

CON24001-VIA

2.4 mm Jack PCB Compression Surface-Mount Connector

The CON24001-VIA is a 2.4 mm jack (female socket) PCB solderless surface-mount connector designed for installation directly to a printed circuit board.

Operating from 0 Hz to 50 GHz, the CON24001-VIA combines superior performance, compact size, and a convenient threaded mating interface to provide a reliable, easy-to-use connector. Additionally, all Linx connectors meet RoHS lead free standards and are tested to meet requirements for corrosion resistance, vibration, mechanical and thermal shock.

- 0 Hz to 50 GHz operation
- Passivated stainless steel body for superior corrosion resistance
- Gold plated beryllium copper center contact
- Direct PCB attachment
- Solderless compression-mount design

Applications

- Satellite communications
- Test and measurement
- Radar
- Experimental

Table 1. Electrical Specifications

Parameter	Value	
Impedance	50 Ω	
Frequency Range	0 Hz to 50 GHz	
Dielectric Withstanding Voltage	500 V RMS	
Contact Resistance	Center: \leq 4.0 m Ω Outer: \leq 2.5 m Ω	
Insulation Resistance	5000 MΩ min.	
Insertion Loss (dB max)	0.4	
VSWR (max)	1.3	

Ordering Information

Part Number	Description	
CON24001-VIA	2.4 mm jack (female socket) PCB solderless surface-mount connector	

CON24001-VIA Datasheet

Product Dimensions

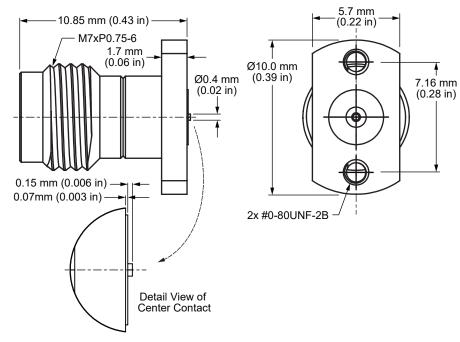


Figure 1. Product Dimensions for the CON24001-VIA Connector

Table 2. Connector Components

Model	CON24001-VIA	
Connector Part	Material	Finish
Connector Body	Stainless Steel	Passivated
Center Contact (female socket)	Beryllium Copper	Gold

Datasheet CON24001-VIA

Recommended PCB Footprint

Figure 2 shows the connectors recommended PCB footprint and mounting requirements. The provided split washers and screws should be tightened to a torque setting not to exceed 0.09N:m (12 in-oz).

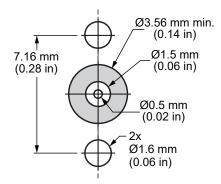


Figure 2. Recommended PCB Dimensions for the CON24001-VIA

Table 3. Mechanical Specifications

Model	CON24001-VIA	
Mounting Type	Solderless PCB Surface-Mount design	
Fastening Type	Type IAW M7 Threaded Coupling	
Interface in Accordance with	n MIL-STD-348B	
Connector Durability	500 cycles min.	
Recommended torque	8.0 inlbs	
Weight	2.0 g (0.07 oz)	

CON24001-VIA Datasheet

Insertion Loss

Figure 3 shows the Insertion Loss for the CON24001-VIA connector. Insertion loss is the loss of signal power (gain) resulting from the insertion of a device in a transmission line.

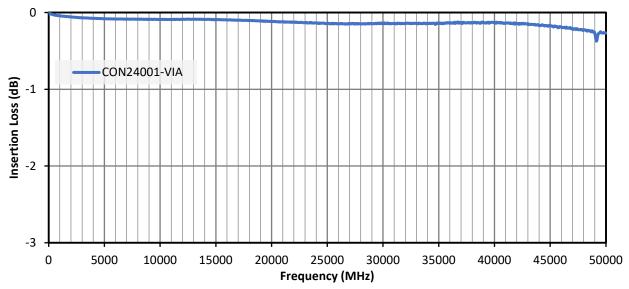


Figure 3. Insertion Loss for the CON24001-VIA Connector

VSWR

Figure 4 provides the voltage standing wave ratio (VSWR) across the adapter's bandwidth for the CON24001-VIA connector. VSWR describes how efficiently power is transmitted. A lower VSWR value indicates better performance at a given frequency.

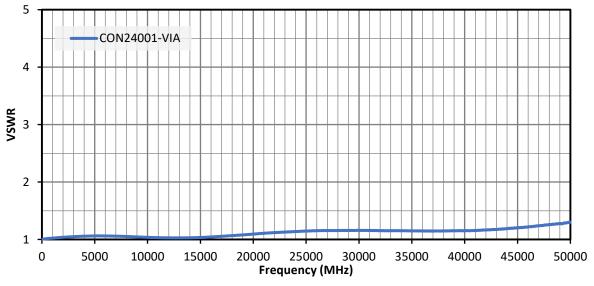


Figure 4. VSWR for the CON24001-VIA Connector

Datasheet CON24001-VIA

Packaging Information

The CON24001-VIA connector is individually placed in a clear anti-static polyethylene bag. 25 pcs are packaged in a larger anti-static polyethylene bag. 100 pcs are packaged in a shipping carton (370 mm x 330 mm x 240 mm). Distribution channels may offer alternative packaging options.

Connector & Adapter Definitions and Useful Formulas

VSWR - Voltage Standing Wave Ratio. VSWR is a unitless ratio that describes how efficiently power is transmitted through the connector. A lower VSWR value indicates better performance at a given frequency. VSWR is easily derived from Return Loss.

$$VSWR = \frac{10^{\left[\frac{Return\ Loss}{20}\right] + 1}}{10^{\left[\frac{Return\ Loss}{20}\right] - 1}}$$

Insertion Loss - The loss of signal power (gain) resulting from the insertion of a device in a transmission line. Insertion loss can be derived from the power transmitted to the load before the insertion of the component P_{τ} and the power transmitted to the load after the insertion of the component P_{ρ} .

Insertion Loss (dB) =
$$10 \log_{10} \frac{P_T}{P_R}$$

CON24001-VIA Datasheet

Website: http://linxtechnologies.com

Linx Offices: 159 Ort Lane, Merlin, OR, US 97532

Phone: +1 (541) 471-6256

E-MAIL: info@linxtechnologies.com

Linx Technologies reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

Wireless Made Simple is a registered trademark of Linx Acquisitions LLC. Other product and brand names may be trademarks or registered trademarks of their respective owners.

Copyright © 2022 Linx Technologies

All Rights Reserved

