
General Purpose Thick Film Chip Resistor 100% RoHS Compliant Without Exemption

Stackpole Electronics, Inc.

Resistive Product Solutions

Features:

- Nickel barrier terminations standard
- Power derating from 100% at 70°C to zero at +155°C
- AEC-Q200 compliant
- 100% RoHS compliant and lead free without exemption
- Halogen free
- REACH compliant

	Electrical Specifications										
Tupo/Codo	Power Rating	Max. Working	Max. Overload	Max.	TCP (nnm/0C)	Ohmic Ra and Toler	• • • •				
Type/Code	(W) @ 70°C	Voltage (V)	Voltage (V)	Jumper Current (A)	TCR (ppm/°C)	1%	5%				
RMEF0402	0.063	50	100	1	± 400 1 - 9.76		.76				
KIVIEFU4U2	0.063 50	50	100	'	± 100	10 - 1	IOM				
RMEF0603	0.1	75	150	1	± 100	1 - 1	OM				
RMEF0805	0.125	150	300	2	± 100	1 - 1	MO				
RMEF1206	0.25			2	± 100	1 - 1	0M				
RMEF1210	0.5			3	± 100	1 - 1	OM				
RMEF1812	0.75	200	400	3	± 100	1 - 1	0M				
RMEF2010	0.75			3	± 100	1 - 1	0M				
RMEF2512	1			3	± 100	1 - 1	OM				

⁽¹⁾ Tighter tolerances available. Contact Stackpole Electronics.

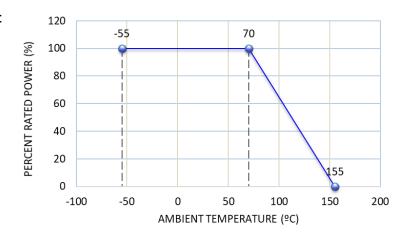
Operating temperature range is -55°C to +155°C

Electrical Specifications - Jumper								
Type/Code	Max Overload Current (A) <1 second and 1 time	Jumper Resistance Value (Ω)						
RMEF0402								
RMEF0603	3							
RMEF0805								
RMEF1206		0.05 Max.						
RMEF1210	10							
RMEF2010]							
RMEF2512								

Mechanical Specifications 103

Type/Code	L	W	н	I ₁		Unit
RMEF0402	0.039 ± 0.0039	0.020 ± 0.0020	0.012 ± 0.0020	0.006 ± 0.004	0.008 ± 0.004	inches
INVILI 0402	1.00 ± 0.10	0.50 ± 0.05	0.30 ± 0.05	0.15 ± 0.10	0.20 ± 0.10	mm
RMEF0603	0.063 ± 0.008	0.031 ± 0.006	0.016 ± 0.004	0.012 ± 0.008	0.012 ± 0.004	inches
KWLI 0003	1.60 ± 0.20	0.80 ± 0.15	0.40 ± 0.10	0.30 ± 0.20	0.30 ± 0.10	mm
RMEF0805	0.079 ± 0.008	0.049 ± 0.006	0.020 ± 0.006	0.012 ± 0.006	0.016 ± 0.006	inches
IXIVILFU003	2.00 ± 0.20	1.25 ± 0.15	0.50 ± 0.15	0.30 ± 0.15	0.40 ± 0.15	mm

Stackpole Electronics, Inc. Resistive Product Solutions


	Mechanical Specifications (cont.)									
Type/Code	L	W	Н	I ₁	l ₂	Unit				
RMEF1206	0.120 ± 0.004	0.063 ± 0.008	0.022 ± 0.006	0.016 ± 0.008	0.020 ± 0.008	inches				
RIVIET 1200	3.05 ± 0.10	1.60 ± 0.20	0.55 ± 0.15	0.40 ± 0.20	0.50 ± 0.20	mm				
RMEF1210	0.120 ± 0.004	0.098 ± 0.008	0.022 ± 0.006	0.020 ± 0.008	0.020 ± 0.008	inches				
KIVIEF 1210	3.05 ± 0.10	2.50 ± 0.20	0.55 ± 0.15	0.50 ± 0.20	0.50 ± 0.20	mm				
RMEF1812	0.177 ± 0.004	0.122 ± 0.008	0.022 ± 0.002	0.022 ± 0.008	0.028 ± 0.008	inches				
RIVIEF 1012	4.50 ± 0.10	3.10 ± 0.20	0.55 ± 0.05	0.55 ± 0.20	0.70 ± 0.20	mm				
RMEF2010	0.197 ± 0.008	0.098 ± 0.008	0.022 ± 0.004	0.024 ± 0.008	0.024 ± 0.008	inches				
RIVIEF2010	5.00 ± 0.20	2.50 ± 0.20	0.55 ± 0.10	0.60 ± 0.20	0.60 ± 0.20	mm				
RMEF2512	0.248 ± 0.008	0.126 ± 0.008	0.022 ± 0.004	0.024 ± 0.008	0.024 ± 0.008	inches				
RIVIEF2512	6.30 ± 0.20	3.20 ± 0.20	0.55 ± 0.10	0.60 ± 0.20	0.60 ± 0.20	mm				

Performance Characteristics								
Test	Test Method	Procedure	Requirements					
Temperature Coefficient of Resistance (TCR)	JIS-C-5201-1 4.8 IEC-60115-1 4.8	At 25/-55°C and 25°C/+155°C, 25°C is the reference temperature	As per specification					
Short Time Overload	JIS-C-5201-1 4.13 IEC-60115-1 4.13	2.5 times RCWV or Max. overload voltage whichever is less for 5 seconds. Jumper: Overload current for 5 seconds 0402/0603/0805 = 2.5A 1206/1210/1812/2010/2512 = 5A	1%: \pm (1 + 0.05 Ω) 5%: \pm (2% + 0.1 Ω) Jumper: Max 0.05 Ω after test					
Leaching	JIS-C-5201-1 4.18 IEC-60068-2-58 8.2.1	260 ± 5°C for 30 seconds	Individual leaching area ≤ 5% Total leaching area ≤ 10%					
Resistance to Soldering Heat	JIS-C-5201-1 4.18 IEC-60115-1 4.18	260 ± 5°C for seconds	1%: ± (0.5% + 0.05 Ω) 5%: ± (1% + 0.05 Ω)					
Rapid Change of Temperature	JIS-C-5201-1 4.19 IEC-60115-1 4.19	-55°C to +155°C, 5 cycles	1%: ± (0.5% + 0.05 Ω) 5%: ± (1% + 0.05 Ω)					
Resistance to Solvent	JIS-C-5201-1 4.29	The tested resistor is immersed into isopropyl alcohol of 20~25°C for 60 seconds. Then the resistor is left in the room for 48 hours.	1%: ± (0.5% + 0.05 Ω) 5%: ± (0.5% + 0.05 Ω) Jumper: Max. 0.05 Ω after test					
Damp Heat with Load	JIS-C-5201-1 4.24 IEC-60115-1 4.24	40 ± 2°C, 90~95% R.H. RCWV or Max working voltage whichever is less for 1000 hours with 1.5 hours "ON" and 0.5 hour "OFF".	1%: ± (1% + 0.05 Ω) 5%: ± (2% + 0.05 Ω) Jumper: Max. 0.1 Ω after test					
Load Life (Endurance)	JIS-C-5201-1 4.25 IEC-60115-1 4.25.1	70 ± 2°C, RCWV or Max working voltage whichever is less for 1000 hours with 1.5 hours "ON" and 0.5 hour "OFF"	1%: \pm (1% + 0.05 Ω) 5%: \pm (3% + 0.1 Ω) Jumper: Max. 0.1 Ω after test					
Insulation Resistance	JIS-C-5201-1 4.6 IEC-60115-1 4.6	Apply 100VDC for 1 minute.	≥ 10G Ω					
Bending Strength	JIS-C-5201-1 4.33 IEC-60115-1 4.33	Bending once for 5 seconds D: 0402, 0603, 0805 = 5 mm 1206, 1210, 1812 = 3 mm 2010, 2512 = 2 mm	1%: ± (1% + 0.05 Ω) 5%: ± (1% + 0.05 Ω)					

Stackpole Electronics, Inc.

Resistive Product Solutions

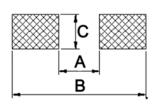
Power Derating Curve:

Power rating or current rating is in the case based on continuous full-load at ambient temperature of 70°C. For operation at ambient temperature in excess of 70°C, the load should be derated in accordance with figure of derating curve.

Voltage Rating or Current Rating

Resistance range ≥ 1 Ω

Rated Voltage: The resistor shall have a DC continuous working voltage of a RMS AC continuous working voltage at commercial line frequency and have form corresponding to the power rating, as determined formula as following:


 $E(RCWV) = \sqrt{PxR}$

E=Rated voltage (V)

P=Power rating (W)

R=Nominal resistance (Ω)

Recommended Pad Layout

Size	A	В	С	Unit
RMEF0402	0.024	0.063	0.028	inches
RIVIEF0402	0.60	1.60	0.70	mm
RMEF0603	0.031	0.094	0.039	inches
KWEF0003	0.80	2.40	1.00	mm
RMEF0805	0.051	0.114	0.055	inches
KIMEF0803	1.30	2.90	1.40	mm
RMEF1206	0.087	0.165	0.067	inches
RIVIEF 1200	2.20	4.20	1.70	mm
RMEF1210	0.079	0.173	0.106	inches
RIVIEF 1210	2.00	4.40	2.70	mm
RMEF1812	0.122	0.233	0.118	inches
RIVIEF 1812	3.11	5.91	3.00	mm
RMEF2010	0.150	0.260	0.106	inches
RIVIEF2010	3.80	6.60	2.70	mm
RMEF2512	0.193	0.319	0.134	inches
INVILI 2312	4.90	8.10	3.40	mm

Resistive Product Solutions

Repetitive Pulse Information

(This information is for reference only and is not guaranteed performance.)

If repetitive pulses are applied to resistors, pulse wave form must be less than "Pulse limiting voltage", "Pulse limiting current" or "Pulse limiting wattage" calculated by the formula below.

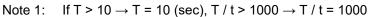
$$Vp = K\sqrt{P \times R \times T/t}$$

$$Ip = K\sqrt{P/R \times T/t}$$

$$Pp = K^2 x P x T/t$$

Where: Vp: Pulse limiting voltage (V)

lp: Pulse limiting current (A)
Pp: Pulse limiting wattage (W)


P: Power rating (W)

R: Nominal resistance (ohm)
T: Repetitive period (sec)

t: Pulse duration (sec)

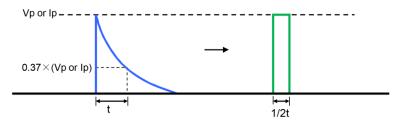
K: Coefficient by resistors type (refer to below matrix)

[Vr: Rated Voltage (V), Ir: Rated Current (A)]

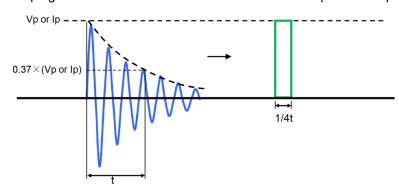
Note 2: If T > 10 and T / t > 1000, "Pulse Limiting power (Single pulse) is applied

Note 3: If Vp < Vr (lp < lr or Pp < P), Vr (lr, P) is Vp (lp, Pp)

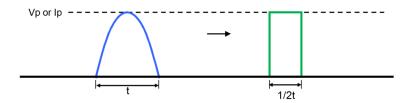
Note 4: Pulse limiting voltage (current, wattage) is applied at less than rated ambient temperature. If ambient temperature is more than the rated temperature (70°C), please decrease power rating according to "Power Derating Curve"

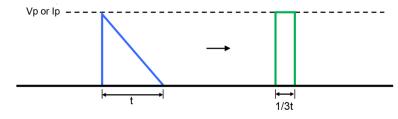

Note 5: Please assure sufficient margin for use period and conditions for "Pulse limiting voltage"

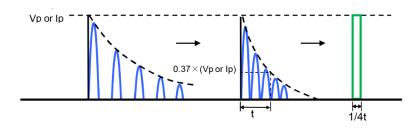
Note 6: If the pulse waveform is not square wave, please judge after transform the waveform into square wave according to the "Waveform Transformation to Square Wave".


Coefficient (K) Matrix							
Resistor Type	К						
R < 10 Ω	0.50						
10 Ω ≤ R < 100 Ω	0.45						
100 Ω ≤ R < 1K Ω	0.35						
$1K \Omega \le R < 10K \Omega$	0.25						
10K Ω ≤ R	0.20						

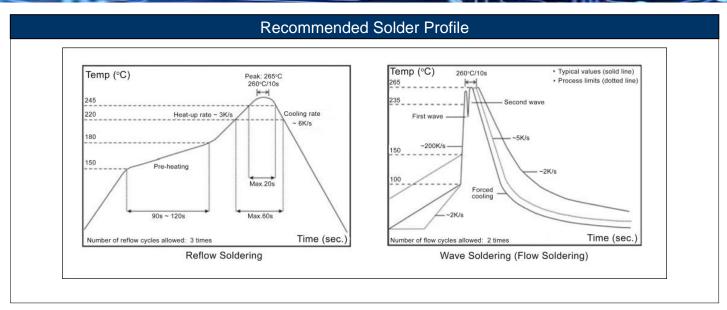
Waveform Transformation to Square Wave


1. Discharge curve wave with time constant "t" → Square wave

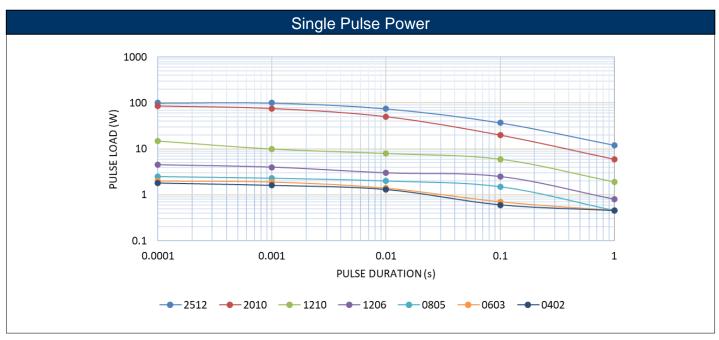

2. Damping oscillation wave with time constant of envelope "t" → Square wave


3. Half-wave rectification wave → Square wave

4. Triangular wave → Square wave



5. Special wave → Square wave


Stackpole Electronics, Inc.

Resistive Product Solutions

Rework temperature (hot air equipment): 350°C, 3~5 seconds Recommended reflow methods: IR, vpor phase oven, hot air oven

If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements

The data provided are for reference only. They are typical performance for this product but are not guaranteed. The actual pulse handling of each individual resistor may vary depending on a variety of factors including resistance tolerance and resistance value. Stackpole Electronics, Inc. assumes no liability for the use of this information. Customers should validate the performance of these products in their applications. Contact Stackpole marketing to discuss specific pulse application requirements.

RMEF1206 RMEF1210

RMEF2010 RMEF2512

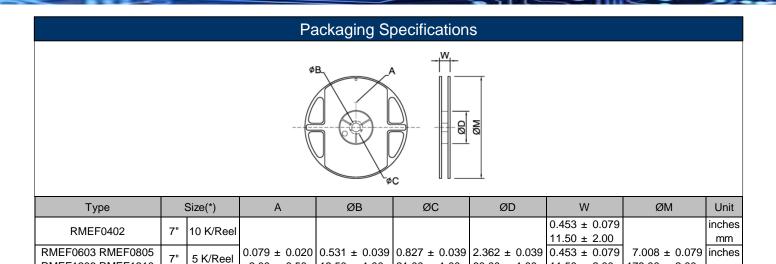
RMEF1812

Stackpole Electronics, Inc.

11.50 ± 2.00

 0.630 ± 0.079

 16.00 ± 2.00

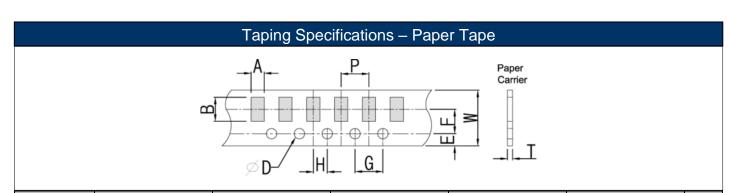

Resistive Product Solutions

 178.00 ± 2.00

mm

inches

mm

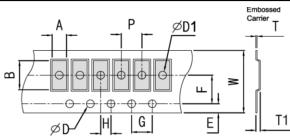


21.00 ± 1.00

 60.00 ± 1.00

4 K/Reel

 2.00 ± 0.50


 13.50 ± 1.00

Size	А	В	W	Е	F	Unit
RMEF0402	0.028 ± 0.004	0.047 ± 0.004				inches
	0.70 ± 0.10	1.20 ± 0.10				mm
RMEF0603	0.041 ± 0.008	0.071 ± 0.008				inches
TAMETOGGG	1.05 ± 0.20	1.80 ± 0.20				mm
RMEF0805	0.061 ± 0.008	0.091 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches
TRIVILI 0000	1.55 ± 0.20	2.30 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm
RMEF1206	0.075 ± 0.008	0.138 ± 0.008				inches
INVILI 1200	1.90 ± 0.20	3.50 ± 0.20				mm
RMEF1210	0.112 ± 0.008	0.138 ± 0.008				inches
RIVIEF 1210	2.85 ± 0.20	3.50 ± 0.20				mm
Size	G	Н	Т	ØD	Р	Unit
RMEF0402			0.018 ± 0.004		0.079 ± 0.004	inches
KIVIEFU4U2			0.45 ± 0.10		2.00 ± 0.10	mm
RMEF0603			0.024 ± 0.004			inches
KIVIEF0003			0.60 ± 0.10			mm
RMEF0805	0.157 ± 0.004	0.079 ± 0.002	0.030 ± 0.004	0.059 +0.004/-0	0.157 ± 0.004	inches
INVILI 0003	4.00 ± 0.10	2.00 ± 0.05	0.75 ± 0.10	1.50 +0.10/-0	4.00 ± 0.10	mm
RMEF1206			0.030 ± 0.004			inches
TAIVILI 1200			0.75 ± 0.10			mm
RMEF1210			0.030 ± 0.004			inches
IXIVILI 1210			0.75 ± 0.10			mm

^(*) Larger reel sizes may be available. Contact Stackpole Electronics.

Resistive Product Solutions

Taping Specifications – Plastic Tape

Size	А	В	W	E	F	G	Unit
RMEF2010	0.110 ± 0.008	0.220 ± 0.008					inches
	2.80 ± 0.20	5.60 ± 0.20					mm
RMEF2512	0.134 ± 0.008	0.264 ± 0.008	0.472 ± 0.004	0.069 ± 0.004	0.217 ± 0.002	0.157 ± 0.004	inches
TAIVILI 2012	3.40 ± 0.20	6.70 ± 0.20	12.00 ± 0.10	1.75 ± 0.10	5.50 ± 0.05	4.00 ± 0.10	mm
RMEF1812	0.130 ± 0.008	0.181 ± 0.008					inches
IXIVILI 1012	3.30 ± 0.20	4.60 ± 0.20					mm
Size	Н	Т	ØD	ØD1	T1	Р	Unit
RMEF2010							inches
KWILI 2010							mm
RMEF2512	0.079 ± 0.002	0.009 ± 0.004	0.059 +0.004/-0	0.059 ± 0.004	0.033 ± 0.006	0.157 ± 0.004	inches
RIVIEFZ51Z	2.00 ± 0.05	0.23 ± 0.10	1.50 +0.10/-0	1.50 ± 0.10	0.85 ± 0.15	4.00 ± 0.10	mm
RMEF1812							inches
KIVILI 1012							mm

Part Marking Specifications

1% Marking

The nominal resistance is marked on the surface of the overcoating with the use of 4 digit markings.

0201 and 0402 are not marked.

5% Marking

The nominal resistance is marked on the surface of the overcoating with the use of 3 digit markings.

0201 and 0402 are not marked.

For shared E24/E96 values, 1% tolerance product may be marked with three digit marking instead of the standard four digit marking for all other E96 values. All E24 values available in 1% tolerance are also marked with three digit marking.

Mark Instructions for 0603 1% Chip Resistors (per EIA-J)

A two-digit number is assigned to each standard R-Value (E96) as shown in the chart below. This is followed by one alpha character which is used as a multiplier. Each letter "Y" – "F" represents a specific multiplier as follows:

Y = 0.1	X = 1	A = 10	B = 100
C = 1000	D(d) = 10000	E = 100000	F = 1000000

RMEF Series

General Purpose Thick Film Chip Resistor 100% RoHS Compliant Without Exemption

Stackpole Electronics, Inc.

Resistive Product Solutions

EXAMPLE:

Chip Marking	Explanation	Value		
01B	01 means 10.0 and B = 100	$10.0 \times 100 = 1 \text{ K ohm}$		
25C	25 means 17.8 and C = 1,000	17.8 x 1,000 = 17.8 K ohm		
93D	93 means 90.9 and D = 10,000	90.9 x 10,000 = 909 K ohm		

					E9	6					
1%	#	1%	#	1%	#	1%	#	1%	#	1%	#
10.0	01	14.7	17	21.5	33	31.6	49	46.4	65	68.1	81
10.2	02	15.0	18	22.1	34	32.4	50	47.5	66	69.8	82
10.5	03	15.4	19	22.6	35	33.2	51	48.7	67	71.5	83
10.7	04	15.8	20	23.2	36	34.0	52	49.9	68	73.2	84
11.0	05	16.2	21	23.7	37	34.8	53	51.1	69	75.0	85
11.3	06	16.5	22	24.3	38	35.7	54	52.3	70	76.8	86
11.5	07	16.9	23	24.9	39	36.5	55	53.6	71	78.7	87
11.8	08	17.4	24	25.5	40	37.4	56	54.9	72	80.6	88
12.1	09	17.8	25	26.1	41	38.3	57	56.2	73	82.5	89
12.4	10	18.2	26	26.7	42	39.2	58	57.6	74	84.5	90
12.7	11	18.7	27	27.4	43	40.2	59	59.0	75	86.6	91
13.0	12	19.1	28	28.0	44	41.2	60	60.4	76	88.7	92
13.3	13	19.6	29	28.7	45	42.2	61	61.9	77	90.9	93
13.7	14	20.0	30	29.4	46	43.2	62	63.4	78	93.1	94
14.0	15	20.5	31	30.1	47	44.2	63	64.9	79	95.3	95
14.3	16	21.0	32	30.9	48	45.3	64	66.5	80	97.6	96

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

RoHS Compliance Status						
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)
RMEF	General Purpose Thick Film Surface Mount Chip Resistor 100% Lead Free	SMD	YES	100% Matte Sn over Ni	Always	Always

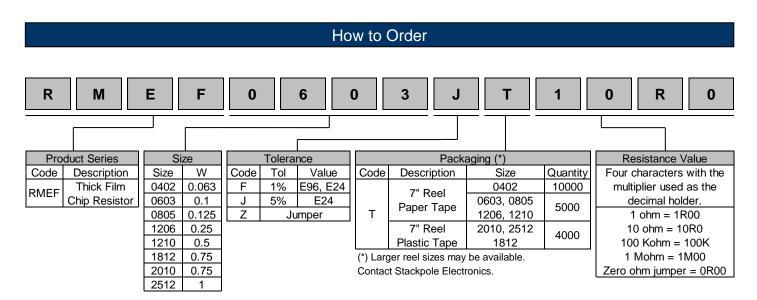
"Conflict Metals" Commitment

We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

RMEF Series

General Purpose Thick Film Chip Resistor 100% RoHS Compliant Without Exemption

Stackpole Electronics, Inc.


Resistive Product Solutions

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

