page 17)) the strobe current is started by the rising edge of the STROBE_SIGNAL. The duration of the strobe current is dependent on the length of the STROBE_SIGNAL and the value in register Strobe_mode2 (page 18).

If register **Strobe_mode2** setting = 000 to 111, strobe current stops with the falling edge of STROBE_SIGNAL but is limited to the value defined in the register (100ms to 800ms).

 In Mode 3 (selected by bit Strobe_mode (page 17)) the strobe current is started by the rising edge of the STROBE_SIGNAL and it stops with the falling edge of the STROBE_SIGNAL. In Mode 3 there is no limitation of the strobe time.

Add	·· 00	Powerdown_control				
Audi				charge pump and current sinks 1x on and off.		
Bit	Bit Name	Default	Access	Description		
0	cp_led_on			See cp_led_on (page 21).		
				CURR11 enable/disable signal.		
1	curr11_on	0	R/W	0 = Switch CURR11 off.		
				1 = Switch CURR11 on.		
				CURR12 enable/disable signal.		
2	curr12_on	0	R/W	0 = Switch CURR12 off.		
				1 = Switch CURR12 on.		
				CURR13 enable/disable signal.		
3	curr13_on	0	R/W	0 = Switch CURR13 off.		
				1 = Switch CURR13 on.		
7:4	N/A					
	echi					

Table 21. Current Sink_1x Control Register

Addr: 03

Bit

1:0

3:2

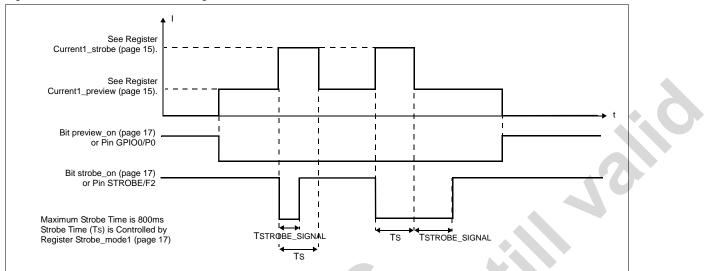
4

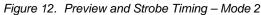
5

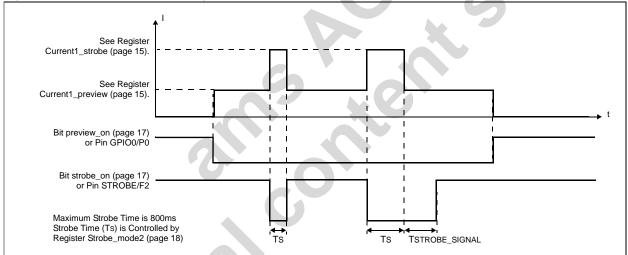
6

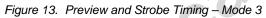
3	Current1_co		
,	This register	controls the f	unction of the current sinks.
Bit Name	Default	Access	Description
Strobe_mode	01Ь	R/W	00 = Strobe mode 1 is selected. The strobe time is defined by the value in register Strobe_mode1 (page 17) the maximum strobe time is limited to 800ms. 01 = Strobe mode 2 is selected. The strobe time is defined by the pulse length of the STROBE_SIGNAL and in addition it is affected by the setting of register Strobe_mode2 (page 18). 1x = Strobe mode 3 is selected. The strobe time is defined by
			the pulse length of STROBE_SIGNAL. The maximum strobe time is unlimited.
N/A			
preview_on	0	R/W	 0 = Current of current sinks is 0mA. 1 = Current of current sinks is defined by register Current1_preview (page 15). If preview is controlled via pin GPIO0/P0 (see bit preview_ctrl), this bit has no effect.
preview_ctrl	0	R/W	0 = Preview mode is controlled by bit preview_on.1 = Preview mode is controlled by pin GPIO0/P0.
strobe_on	0	R/W	 0 = Current of current sinks is 0mA. 1 = Current of current sinks is defined by register Current1_strobe (page 15). If preview mode is controlled via pin STROBE/F2 (see bit xstrobe_ctrl), this bit has no effect
xstrobe_ctrl	0	R/W	0 = Strobe mode is controlled by pin STROBE/F2. 1 = Strobe mode is controlled by bit strobe_on.

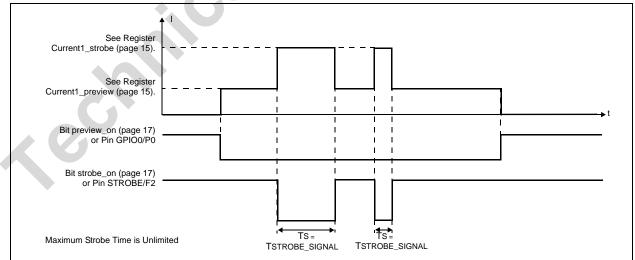
Table 22. Cur


7	xstrobe_ctrl	0	R/W 1 =	= Strobe mode is controlled by bit strobe_on.		
Addr: (۸	Strobe_mod				
Addr: 04		This register	sets the strob	e time in mode 1.		
Bit	Bit Name	Default	Access	Description		
				000 = Ts is equal to 100ms.		
			001 = Ts is equal to 200ms.			
		_mode 001b R/W		010 = Ts is equal to 300ms.		
0.0	Strobe_mode		DAAL	011 = Ts is equal to 400ms.		
2:0	Slibbe_mode	0100	R/VV	100 = Ts is equal to 500ms.		
				101 = Ts is equal to 600ms.		
				110 = Ts is equal to 700ms.		
				111 = Ts is equal to 800ms.		
7:3	N/A					


Addr: 05		Strobe_mode2						
		This register	This register sets the strobe time in mode 2.					
Bit	Bit Name	Default	Access	Description				
2:0	Mode2	111	R/W	Decomption000 = Ts is equal to Tstrobe_signal if T_strobe_signal ≥ 100ms.000 = Ts is equal to 100ms is T_strobe_signal ≥ 100ms.001 = Ts is equal to Tstrobe_signal if T_strobe_signal ≥ 200ms.001 = Ts is equal to 200ms if T_strobe_signal ≥ 200ms.010 = Ts is equal to Tstrobe_signal if T_strobe_signal ≥ 200ms.010 = Ts is equal to Tstrobe_signal if T_strobe_signal ≥ 300ms.011 = Ts is equal to 300ms if T_strobe_signal ≥ 300ms.011 = Ts is equal to Tstrobe_signal if T_strobe_signal ≥ 400ms.011 = Ts is equal to 400ms if T_strobe_signal ≥ 400ms.100 = Ts is equal to Tstrobe_signal if T_strobe_signal ≥ 500ms.100 = Ts is equal to 500ms if T_strobe_signal ≥ 500ms.101 = Ts is equal to Tstrobe_signal if T_strobe_signal ≤ 500ms.101 = Ts is equal to Tstrobe_signal if T_strobe_signal ≤ 600ms.101 = Ts is equal to Tstrobe_signal if T_strobe_signal ≤ 600ms.101 = Ts is equal to Tstrobe_signal if T_strobe_signal ≤ 600ms.101 = Ts is equal to 700ms if T_strobe_signal ≥ 700ms.110 = Ts is equal to 700ms if T_strobe_signal ≥ 700ms.111 = Ts is equal to Tstrobe_signal if T_strobe_signal ≤ 800ms.111 = Ts is equal to 75trobe_signal if T_strobe_signal ≤ 800ms.111 = Ts is equal to 75trobe_signal if T_strobe_signal ≤ 800ms.				
7:3	N/A							


Table 23. Current Sink_1x Undervoltage Indication Register


		Curr_voltage_control				
		This register indicates if the voltage at any current sink has dropped below a predefined				
Addr: 0F		value. If the charge pump is operating in automatic-mode (default), the contents of this				
		register can b	be disregarded	d. The voltages at current sinks 1x are used for automatic		
				ge pump (see bit cp_man (page 21)). The voltages at current		
				tionally used for automatic mode selection of the charge pump		
		(see register	Curr234_ctrl (page 20)).		
Bit	Bit Name	Default	Access	Description		
0	curr11 low voltage	N/A	R	0 = Normal operation.		
0	cull II_low_vollage	IN/A	ĸ	1 = Undervoltage occurred.		
4		N1/A	D	0 = Normal operation.		
1	curr12_low_voltage	N/A	R	1 = Undervoltage occurred.		
•		N1/A	-	0 = Normal operation.		
2	curr13_low_voltage	N/A	R	1 = Undervoltage occurred.		
3	Curr2_low_voltage	N/A	R	See Curr2_low_voltage (page 20).		
4	Curr3_low_voltage	N/A	R	See Curr3_low_voltage (page 20).		
5	Curr4_low_voltage	N/A	R	See Curr4_low_voltage (page 20).		
7:6	cp_status	N/A	R	See cp_status (page 21).		


Figure 11. Preview and Strobe Timing - Mode 1

11.3 Control of CURR₂, CURR₃, CURR₄ in Soft Flash Mode

CURR₂, CURR₃, and CURR₄ are independent current sinks. The current value is determined by registers **Current2** (page 15), **Current3** (page 15), and **Current4** (page 15).

Any value other than zero will start the current sink. To stop the current, the register value must be set to zero.

Note: Unused current sinks should be left open and any associated register values must be set to 0mA.

Table 24. Current Sink2,3,4 Undervoltage Indication Registers

		Curr_voltage_control					
		This register indicates if the voltage at any current sink has dropped below a predefined					
		value. If the charge pump is operating in automatic-mode (default), the contents of this					
Addr	: 0F	register can be disregarded. The voltages at current sinks 1x are used for automatic					
		mode selec	tion of the ch	harge pump (see bit cp_man (page 21)). The voltages at current			
		sinks 2, 3, a	nd 4 can be	optionally used for automatic mode selection of the charge pump			
		(see registe	r Curr234_ct	rl).			
Bit	Bit Name	Default	Access	Description			
0	curr11_low_voltage	N/A	R	See curr11_low_voltage (page 18).			
1	curr12_low_voltage	N/A	R	See curr12_low_voltage (page 18).			
2	Curr13_low_voltage	N/A	R	See curr12_low_voltage (page 18).			
3	Curr2_low_voltage	N/A	R	0 = Normal operation.			
5	ounz_iow_voltage	19/7		1 = Undervoltage occurred.			
4	Curr3_low_voltage	N/A	R	0 = Normal operation.			
	e an e_ien_ienage			1 = Undervoltage occurred.			
5	Curr4_low_voltage	N/A	R	0 = Normal operation.			
				1 = Undervoltage occurred.			
7:6	cp_status	N/A	R	See cp_status (page 21).			
		Curr234_ct					
Addr	: 09			her the load of the current sink is connected to pin VBAT or to pin			
				ne current sink is connected to CP_OUT, that current sink will pump mode-selection algorithm.			
Bit	Bit Name	Default	Access	Description			
Dit	Dit Name	Delault	ALLESS	0 = The output of the current sink will not be used for automatic			
				mode selection of the charge pump (see bit cp_man (page 21)).			
0	Curr2_onCP	0	R/W	1 = The output of the current sink is used for automatic mode			
				selection of the charge pump.			
				0 = The output of the current sink will not be used for automatic			
			DAA	mode selection of the charge pump.			
1	Curr3_onCP	0	R/W	1 = The output of the current sink is used for automatic mode			
				selection of the charge pump.			
				0 = The output of the current sink will not be used for automatic			
2	Curr4_onCP	0	R/W	mode selection of the charge pump.			
				1 = The output of the current sink is used for automatic mode			
				selection of the charge pump.			
				0 = Curr2, Curr3, and Curr4 are switched on/off directly by			
3	Curr234_gpio0_ctrl	0	R/W	registers Current2 (page 15), Current3 (page 15), and Current4 (page 15).			
З	Guirzo4_gpi00_ctil	0	r./ VV	1 = Curr2, Curr3, Curr4 are switched on/off by pin GPIO0/P0 (set			
				bit preview_ctrl (page 17) = 1 and bit Curr234_strobe_ctrl = 0 .			
6:4	N/A						
				0 = Curr2, Curr3, and Curr4 are switched on/off directly by			
				registers Current2 (page 15), Current3 (page 15), and			
7	Curr234_strobe_ctrl	0	R/W	Current4 (page 15).			
		U	FN/ V V	1 = Curr2, Curr3, Curr4 are controlled by Strobe mode (enable at			
				least one of curr11_on (page 16), curr12_on (page 16), or			
				curr13_on (page 16).			

11.4 Charge Pump Control Registers

Addru	00	Powerdown	Powerdown_control				
Addr: 00		This register	switches the	ne charge pump and current sinks_1x on and off.			
Bit	Bit Name	Default	Access	Description			
				Charge pump enable/disable.			
0	cp_led_on	0	R/W	0 = Switches the charge pump off.			
				1 = Switches the charge pump on.			
1	curr11_on			See curr11_on (page 16).			
2	curr12_on			See curr12_on (page 16).			
3	curr13_on			See curr13_on (page 16).			
7:4	N/A			0.			
		1					
A al al m		CP_control					
Addr: 0D This register sets the char		sets the char	ge pump mode and reads the current charge pump mode.				
Bit	Bit Name	Default	Access	Description			
				Charge pump clock frequency selection.			
0	cn clk	0	R/\//	0 - 1MHz			

Addr		CP_control				
Addr: 0D		This register sets the charge pump mode and reads the current charge pump mode.				
Bit	Bit Name	Default	Access	Description		
				Charge pump clock frequency selection.		
0	cp_clk	0	R/W	0 = 1MHz		
				1 = 500 kHz		
				Charge pump mode control.		
1	cp_man	0	R/W	0 = Automatic mode.		
				1 = Manual mode.		
				Charge pump mode selection.		
				01 = N/A		
3:2	cp_mode	00b	R/W	01 = Charge pump mode 1:1.		
				10 = Charge pump mode 1:1.5.		
				11 = Charge pump mode 1:2.		
4	cp_mode2	0	R/W	Used for test purposes only.		
5:7	N/A					

		Curr_voltage	Curr_voltage_control					
		This register indicates if the voltage at any current sink has dropped below a predefined						
			value. If the charge pump is operating in automatic-mode (default), the contents of this					
Addr	: 0F	register can be disregarded. The voltages at current sinks 1x are used for automatic						
		mode selection of the charge pump (see bit cp_man (page 21)). The voltages at current						
				tionally used for automatic mode selection of the charge pump				
		(see register Curr234_ctrl (page 20)).						
Bit	Bit Name	Default Access		Description				
0	curr11_low_voltage	N/A	R	See curr11_low_voltage (page 18).				
1	curr12_low_voltage	N/A R		See curr12_low_voltage (page 18).				
2	Curr13_low_voltage	N/A	R	See curr13_low_voltage (page 18).				
3	Curr2_low_voltage	N/A	R	See Curr2_low_voltage (page 20).				
4	Curr3_low_voltage	N/A	R	See Curr3_low_voltage (page 20).				
5	Curr4_low_voltage	N/A R		See Curr4_low_voltage (page 20).				
				01 = Charge pump mode 1:1.				
7:6	cp_status	N/A	R	10 = Charge pump mode 1:1.5.				
				11 = Charge pump mode 1:2.				

11.5 General Purpose Inputs/Outputs

The general purpose input/output pins (GPIO0/P0, STROBE/F2) are highly configurable and can be used for the following functionality:

- Digital Schmidt-Trigger Input
- Digital Output with 4mA Driving Capability at 2.8V Supply (VDD_GPIO)
- Tristate Output
- Current Selection for CURR1x

■ Dig	jital Schmidt-Trigger Inp jital Output with 4mA Dr		y at 2.8V Sup	oply (Vdd_gpio)					
	Tristate Output Current Selection for CURR1x								
The d	he default mode for pins GPIO0/P0 and STROBE/F2 is input (pull-down).								
Note:	Each GPIO pin is ind	ependent from	the other GF	PIO pin.					
Table	able 25. GPIO Registers								
Addr	: 0A	GPIO_contro							
				GPIO0/P0 and STROBE/F2.					
Bit	Bit Name	Default	Access	Description					
1:0	gpio0_mode	00b	R/W	Defines the direction for pin GPIO0/P0. 00 = Input only. 01 = Output (push and pull). 10 = Output (open drain, only NMOS is active). 11 = Output (open drain, only PMOS is active).					
3:2	gpio0_pulls	01b	R/W	Adds pullup/pulldown functionality to pin GPIO0/P0. 00 = None 01 = Pulldown 10 = Pullup 11 = Analog input (for test purposes only).					
5:4	strobe_mode	00b	R/W	Defines the direction for pin STROBE/F2. 00 = Input only. 01 = Output (push and pull). 10 = Output (open drain, only NMOS is active). 11 = Output (open drain, only PMOS is active).					
7:6	strobe_pulls	01b	R/W	Adds pullup/pulldown functionality to pin STROBE/F2. 00 = None 01 = Pulldown 10 = Pullup 11 = Analog input (for test purposes only)					
		GPIO_outpu	t						
Addr	: 0B		selects intern	al signals to be switched to pins GPIO0/P0 and STROBE/F2					
Bit	Bit Name	Default	Access	Description					
0	gpio0_out	0	R/W	If pin GPIO0/P0 is set to output, this bit is transferred to that output.					
1	strobe_out	0	R/W	If pin STROBE/F2 is set to output, this bit is transferred to that output.					
7:2	N/A								
Addr: 0C									
Bit	Bit Name	This register	U	nals at pins GPIO0/P0 and STROBE/F2 (if selected as input). Description					
ы т 0	gpio0_in	N/A	Access R	Description					
1	strobe_in	N/A	R						
	Subbe_III	IN/A	N						

11.6 Power-On Reset

The internal reset is controlled by two inputs:

- VBAT1 Supply
- VDD_GPIO

If either of these voltages is lower than their limit, an internal reset is forced.

The reset levels control the state of all registers. As long as VBAT and VDD_GPIO are below their reset thresholds, the register contents are set to default.

Access by serial interface is possible once the reset thresholds are exceeded.

Table 26. Reset Control

Reset Control	Register State (All Registers)		
VBAT < VPOR_VBAT and VVDD_GPIO < VGPIO_VDD_TH	Undefined		
VBAT < VPOR_VBAT and VVDD_GPIO > VGPIO_VDD_TH	Undefined		
VBAT > VPOR_VBAT and VVDD_GPIO < VGPIO_VDD_TH	Default		
VBAT > VPOR VBAT and VVDD GPIO > VGPIO VDD TH	Default		
VDAT > VFOR_VDAT AND VDD_GPIO > VGPIO_VDD_IH	Access by serial interface possible.		

Note: VvDD_GPIO_TH – Use rising or falling threshold levels, depending on the slope of VDD_GPIO (power up/power down).

11.7 Temperature Supervision

An integrated temperature sensor provides over-temperature protection for the AS3683. This sensor generates a flag if the device temperature reaches the over-temperature threshold (T140 page 7). The threshold has a hysteresis (THYST page 7) to prevent oscillation effects.

If the device temperature exceeds the T140 threshold, the current sources are switched off, and bit ov_temp in register **Overtemp_control** (page 23) is set to 1.

After decreasing the temperature by THYST, the current sources resume operation.

The **ov_temp** flag will only be reset (by the circuit when the temperature has reached operating condition again) after the software has written a 1 and then a 0 to bit **rst_ov_temp**).

Bit ov_temp_on activates temperature supervision.

Table 27. Overtemperature Bit Definitions

Addr: 0F		Overtemp_control			
		This register reads and resets the overtemperature flag.			
Bit	Bit Name	Default	Default Access Description		
0	ov_temp_on	1	R/W	Activates/deactivates device temperature supervision. 0 = Temperature supervision is disabled. 1 = Temperature supervision is enabled. All current sources will be switched off if the device temperature exceeds the ov_temp rising threshold (T140) and resume operation when the temperature falls below the ov_temp falling threshold (T140 -THYST).	
1	ov_temp	NA	R	1 = Indicates that the ov_temp rising threshold (T140) has been reached. To clear this flag, it is mandatory to use bit rst_ov_temp . Bit ov_temp is only active if temperature supervision is activated.	
2	rst_ov_temp	rst_ov_temp NA R/W		The ov_temp flag is cleared by first setting this bit to 1, and then setting this bit to 0. Bit rst_ov_temp is only active if temperature supervision is activated.	
7:3	N/A				

austriamicrosystems

11.8 Serial Interface

The AS3683 is controlled by serial interface pins DATA/P1 and CLK/P2.

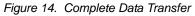
11.8.1 Features

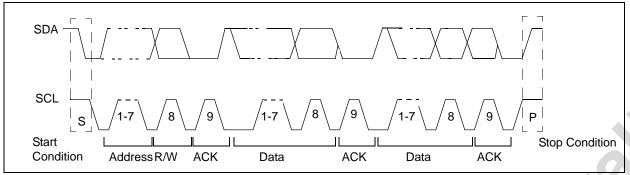
- Fast Mode Capability (Maximum Clock Frequency is 400 kHz)
- 7-Bit Addressing Mode
- Write Formats
 - Single-Byte Write
 - Page-Write
- Read Formats
 - Current-Address Read
 - Random-Read
 - Sequential-Read
- DATA/P1 Input Delay and CLK/P2 Spike Filtering by Integrated RC Components

11.8.2 Device Address Selection

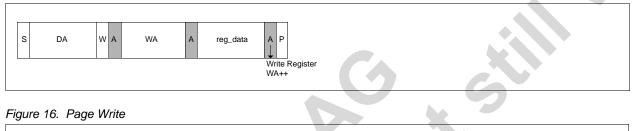
The serial interface address of the AS3683 can be selected between two fixed settings. The address is selected by connecting pin ADR to either GND or to V2_5 as shown in Table 28.

Table 28. AS3683 Device Address Selection


ADR Connected To	Serial Interface Address
GND	40h
V2_5 (Max Voltage = 2.5V)	41h


11.8.3 Data Transfer Formats

Definitions used in the serial data transfer format diagrams (Figures 15 to 19) are listed in Table 29.


Table 29. Serial Data Transfer Byte Definitions

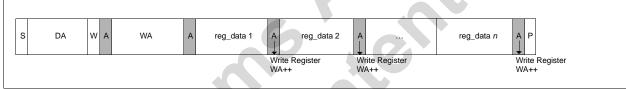
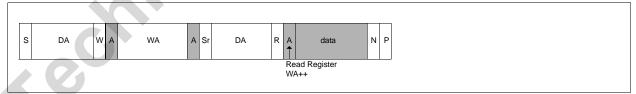

Symbol	Definition
S	Start Condition after Stop
Sr	Repeated Start
DA	Device Address
WA	Word Address
A	Acknowledge
N	Not Acknowledge
Р	Stop Condition
White Field	Slave as Receiver
Grey Field	Slave as Transmitter
WA++	Increment Word Address Internally

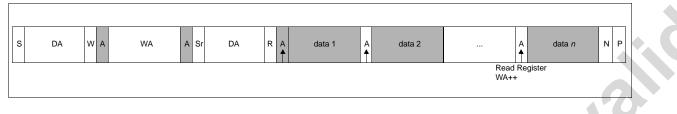
Figure 15. Byte Write


Byte Write and Page Write are used to write data to the slave.

The transmission begins with the START condition, which is generated by the master when the bus is in IDLE state (the bus is free). The device-write address is followed by the word address. After the word address any number of data bytes can be send to the slave. The word address is incremented internally, in order to write subsequent data bytes on subsequent address locations.

For reading data from the slave device, the master has to change the transfer direction. This can be done either with a repeated START condition followed by the device-read address, or simply with a new transmission START followed by the device-read address is always followed by the 1st register byte transmitted from the slave. In Read Mode any number of subsequent register bytes can be read from the slave. The word address is incremented internally.

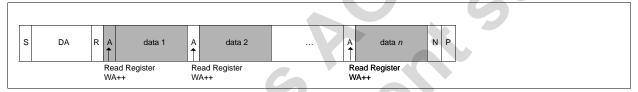
The following diagrams show the various read formats available.



Random Read and Sequential Read are combined formats. The repeated START condition is used to change the direction after the data transfer from the master.

The word address transfer is initiated with a START condition issued by the master while the bus is idle. The START condition is followed by the device-write address and the word address.

In order to change the data direction a repeated START condition is issued on the 1st SCL pulse after the ACKNOWLEDGE bit of the word address transfer. After the reception of the device read address, the slave becomes the transmitter. In this state the slave transmits register data located by the previous received word address vector. The master responds to the data byte with a NOT ACKNOWLEDGE, and issues a STOP condition on the bus.


Figure 18. Sequential Read

Sequential Read is the extended form of Random Read, as multiple register-data bytes are subsequently transferred.

In contrast to the Random Read, in a Sequential Read the transferred register-data bytes are responded to by an ACKNOWLEDGE from the master. The number of data bytes transferred in one sequence is unlimited (consider the behavior of the word-address counter). To terminate the transmission the master has to send a NOT ACKNOWLEDGE following the last data byte and subsequently generate the STOP condition.

Figure 19. Current Address Read

To keep the access time as small as possible, this format allows a read access without the word address transfer in advance to the data transfer. The bus is idle and the master issues a START condition followed by the Device Read address. Analogous to Random Read, a single byte transfer is terminated with a NOT ACKNOWLEDGE after the first register byte. Analogous to Sequential Read an unlimited number of data bytes can be transferred, where the data bytes must be responded to with an ACKNOWLEDGE from the master. For termination of the transmission the master sends a NOT ACKNOWLEDGE following the last data byte and a subsequent STOP condition.

11.8.4 Fixed ID Register

Reading register 15h always returns CDh and can be used to verify the correct operation of the serial interface.

Table 30. Fixed ID Register

Addr: 15		Fixed_ID This register holds the device ID value.				
Bit Bit Name		Default	Access	Description		
7:0	Device_ID	11001101	R	This is the device ID.		

11.9 Register Map

The AS3683 control register addresses, default values, and pages where they are described are listed in Table 31.

Table 31.	Register Summary

Powerdow_control Addr: 00 00h Image: NAA curr12_on curr11_on cp.ld0 Current1_preview Addr: 02 00h Image: NAA current1_preview Image: NAA Strobe_mode Current1_stohd Addr: 03 01h xstrobe_mode NA Strobe_mode Strobe_mode1 Addr: 05 07h Image: NAA Strobe_mode Mddr: 05 00h Current3 Addr: 06 00h Image: NAA Strobe_mode Mddr: 06 00h Image: NAAA Mddr: 07 00h Image: NAAAA Mddr: 07 00h Image: NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Current1_strobe Addr: 02 00h current1_strobe Current1_strobe Addr: 03 01h xstrobe_cnl preview_cnl N/A Strobe_mode Strobe_mode1 Addr: 04 07h N/A Strobe_mode Mode2 Current2 Addr: 06 00h current3 Mode2 Mode2 Current3 Addr: 07 00h current4 Current3 Current3 Current4 Addr: 08 00h current3 Current3 Curr234_str Current4 Addr: 08 00h current4 Curr234_str N/A Curr234_gr Curr33_e.g Curr3_e.oCP
Current_control Addr: 03 01h xstrobe_ctrl strobe_on preview_ctrl preview_on N/A Strobe_mode Strobe_mode1 Addr: 04 07h N/A Strobe_mode Mode2 Strobe_mode2 Addr: 05 07h N/A Mode2 Mode2 Current3 Addr: 07 00h current3 Current4 Addr: 08 00h Curr234_strl Curr234_grl Curr234_grl Curr234_grl Curr234_grl Curr234_grl Curr234_grl Curr234_grl Curr3_onCP Curr2_onC GPIO_control Addr: 08 00h Curr234_strl N/A Strobe_mode gpio0_crt Curr2_onC GPIO_control Addr: 04 44h strobe_pulls Strobe_mode gpio0_crt gpio0_crt GPIO_control Addr: 0B 00h N/A cp_mode2 cp_mode cp_man cp_ch_man cp_ch_man </td
Strobe_mode1 Addr: 04 O7h NA Strobe_mode Strobe_mode2 Addr: 05 O7h N/A Mode2 Current3 Addr: 06 O0h current3 Addr: 07 O0h Current4 Addr: 08 O0h current4 current4 Curr234_str N/A Curr234_gl Qurr4_onCP Curr3_onCP Curr2_ond GPIO_control Addr: 08 O0h Curr234_str N/A Curr234_gl Qurr4_onCP Curr3_onCP Curr2_ond GPIO_control Addr: 08 O0h Varr3_onCP N/A Strobe_mode gpio0_mode GPIO_control Addr: 00 ONh Varr3_onCP Curr3_onCP curr3_onCP CP_control Addr: 00 ONh VA Strobe_mode gpio0_mode CP_control Addr: 00 ONh N/A strobe_mode cp_made2 cp_mode cp_made2 cp_
Strobe_mode2 Addr: 05 07h N/A Ourrent2 Mode2 Current2 Addr: 06 00h
Current2 Addr: 06 00h current2 Current3 Addr: 07 00h current3 Current4 Addr: 08 00h current4 Curr234_etri Addr: 09 00h Curr234_str obe_ctrit N/A Curr334_g pio0_ctrit Curr4_onCP Curr3_onCP Curr2_ond GPIO_control Addr: 08 00h Strobe_pulls strobe_mode gpio0_pulls gpio0_mode GPIO_control Addr: 0A 44h strobe_pulls strobe_mode gpio0_pulls gpio0_control GPIO_control Addr: 0C N/A N/A strobe_in gpio0_control GPIO_control Addr: 0C N/A strobe_in gpio0_control GPIO_control Addr: 0D 00h N/A cp_mode2 cp_mode cp_man cp_clk Overtemp_control Addr: 0F N/A cp_status Curr4_low Curr3_low Curr1_low curr11_low curr11_low voltage curr13_low curr11_low voltage voltage voltage v
Current3 Addr: 07 00h current3 Current4 Addr: 08 00h current4 Curr234_ctrl Addr: 09 00h Curr234_str obe_ctrl N/A Curr234_g pio0_ctrl Curr4_onCP Curr3_onCP Curr2_onC GPIO_control Addr: 0A 44h strobe_pulls strobe_mode gpio0_pulls gpio0_mode GPIO_output Addr: 0B 00h VIA strobe_ind gpio0_out GPIO_input Addr: 0C N/A VIA strobe_ind gpio0_ind CP_control Addr: 0C N/A op_mode2 cp_mode cp_made cp_man op_clk Overtemp_control Addr: 0F N/A cp_status Curr4_low_voltage Curr2_low_voltage curr13_low_curr12_low_curr11_low_voltage curr13_low_voltage curr11_low_voltage curr11_low_voltage curr13_low_voltage curr11_low_voltage voltage v
Current4 Addr: 08 00h Curr234_str obe_ctrl N/A Curr234_g pio0_ctrl Curr4_onCP Curr3_onCP Curr2_ont GPIO_control Addr: 0A 44h strobe_pulls strobe_mode gpio0_ctrl Curr4_onCP Curr3_onCP Curr2_ont GPIO_control Addr: 0A 44h strobe_pulls strobe_mode gpio0_pulls gpio0_mode GPIO_output Addr: 0B 00h N/A N/A strobe_ind gpio0_ctrl gpio0_mode GPIO_output Addr: 0C N/A N/A strobe_ind gpio0_in gpio0_ctrl gpio0_in CP_control Addr: 0D 00h N/A strobe_ind gpio0_in gpio0_in CP_control Addr: 0E 01h N/A cp_mode2 cp_mode cp_man cp_ctrl Curr_voltage_control Addr: 0F N/A cp_status Curr4_low_voltage Cur3_low_voltage cur13_low_voltage cur11_low_voltage cur13_low_voltage cur11_low_voltage cur12_low_voltage cur12_low_voltage cur11_low_voltage cur12_low_voltage cur11_low_voltage cur11_low_voltage cur11_low_voltage
Curr234_ctrl Addr: 09 00h Curr234_str obe_ctrl N/A Curr234_g pio0_ctrl Curr4_onCP Curr3_onCP Curr2_ond GPIO_control Addr: 0A 44h strobe_pulls strobe_mode gpio0_ctrl Gpio0_mode gpio0_mode GPIO_output Addr: 0B 00h VIA VIA strobe_node gpio0_ctrl Gpio0_mode gpio0_ctrl gpio0_mode GPIO_output Addr: 0D 00h VIA VIA strobe_in gpio0_in CP_control Addr: 0D 00h VIA cp_mode cp_mode cp_mand cp_man op_ctk Overtemp_control Addr: 0F N/A cp_status Curr4_low_voltage Curr13_low_voltage curr13_low_voltage curr11_low_voltage voltage
GPIO_control Addr: 0A 44h strobe_pulls strobe_mode gpio0_pulls gpio0_mode GPIO_output Addr: 0B 00h V/A strobe_ind gpio0_ind gpio1_ind gpio0_ind gpio0_ind
GPIQ_output Addr: 0B 00h N/A strobe_out gpio0_or GPIQ_input Addr: 0C N/A N/A cp_mode2 cp_mode cp_man cp_clk CP_control Addr: 0E 01h N/A cp_mode2 cp_mode cp_man cp_clk Overtemp_control Addr: 0E 01h N/A cp_mode2 cp_mode curr1_low curr12_low curr11_low voltage curr12_low curr11_low voltage curr13_low curr12_low curr11_low voltage curr11_low voltage curr13_low curr12_low curr11_low voltage curr13_low curr12_low curr11_low voltage curr13_low curr12_low curr11_low voltage curr13_low curr11_low voltage curr11_low voltage curr11_low voltage voltage
GPIQ_input Addr: 0C N/A V/A strobe_in gpio0_in CP_control Addr: 0D 00h N/A op_mode2 cp_mode cp_man cp_clk Overtemp_control Addr: 0E 01h V/A op_mode2 cp_mode cp_man cp_clk Curr_voltage_control Addr: 0F N/A cp_status Curr4_low_voltage curr3_low_voltage curr11_low_voltage
CP_control Addr: 0D 00h N/A cp_mode2 cp_mode cp_man cp_clk Overtemp_control Addr: 0E 01h N/A rst_ov_temp ov_temp
Overtemp_control Addr: OE O1h N/A rst_ov_temp ov_temp ov_temp Curr_voltage_control Addr: OF N/A cp_status Curr4_low_voltage Curr3_low_voltage curr13_low_voltage curr12_low_voltage curr11_low_voltage curr11_low_voltage curr12_low_voltage curr11_low_voltage curr11_low_voltage curr11_low_voltage curr12_low_voltage curr11_low_voltage curr11_low_voltage curr11_low_voltage curr12_low_voltage curr11_low_voltage curr12_low_voltage curr11_low_voltage curr11_low_voltage curr11_low_voltage curr12_low_voltage curr11_low_voltage curr11_low_voltage curr11_low_voltage curr12_low_voltage curr11_low_voltage curr11_low_voltage curr12_low_voltage curr12_low_voltage curr12_low_voltage curr12_low_voltage curr12_low_voltage curr12_low_voltage curr12_low_voltage curr12_low_voltage curr11_low_voltage curr11_low_voltage curr11_low_voltage curr11_low_voltage
Curr_voltage_control Addr: 0F N/A cp_status Curr4_low_voltage Curr3_low_voltage curr13_low_voltage curr11_low_voltage curr11_lo
Curr_voltage_control Addr: 0F N/A Cp_status voltage v
Curr_voltage_control Addr: 0F N/A Cp_status voltage v
Fixed_ID Addr. 15 CDh 1 1 0 0 1 1 0 1

(EQ 2)

12 External Components

12.1 Capacitor and Resistor Selection

Use low-ESR ceramic capacitors with X7R or X5R dielectric – these capacitors allow good filtering and have a wide temperature range. The connections of all external capacitors should be kept as short as possible.

All resistors should have a tolerance of $\pm 1\%$.

12.2 Usage of PCB Wire Inductance

The inductance between the battery and pins VBAT1 and VBAT2 can be used as a filter to reduce disturbance on the battery. Instead of using one capacitor (C1) it is recommended to split C1 into C11 and C12 with the capacitance equal:

$$C_{11} = C_{12} = 1/2 \times C_1$$
 (EQ 1)

It is recommended to apply a minimum of 20nH (maximum 200nH) with low impedance. This inductance can be realized on the PCB without any discrete coil. Assuming that 1mm signal line corresponds to approximately 1nH (valid if the length (L) is significantly bigger than the width (W) of the line (L/W < 10)). Thus a line length of:

is recommended. The shape of the line is not important.

Figure 20. PCB Wire Inductance Example 1

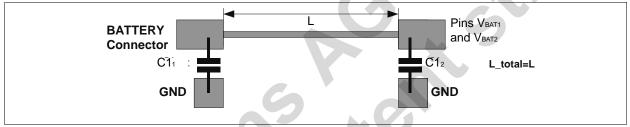
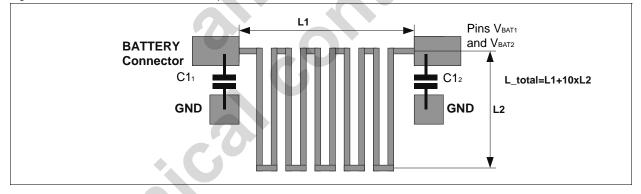



Figure 21. PCB Wire Inductance Example 2

12.3 External Component Specifications

Part	Value			Tol	Rating	Notes	Package
Number	Min	Тур	Max	(Min)	(Max)	Notes	(Min)
C1 1		2.2µF		±20%	6.3V	Ceramic, X5R	0603
C3	1µF		4.7µF	±20%	6.3V	Ceramic, X5R	0603
C4		1µF		±20%	6.3V	Ceramic, X5R	0603
C5		1µF		±20%	6.3V	Ceramic, X5R	0603
C6		2.2µF		±20%	6.3V	Ceramic, X5R	0603
R1		240kΩ		±1%		Bias Resistor	0201

Notes:

1. See Usage of PCB Wire Inductance on page 28.

13 Pinout and Packaging

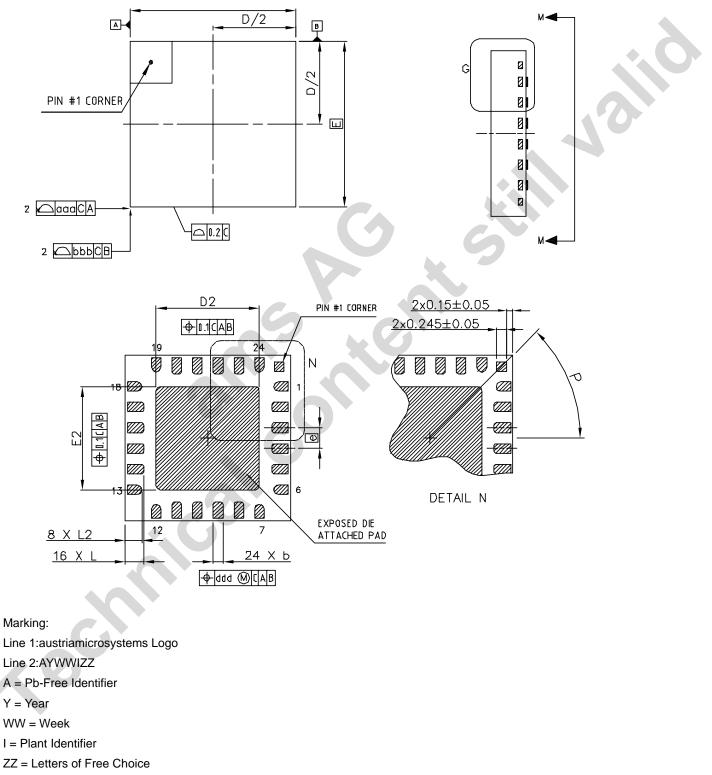
Table 33. Pin Type Definitions

Туре	Description
DI	Digital Input
DI3	3.3V Digital Input
DIO3	3.3V Digital Input/Output
AIO	Analog Pad
AI	Analog Input
AO	Analog Output
S	Supply Pad
GND	Ground Pad

13.1 Hard Flash Mode Pin Descriptions

	DI3	3.3V Digital Ir	nput	
	DIO3	3.3V Digital Ir		
	AIO	Analog Pad		
		Analog Input		
		Analog Outpu	ıt	
		Supply Pad		
	GND	Ground Pad		
			Pin Descriptions	
Table	34. Pin List (QFN24 – Harc		
Pin	Name	Type (See Table 33)	Description	
1	ADR	DI	Test input. Connect to Vss.	
2	VBAT1	AIO	Charge pump supply pad; always connect to VBAT.	
3	C1_P	AIO	Charge pump flying capacitor; connect to a ceramic capacitor of 2.2µF (±20%).	
4	CP_OUT	AIO	Charge pump output voltage; connect to a ceramic capacitor of $1\mu F$ (±20%) or 2.2 μF (+100%/-50%).	
5	C2_P	AIO	Charge pump flying capacitor; connect to a ceramic capacitor of 2.2µF (±20%).	
6	VBAT2	S	Charge pump supply pad; always connect to VBAT.	
7	C2_N	AIO	Charge pump flying capacitor; connect to a ceramic capacitor of 1μ F (±20%).	
8	CLK/P2	DI3	MSB of Preview Control; internal pullup, active-low.	
9	DATA/P1	DIO3	LSB+1/MSB of Preview Control; internal pullup, active-low.	
10	GPIO0/P0	DIO3	LSB of Preview Control; internal pullup, active-low.	
11	STROBE/F2	2 DIO3	MSB of Flash Control; internal pullup, active-low.	
12	VDD_GPIO	S	GPIO and serial interface supply pad.	
13	CURR11	AI	Analog current sink input.	
14	CURR12	AI	Analog current sink input.	
15	CURR13	AI	Analog current sink input.	
16	SFL/F1	DI3	LSB+1 of Flash Control; internal pullup, active-low.	
17	T1/F0	DI3	LSB of Flash Control; internal pullup, active-low.	
18	HFL	DI	Hard Flash Mode selection pin; connect to VBAT.	
19	CURR2	AI	Analog current sink input.	
20	CURR3	AI	Analog current sink input.	
21	CURR4	AI	Analog current sink input.	
			Low-power LDO output voltage; always connect to a ceramic capacitor of 1µF	
22	V2_5	AO	(±20%) or 2.2µF (+100%/-50%).	
			Caution: Do not load this pin during start-up.	
23	RBIAS	AIO	External resistor; always connect to a resistor of $240k\Omega$ (±1%) to ground. Caution: Do not load this pin.	
24	C1_N	AIO	Charge pump flying capacitor; connect to a ceramic capacitor of 1μ F (±20%).	
25	Vss	GND	Exposed pad.	

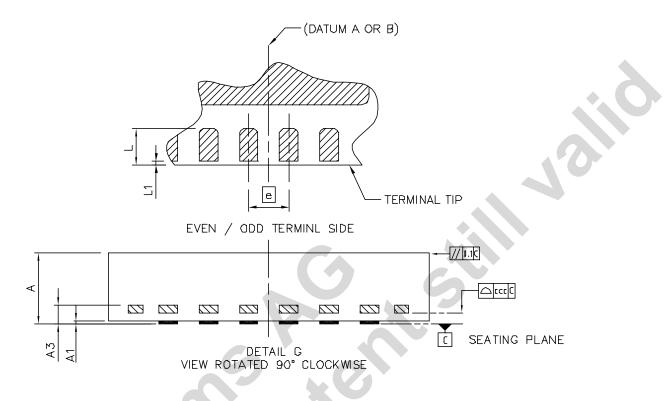
13.2 Soft Flash Mode Pin Descriptions


Table 35. Pin List QFN24 - Soft Flash Mode

Pin	Name	Type (See Table 33)	Description		
1	ADR	DI	Input pin to select serial interface address. Connect to V2_5 or Vss.		
2	VBAT1	S	Charge pump supply pad; always connect to VBAT.		
}	C1_P	AIO	Charge pump flying capacitor; connect to a ceramic capacitor of 2.2µF (±20%).		
4	CP_OUT	AIO	Charge pump output voltage; connect to a ceramic capacitor of $1\mu F$ (±20%) or 2.2 μF (+100%/-50%).		
5	C2_P	AIO	Charge pump flying capacitor; connect to a ceramic capacitor of 2.2µF (±20%).		
6	VBAT2	S	Charge pump supply pad; always connect to VBAT.		
7	C2_N	AIO	narge pump flying capacitor; connect to a ceramic capacitor of 1µF (±20%).		
8	CLK/P2	DI3	Serial interface clock input.		
9	DATA/P1	DIO3	Serial interface data I/O.		
10	GPIO0/P0	DIO3	General purpose I/O; active-low in Soft Flash Mode.		
11	STROBE/F2	DIO3	General purpose I/O; active-low in Soft Flash Mode.		
12	VDD_GPIO	S	GPIO and serial interface supply pad.		
13	CURR11	AI	Analog current sink input (intended for LED flash).		
14	CURR12	AI	Analog current sink input (intended for LED flash).		
15	CURR13	AI	Analog current sink input (intended for LED flash).		
16	SFL/F1	DI3	Connect to VDD_GPIO.		
17	T1/F0	DI3	Test input; connect to Vss.		
18	HFL	DI	Hard Flash Mode selection pin; connect to Vss.		
19	CURR2	AI	Analog current sink input.		
20	CURR3	AI	Analog current sink input.		
21	CURR4	AI	Analog current sink input.		
22	V2_5	AO	Low-power LDO output voltage; always connect to a ceramic capacitor of 1μ F (±20%) or 2.2 μ F (+100%/-50%). Caution: Do not load this pin during start-up.		
23	RBIAS	AIO	External resistor; always connect to a resistor of $240k\Omega$ (±1%) to ground. Caution: Do not load this pin.		
24	C1_N	AIO	Charge pump flying capacitor; connect to a ceramic capacitor of 1µF (±20%).		
	Vee	GND	Exposed pad.		

13.3 Package Drawings and Markings

Figure 22. QFN 24 – 4x4mm with Exposed Paddle



Line 3:AS3683A

Data Sheet - Pinout and Packaging

Figure 23. QFN 24 – Detail Dimensions

Notes:

- Dimensioning and tolerancing conform to ASME Y14-5M – 1994.
- 2. All dimensions are in degrees; angles in degrees.
- Dimension b applies to metalized terminal and is measured between 0.25 and 0.30mm from terminal tip.
 Dimension L1 represents terminal full back from package edge up to 0.1mm is acceptable.
- 4. Coplanarity applies to the exposed heat slug as well as the terminal.
- 5. Radius or terminal is optional.

Symbol	Min	Тур	Max	
А	0.80	0.85	0.90	
A1	0.00	0.02	0.05	
A3		0.203REF		
b	0.18	0.23	0.30	
D		4.0BSC		
E		4.0BSC		
е		0.50BSC		
D2	2.40	2.50	2.60	
E2	2.40	2.50	2.60	
L	0.40	0.45	0.50	
L1	0.03	0.05	0.08	
L2	0.35	0.45		
Р	45°REF			
aaa	-	-	0.10	
bbb	-	-	0.10	
CCC	-	-	0.08	
ddd	-	-	0.10	

14 Ordering Information

Device ID	Part Number	Package Type	Delivery Form*	Description
AS3683- <i>PD</i>	AS3683-EA	QFN 24	Tape and Reel	4x4mm, Pitch = 0.5mm
	AS3683-EB		Tube	

Where:

P = Package Type:

E = QFN 4x4x0.85mm

D = Delivery Form:

A = Tape and Reel

B = Tube

* Dry-pack sensitivity level = 3 in accordance with IPC/JEDEC J-STD-033A.

Copyrights

Copyright © 1997-2010, austriamicrosystems AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

All products and companies mentioned are trademarks or registered trademarks of their respective companies.

Disclaimer

Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location.

The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services.

Contact Information

Headquarters

austriamicrosystems AG Tobelbaderstrasse 30 A-8141 Unterpremstaetten, Austria

Tel: +43 (0) 3136 500 0 Fax: +43 (0) 3136 525 01

For Sales Offices, Distributors and Representatives, please visit:

http://www.austriamicrosystems.com/contact