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Preface 
 

Industrial process control is a fascinating and challenging area of electronics technology and nothing 
has revolutionized this area like the microcontroller. The microcontroller has added a level of intelligence to 
the evaluation of data and a level of sophistication in the response to process disturbances.  Microcontrollers 
are embedded as the “brains” in both manufacturing equipment and consumer electronic devices.        
 

Process control involves applying technology to an operation that alters raw materials into a desired 
product. Virtually everything that you use or consume has undergone some type of automatic process control 
in its production. In a manufacturing environment, automatic process control also provides higher 
productivity and better product consistency while reducing production costs.    
 

This text is intended to introduce you to the concepts and characteristics of microcontroller-based 
process control with the following experiment-based themes: 

 
a) Writing a procedural program from a flowchart for sequential process-control. 
b) Using pushbuttons, counting cycles and understanding simple I/O processes that form a 

system “under control”. 
c) Continuous process-control beginning with on-off control to more complex differential gap 

with multiple levels of control action. 
d) Proportional-integral-derivative control of a small desktop heating system. 
e) Time-based control of the above and introduction to data logging.  

 
The hardware needed in the experiments to simulate the process has been kept to a bare minimum.  

While the microcontroller is the “brains” of the process, it is not the “muscle.” Actual applications require the 
microcontroller to read and control a wide variety of input and output (I/O) devices.   Simple breadboard 
mounted pushbutton switches are used to simulate the action of mechanical and electro-mechanical switches 
found in industry.  Visible light emitting diodes, small fans, and low-wattage resistors simulate motor starters 
and HVAC equipment.  Information included in the experiments will help you understand the electrical 
interfacing of “real world” I/O devices to the BASIC Stamp. 
 

The physical nature of the elements in a system determines the most appropriate mode of control 
action. The dynamics of a process include a study of the relationship of input disturbances and output action 
on the measured variables.  It is difficult to understand the dynamics of a process without being able to “see” 
this relationship.  For the authors, this defined a need to develop a graphical interface for the BASIC Stamp; 
hence the creation and release of StampPlot Lite.  This software allows digital and analog values to be plotted 
on graphs, and time-stamped data and messages to be stored. StampPlot Lite is used throughout the 
experiments, and is especially helpful as you investigate the various modes of process control. Typical screen 
shots from program runs are included.   
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This text is the first major revision and we have strived to make it better than the first.  Some 

changes and additions include: 
 
a) Addition of a 7th section on Time-Based control. 
b) A total rewrite of the PID section to better demonstrate and explain the theory. 
c) The additions of FET and PWM sample-and-hold circuitry and theory. 
d) The reworking of numerous example programs including more flowcharts and program 

explanations. 
 
We thank our editors Ms. Cheri Barrall and Dale Kretzer, and of course Ken Gracey and Russ Miller of 

the Parallax staff for their review and improvement of this text. Further, we thank Dr. Clark Radcliffe of 
Michigan State University for his in-depth review. A variety of additional Parallax educational customers too 
numerous to list also provided valuable feedback for this second revision. 
 

The authors are instructors at Southern Illinois University in Carbondale in the Electronic Systems 
Technologies program and also partners of a consulting and software company, SelmaWare Solutions.  Visit 
the website to see examples of StampPlot Pro specifically tailored to users of this text. 
 

We invite your comments and feedback. Please contact at us through our website, and copy all error 
changes to Parallax at stampsinclass@parallaxinc.com so the text may be revised.      
 
Will Devenport and Martin Hebel 
Southern Illinois University, Carbondale 
Electronic Systems Technologies 
http://www.siu.edu/~imsasa/est 

-- and -- SelmaWare Solutions 
http://www.selmaware.com 

 

Audience and Teacher’s Guide 
 

This text is aimed at an audience ages 17 and older. Effective during the first publication of this text 
in June, 2000, there is no Teacher's Guide edition planned. If a Teacher's Guide were to be published, it would 
likely be available the first part of year 2002. Solving these experiments presents no difficult technical 
hurdles, and can be done with a bit of patience.  
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Copyright and Reproduction 
 
Stamps in Class lessons are copyright  Parallax 2001. Parallax grants every person conditional 

rights to download, duplicate, and distribute this text without our permission. The condition is that this text, 
or any portion thereof, should not be duplicated for commercial use resulting in expenses to the user beyond 
the marginal cost of printing. That is, nobody should profit from duplication of this text. Preferably, 
duplication should have no expense to the student. Any educational institution wishing to produce duplicates 
for its students may do so without our permission. This text is also available in printed format from Parallax. 
Because we print the text in volume, the consumer price is often less than typical xerographic duplication 
charges.  This text may be translated into any language with the prior permission of Parallax, Inc.   
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A flowchart is a detailed graphic representation illustrating the 
nature and sequencing of an operation on a step-by-step basis. 
A flowchart may be made of an everyday task such as driving to 
the store. How many steps are involved in this simple task? How 
many decisions are made in getting to the store? A formalized 
operation such as baking cookies can be flowcharted, whether 

on a small-scale process in your kitchen or on a very large scale in a commercial bakery. And, of course, a 
flowchart also may be made of the steps and decisions necessary for a computer or microcontroller to carry 
out a task.   
 
A relatively simple process is usually easy to understand and flows logically from start to finish. In the case of 
baking cookies, the steps involved are fairly easy. A recipe typically requires mixing the required ingredients, 
forming the cookies and properly baking them. There are several decisions to make: Are the ingredients mixed 
enough? Is the oven pre-heated? Have the cookies baked for the recommended time? 
 
As processes become more complex, however, it is equally more difficult to chart the order of events needed 
to reach a successful conclusion. A BASIC Stamp program may have several dozen steps and possibly a 
number of “if-then” branches. It can be difficult to grasp the flow of the program simply by reading the code. 

  
A flowchart is made up of a series of unique graphic symbols representing actions, functions, and equipment 
used to bring about a desired result. Table 1.1 summarizes the symbols and their uses. 

 
Table 1.1: Flowchart Symbols 

 
 

 
 

Start/Stop box indicates the beginning and end of a program or 
process.  

 
Process box indicates a step that needs to be accomplished. 

 
 

Input/Output box indicates the process requires an input or 
provides an output. 
 

 

Decision box indicates the process has a choice of taking 
different directions based on a condition. Typically, it is in the 
form of a  
yes-no question. 

 

Experiment #1: 
Flowcharting and  
StampPlot Lite 
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Flowline is used to show direction of flow between symbols. 

 

 
 

Connector box is used to show a connection between points of 
a single flowchart, or different flowcharts. 

 

Sub-routine or sub-process box indicates the use of a defined 
routine or process. 
 

 
 
Example #1: Adjusting the Temperature of a Shower 
 
Let's take an example flowchart of an everyday task: adjusting the temperature for a shower. The process of 
adjusting the water temperature has several steps involved. The water valves are initially opened, we wait a 
while for the temperature to stabilize, test it, and make some decisions for adjustments accordingly. If the 
water temperature is too cold, the hot valve is opened more and we go back to test it again. If the water is 
too hot, the cold valve is opened more. Once we make this adjustment, we go back to the point where we wait 
for a few seconds before testing again. Of course this doesn't take into account whether the valves are fully 
opened.  Steps may be inserted during the temperature adjustment procedure to correct for this condition. 
Figure 1.2 shows a flowchart of this process.  
 
This example demonstrates a process that may be used in adjusting the temperature, but could it also be the 
steps in a microcontroller program? Sure! The valves may be adjusted by servos, and the water temperature 
determined with a sensor. In most cases, a simple process we go through can be quite complex for a 
microcontroller. Take the example of turning a corner in a car. Can you list all the various inputs we process in 
making the turn?  
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Figure 1.1:  Shower Temperature Example 
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Example #2: Conveyor Counting Example 
 
Let's look at a real scenario and develop a flowchart for it. In a manufacturing plant, items are boxed and sent 
down a conveyor belt to one of two loading bays with trucks waiting. Each truck can hold 100 boxes. As the 
boxes arrive, workers place them on the first truck. After that truck is full, the boxes must be diverted to the 
second truck so the loaded truck can be moved out and an empty one moved into position. Also, in the event 
of an emergency or problem, there must be a means of stopping the conveyor.   
 
The physical aspects of the scenario are illustrated in Figure 1.2. The motor for the belt is labeled MOTOR1. 
The sensor to detect the boxes as they pass is labeled DETECTOR1. The lever to direct boxes to one truck 
conveyor or the other is labeled DIVERTER1. The emergency stop button is labeled STOP1. 
 

 
Figure 1.2: Conveyor Counting Example 
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Let's list in order a brief description of what must occur: 
 

• Start the conveyor motor. 
• Count the boxes as they pass. 
• When 100 boxes have passed, switch the diverter to the opposite position. 
• Whenever the emergency stop is pressed, stop the conveyor. 

 
Now that we know the basic steps involved, let's develop a flowchart for the process. Let's begin by looking at 
the simple process flow in Figure 1.3 on the following page. 
 
Notice the placement of the Input/Output box for checking the emergency stop button, STOP1. It ensures the 
button is tested during every cycle. What if we had placed it following the 100-count decision box? How long 
would it have taken from when the button was pushed until the conveyor stopped? 
 
Does the flowchart describe everything our program needs to do? Definitely not, but it is a good start at 
determining the overall flow of the process. Look at the "Count Boxes with DETECTOR1" Process box. How 
exactly is this carried out? We may need to develop a flowchart to describe just this routine. If a process 
needs further detailing, we might replace the Process box with a Sub-Process box as shown in Figure 1.4. 
 
 

Figure 1.4: Sub-Process Box 
 

 
 

 
How involved is it to simply count a box passing by a detector? If DETECTOR1 is activated by “going low,” do we 
count? When the detector stays low, how do we keep from recounting it again the next time our program 
passes that point? What if the box bounces on the conveyor as it enters our beam? How do we keep from 
performing multiple counts of the box? These answers may not be as simple as they seem. Even when 
performing a task as simple as counting a passing box, many variables must be taken into account.  
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Figure 1.3:  Conveyor Counting Flowchart 
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Another consideration is the output of our detector. Can we directly measure the output using one of the 
BASIC Stamp inputs, or is there some circuitry needed to condition the signal first? 
 
Let's consider an output in our conveyor counting example. How do we energize the motor? It is doubtful the 
5-volt, milliamp-rated output of the BASIC Stamp will be able to drive a motor of sufficient horsepower to 
move a conveyor! How do we condition an output of the BASIC Stamp to control a higher voltage and current 
load?  
 
These issues will be considered as you work through the chapters in this text. What may seem simple for us to 
do as humans may require some sophisticated algorithms for a microcontroller to mimic. We will use readily 
available electronic components, a BASIC Stamp module, and the Board of Education to simulate some 
complex industrial control processes. 
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Exercises 

 
Exercise #1: Flowchart Design 
 
Develop a flowchart that will energize a heater below 100 degrees and de-energize it above 120 degrees.  
 
 
Exercise #2: LED Blinking Circuit 
 
We’ll use a simple circuit to demonstrate a flowchart process and the program to perform the task. You’ll 
need to build the circuit shown in Figure 1.5. The following parts will be required for this experiment: 
 
(1) LED, green 
(2) 220-ohm resistors  
(1) 10K-ohm resistor 
(1) Pushbutton 
(1) 10K-ohm multi-turn potentiometer 
(1) 1 uF capacitor 
(Miscellaneous) jumper wires 

 
Figure 1.5: Exercise #2 Blinking Circuit Schematic 
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The circuit you are building consists of a single 
input button and a single output LED. Here is 
the process we want to perform: when the 
button (PB1) is pressed, blink the green LED 
(LED1) five times over 10 seconds. The 
flowchart for our process is shown in Figure 
1.6. 
 
Notice a few things about the flowchart. Our 
main loop is fairly simple. In the Initialize 
process box, we will define any variables 
needed and set initial outputs (LED off) and will 
loop unless PB1 is pressed, which calls our 
subroutine, blink_led1. Our subroutine 
doesn't begin with "Start,” but the name of the 
process, so that we can identify it. The 
flowchart describes a process that we will 
repeat five times, alternately energizing and 
de-energizing our LED for one second each 
time. 
 
Now that we have a flowchart to describe the 
process, how do we program it in PBASIC? 
Programmatically, we can sense PB1 using the 
IN statement. We have two ways we can call 
our subroutine. If the condition is true (1), then 
we can branch to our subroutine directly using 
an IF-THEN statement. This would be treated 
as a PBASIC GOTO. Once this completes, we 
would need to GOTO back to our main loop. Or, 
if the condition is false (0), we can branch back 
to our main loop from the IF-THEN, and use a 
GOSUB command to branch to our subroutine 
when true. We can then use a RETURN when 
our subroutine is complete. 
 

Figure 1.6: Exercise #2 Blinking Circuit Flowchart



Experiment #1: Flowcharting and StampPlot Lite 

Page 16 • Industrial Control Version 1.1 

 
In our blink_led1 subroutine, we need a loop to repeat five times. Choices for accomplishing this task may 
be to set up a variable we increment and check during each repetition, or use the FOR-NEXT statement to 
accomplish it for us. 
 
The flowchart describes the general steps involved in accomplishing a process. The code required is flexible as 
long as it faithfully completes the process as described. The same flowchart may be used in multiple languages 
or systems and even for humans! 
 
Program 1.1 is one way to write the code for our blinking LED process. Enter the text in the BASIC Stamp 
editor, download it to the BASIC Stamp, and press the pushbutton of the circuit you built. If it works properly, 
the LED will blink five times after the pushbutton is pressed. 
 
'Program 1.1; Blinking LED Example 
Cnt  VAR  BYTE   'Variable for counting 
PB1 VAR  IN1   'Variable for PB1 input 
LED1 CON  4   'Variable for LED1 output 
 
INPUT 1     'Set PB1 as input 
OUTPUT 4    'Set LED1 as output 
 
LOW LED1    'Turn off LED 
 
Start:     
  IF PB1 = 0 then Start  'Not Pressed? Go back to loop 
  GOSUB Blink_LED1   'If it was pressed then perform subroutine 
GOTO Start    'After return, go back to start 
 
Blink_LED1:    'Subroutine to blink LED 5 repetitions 
  For Cnt = 1 to 5     'Setup loop for 5 counts 
    HIGH LED1    'Turn ON LED 
    PAUSE 1000    'Wait 1 second 
    LOW LED1    'Turn off LED 
    PAUSE 1000    'wait 1 second 
  NEXT     'Repeat loop until done 
 
RETURN       'return back to after gosub call 
 
Programming Challenge 
 
Flowchart and program a process where the LED will blink four times a second while the pushbutton is NOT 
pressed! 
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Exercise #3: Analog Data 
 
In many instances a process involves analyzing and responding to analog data. Digital data is simply on or off 
(1 or 0). This is comparable to the simple light switches in our homes. The light is on or it is off. Analog data on 
the other hand is a range of values. Some examples include the level of lighting if we use a dimmer switch 
instead of an on/off switch, or the temperature of the water coming out of our shower nozzle. 
 
There are several methods to bring analog data into a microcontroller, such as using an analog-to-digital 
(A/D) converter that changes analog values into digital values that may be processed by the microcontroller. 
Another method used by the BASIC Stamp is a resistor/capacitor network to measure the discharge or charge 
time of the capacitor. By varying the amount of the resistance, we can affect and measure the time it takes 
the capacitor to discharge. In this experiment, resistance is set by manually adjusting a variable resistor. But 
the device may be more sophisticated, such as a photo-resistive cell that changes resistance depending on the 
amount of light shining on it, or a temperature sensor. More discussion on analog data is found in later 
sections, but for now let's perform a simple process-control experiment using an analog value. 
 
Add the RC network shown in Figure 1.7 to your circuit from the previous experiment. It uses these parts: 
 
(1) 1 uF capacitor 
(1) 10K potentiometer 

 
Figure 1.7: Schematic for Analog Data circuit added to Exercise #3 
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PBASIC Command Quick Reference: RCTime 
 
RCTIME pin, state, resultvariable 
 

• Pin is the I/O pin connected to the RC network.  
• State is the input voltage of that pin.   
• Resultvariable is normally a word-length variable containing the results of the command. 

. 
 
The PBASIC command we will use to read the analog value of the potentiometer is RCTIME. A typical block of 
code to read the potentiometer is as follow: 
  
Pot  VAR WORD 
HIGH 7 
PAUSE 10 
RCTIME 7, 1, Pot 
 
In order for the BS2 to read the potentiometer, the routine needs to take the following steps: 
 

• +5V (HIGH) is applied to both sides of the capacitor to discharge it. 
• The BASIC Stamp pauses long enough to ensure the capacitor is fully discharged. 
• When RCTIME is executed, Pin 7 becomes an input. Pin 7 will initially read a high (1) because an 

uncharged capacitor acts as short. 
• As the capacitor charges through the resistor, the voltage at Pin 7 will fall. 
• When the voltage at Pin 7 reaches 1.4 V (falling), the input state is read as low (0), stopping the 

process and storing a value in Pot proportional to the time required for the capacitor to charge. 
 
The greater the resistance, the longer the time required for a capacitor to discharge; therefore, the higher 
the value of Pot. In this manner, we can acquire an analog value from a simple input device. 
 
Let's write a process-control program to make use of this input. Our process will be one where temperature 
is monitored and a heater energizes below 100 degrees and de-energized above 120 degrees. The 
potentiometer will represent a temperature sensor and the LED will represent the heater being energized. 
We will use the debug window to display our temperature and the status of the heater. The maximum 
potentiometer value, with this combination of resistor and capacitor, may reach 5000, so we will divide it by 
30 to scale it to a more reasonable range.  Figure 1.8 is the flowchart of the process. 
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Figure 1.8: Exercise 3 - Simple Heater Flowchart 
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Enter and run Program 1.2. Monitor the value in debug window while adjusting the potentiometer and note 
what occurs as the value rises above 120 and below 100. 
 
'Program 1.2, Simple Heater 
LED1 VAR OUT4   'LED1 is on P4 
RC CON  7   'RC network is on Pin 7 
Temp VAR WORD   'Pot is a variable to hold results 
 
OUTPUT 4    'Setup LED as output 
LED1 = 1    'Energize initially 
 
Main: 
  GOSUB ReadTemp   'Read pot value as temperature 
  GOSUB CheckTemp   'check temp to setpoint 
  PAUSE 250       
GOTO Main 
 
ReadTemp 
  HIGH RC    'Read Potentiometer 
  PAUSE 10 
  RCTIME RC, 1, Temp  
  Temp = Temp/30   'Scale the results down,  
     'store as temperature 
  DEBUG "Temp = ",dec Temp, CR 
RETURN 
 
CheckTemp:    'If Temp > 100, or heat already on,  
     'check if should be off 
  IF (Temp > 100) OR (LED1 = 1) THEN CheckOff 
  LED1 = 1    'If not, then energize and display 
  DEBUG "The heater energized",CR 
 
CheckOff:    'If Temp < 120 or heat is off already, all done 
  IF (Temp < 120) OR (LED1 = 0) THEN CheckDone  
  LED1 = 0    'if not, then energize and display 
  DEBUG "The heater de-energized", CR 
CheckDone: 
RETURN 

 
 
Programming Challenge 
 
Modify the process flowchart and program so the LED indicates an air conditioner cycling between 70 and 75 
degrees. 
 
 
Exercise #4: Using StampPlot Lite 
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While the debug window for the BASIC Stamp is very useful for obtaining data and information from the 
BASIC Stamp, it can be difficult to visualize the data without careful scrutiny. Is the temperature increasing or 
decreasing? How quickly is it changing? At what point did the output change? What temperature is it cycling 
around?  
 
Enter StampPlot Lite! StampPlot Lite (SPL) was specifically developed for this text.  SPL accepts data from the 
BS2 in the same fashion the debug window does, only SPL interprets the data and performs on of 4 actions 
based on the structure of the data: 
 

• A value is plotted on an analog scale in real time. 
• A binary value starting with % is plotted as digital traces in real time. 
• Strings beginning with ! are interpreted as instructions to control and configure SPL. 
• Any other string is listed as a message at the bottom of SPL and optionally time-stamped. 

 
A main rule of SPL is that each line must end in a carriage return (13 or CR). 
 
Please review Appendix A for a more in-depth discussion of StampPlot Lite. 
 
If you have not yet installed StampPlot Lite, install it on your computer by downloading it from 
http://www.stampsinclass.com. Double-click the setup button and install it in your designated directory.  
 
Let's take another look at Program 1.2, our simple heater, but this time using StampPlot Lite to help visualize 
the process. Program 1.2 has been rewritten as Program 1.3 to utilize StampPlot Lite (bold lines are 
added/modified from program 1.2). 
 
'Program 1.3; Simple Heater using StampPlot Lite 
'Configure StampPlot Lite 
PAUSE 500 
DEBUG "!SPAN 50,150",CR   'Set span for 50-150 
DEBUG "!TMAX 60",CR    'Set for 60 seconds 
DEBUG "!PNTS 500",CR    '500 data points per plot 
DEBUG "!TITL Simple Heater Control",CR 'Title the form 
DEBUG "!SHFT ON",CR    'Allow plot to shift at max 
DEBUG "!TSMP ON",CR 
DEBUG "!PLOT ON",CR    'Enable plotting 
DEBUG "!RSET",CR    'Reset Plot 
 
LED1 VAR OUT4    'LED1 is on P4 
RC CON  7    'RC network is on Pin 7 
Temp VAR WORD    'Pot is a variable to hold results 
 
OUTPUT 4     'Setup LED as output 
LED1 = 1     'Energize initially 
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Main: 
  GOSUB ReadTemp    'Read pot value as temperature 
  GOSUB CheckTemp    'check temp. to setpoint 
  PAUSE 250       
GOTO Main 
 
ReadTemp 
  HIGH RC     'Read Potentiometer 
  PAUSE 10 
  RCTIME RC, 1, Temp  
  Temp = Temp/30    'Scale the results down,  
      'store as temperature 
  DEBUG DEC Temp, CR    'Send temperature value 
  DEBUG IBIN LED1,CR    'Send LED Status 
RETURN 
 
CheckTemp:     'If Temp > 100, or heat already on,  
      'check if should be off 
  IF (Temp > 100) OR (LED1 = 1) THEN CheckOff 
  LED1 = 1     'If not, then energize and display 
  DEBUG "The heater energized",CR 
  DEBUG "!USRS The heater is energized!",CR  'Update SPL status bar 
 
CheckOff:     'If Temp < 120 or heat is off, all done 
  IF (Temp < 120) OR (LED1 = 0) THEN CheckDone  
  LED1 = 0     'if not, then energize and display 
  DEBUG "The heater de-energized", CR 
  DEBUG "!USRS The heater is de-energized!",CR 'Update SPL Status Bar 
CheckDone: 
RETURN 
 
Download this program to your BASIC Stamp, and follow these instructions to use StampPlot Lite. 
 

• Start StampPlot Lite by using your Windows Start button and  going to 
Programs/StampPlot/StampPlot Lite. 

• Enter and run Program 1.3 on your BASIC Stamp. 
• Close the BASIC Stamp editor’s blue debug window.  
• Select the correct COM port in StampPlot Lite and click 'Connect.'  

•  
• Reset the BASIC Stamp by pushing the button on the Board of Education. Now you’re ready to use 

this unique software utility.   
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At this point you should see data being plotted. Adjust the 10K-ohm potentiometer with your fingers or a 
small screwdriver. The analog line displays the value of the potentiometer. The digital trace at the top displays 
the status of the LED indicator. Figure 1.9 is a sample capture of the plot from our circuit. 
 

Figure 1.9:  StampPlot Lite Graph of Exercise #4 
 

 
 
 

Note the correlation between the analog value and the switching of the digital output. Use the various 
controls on StampPlot Lite to become familiar with the functions and features. Analyze Program 1.3 and note 
the various configuration settings and data sent to the application. Refer to Appendix A for additional 
information on StampPlot Lite if you are having problems understanding the basics of the software utility. 
 
Programming Challenge 
 
Modify your air conditioner challenge from Exercise #2 to use StampPlot Lite. Configure your program to 
transmit data approximately every 0.5 seconds. Calculate the number of data points needed to fill the screen 
within a maximum of 60 seconds, and test. 
 
Just for fun! 
 
Enter and run the following program. The potentiometer simulates a single-handle shower (mixer) valve with 
adjustment delay. Adjust the shower temperature for a constant 110 degrees. See how fast you can stabilize 
the temperature at the set point! Press the reset button on the Board of Education and try again. We'll leave 
it up to you to figure out the program. 
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'PROGRAM 1.4: ADJUST THE SHOWER! 
SetPoint VAR BYTE 
CurTemp  VAR BYTE 
Diff   VAR BYTE 
TempSet VAR WORD 
 
RC   CON 7 
LED1  CON 4 
SetPoint = 110 
 
PAUSE 500 
DEBUG "!RSET",CR,"!SPAN 0,200",CR,"!TMAX 30",CR,"!PLOT ON",CR 
DEBUG "!TSMP ON",CR,"!MAXS",CR,"!PNTS 100",13 
 
DEBUG "!USRS ADJUST THE TEMP FOR ",DEC SetPoint,CR 
 
Main: 
  HIGH RC 
  PAUSE 10 
  RCTIME RC,1,TempSet 
  TempSet = TempSet/ 30 
 
  IF TempSet > CurTemp THEN Higher 
  IF TempSet < CurTemp THEN Lower 
 
GOTO Display 
 
Higher: 
  DIFF = TempSet - CurTemp/5 
  CurTemp = CurTemp + Diff 
GOTO Display 
 
Lower: 
  Diff = CurTemp - TempSet/5 
  CurTemp = CurTemp - Diff 
 
Display: 
  LOW LED1 
  DEBUG DEC CurTemp,CR 
  IF CurTemp <> SetPoint THEN SkipBeep 
  DEBUG "AT SETPOINT!",CR,"!BELL",CR 
  HIGH LED1 
 
SkipBeep: 
  PAUSE 250 
GOTO Main 
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Questions and Challenge 

 
 
1. List one everyday human process that involves a decision. List the steps in performing the process and 

the decisions needed to be made. 
 

2. Develop a simple flowchart for the process in Question #1. 
 

3. List an example of an electronics process in your home or school (such as that of an electric or 
microwave oven control, alarm clock, etc). Develop a simple flowchart to describe the process. 
 

4. Develop the flowchart and code for the following process: The potentiometer simulates a temperature 
sensor. If the temperature exceeds 100 degrees, lock on the alarm (LED). Do not clear the alarm until the 
pushbutton is pressed. 
 

5. Modify the program from Question #4 to use StampPlot Lite to display the temperature, alarm bit and 
status of the alarm. 
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Process control relies on gathering input information, 
evaluating it, and initiating action. In industrial control, input 
information most often involves monitoring field devices whose 
outputs are one of two possible states. A switch is the most 
common example of a “bi-state” device. It is either open or 
closed.    

 
Switches can provide control of an operation in three ways. One may be wired directly with the load and 
therefore control the full current and voltage. A switch also can be wired in the input circuit of a relay. In this 
case, the switch controls the relay’s relatively low power input and the output contacts control load power. 
The on/off status of a switch may also provide a digital input to a programmable controller.     
 
How many switches have you used today? And, what processes were affected by the toggling of those 
switches?  Table 2.1 lists a few possibilities, starting at the beginning of your day: 
 

Table 2.1: Switch Possibilities at the Beginning of your Day 
 

Switch Status Result 
First, you may slap the “SNOOZE” button on your 
alarm clock.  

The buzzing stops and -- Ah! 5 more minutes of sleep! 

Next, stumble to the bathroom and flip “ON” the 
bathroom light. 

Ouch! Turn it “OFF.” Those vanity lights hurt! 

Now, into the kitchen, start your coffeemaker, 
press down the toaster, and program your 
microwave.  Open the refrigerator and the light 
comes on . 

Breakfast is ready. And who knows if that light really 
goes off when you close the refrigerator? 

Turn on the thermostat. Heat or AC – your choice.  What temperature? A 
setpoint is usually just a “switching point.” 

Turn on your TV, change the channel, turn up the 
volume.   

The pushbuttons on the front or the flashing infrared 
LED in your remote– they all still just switch data.   

Make a phone call. Lift the receiver and check for 
dial tone. Key in the phone number.   

The limit switch held down by the handset now is in 
its “off the hook” position.  Each switch on the keypad 
allows a specific tone to be generated.  

Boot your PC. Switch on the monitor.  Left click 
the  mouse to check your e-mail.  

These are only three obvious ones. There are many 
more switches behind the scenes in your PC.  

You are up to 15 switches and you haven’t even left your house! 
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Some of the switches listed in Table 2.1 probably have direct control of electrical continuity to the loads 
involved. For example, the bathroom light switch controls the actual current flowing to the vanity light bulbs.  
The thermostat is an example of a switch controlling a low-voltage system that controls a relay in your 
furnace or air conditioner.    
 
Most of the switches in Table 2.1, however, probably are providing a digital high or low signal being monitored 
by an electronic control system. It is the status of this input signal that is evaluated and used to determine the 
appropriate state of the outputs involved. The snooze button isn’t physically opening the alarm circuit of your 
clock radio. When you “slapped” it, the momentary change of state was recognized by a programmable circuit. 
As a result, the program instructed the output to go off and add five minutes to the programmed alarm time. 
The start button on your microwave doesn’t have to carry the actual current that powers the magnatron, 
inside light, and ventilation fan. However, pressing it creates an input causing the oven’s microcontroller to 
close relays that do handle these loads. 
 
Most often we think of switches as mechanical devices that make and break continuity between contact 
points in a circuit. In the case of the manual pushbutton and the limit switches pictured in Figure 2.1, this is 
exactly the case.  
 
 

Figure 2.1:  A Variety of Manual Pushbutton and Mechanical Limit Switches  
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Table 2.2 shows the schematic representation of various industrial switches. The symbols are drawn to 
represent the switch’s “normal” state. Normal state refers to the unactuated or rest state of the switch. The 
pushbutton switches in this exercise kit are Normally Open (N.O.). Pressing the pushbutton results in a plunger 
shorting the contacts. The resistance goes from its open value of nearly infinite ohms to a value very near 
zero. A similar mechanism produces a like action in a Normally Open limit switch.  
 

Table 2.2: Schematic Representation of Various Industrial Switches 
 

 
 
 

While the concept of the switch is simple, there seems to be no limit to the physical design of switches that 
you will find in industrial control applications. Switches also may be designed as Normally Closed (N.C.); they 
are closed when at rest and actuation causes their contacts to open. As a technician, programmer, or system 
designer, you must be aware of the Normal (resting) position of a switch.   
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Digital Input (TTL, CMOS, ECL, etc.)? 
 
Logic devices are built with a variety of processes 
that operate at different voltages. The 
manufacturer’s datasheet will list several critical 
values for each device. Absolute Maximum Ratings 
are voltages and currents which must not be 
exceeded to avoid damaging or destroying the 
chip. I/O pins on the BASIC Stamp II should not 
exceed 0.6 V or Vdd+0.6 V (5.6V) with respect to 
Vss.  
 
The logic transition between high and low is 
specified in the DC characteristics of the 
datasheet. A voltage of 0.2 Vdd (1 V on the BASIC 
Stamp II) is guaranteed to be low, and which 0.45 
Vdd (2.25 V) or higher is guaranteed to be high. 
There is a gray area between these two voltages 
where the actual transition will occur. It is 
dependant on temperature and supply voltages 
where the actual transition will occur. It also 
varies with temperature and supply voltage but 
will normally occur at about 1.4 volts. 

 
 

Figure 2.2:  Schematic Representation of Pushbutton Switches 
 

 
Figure 2.2a      Figure 2.2b 

 
 
The input pins of the BASIC Stamp do not detect “changes in 
resistance” between the switch’s contacts. These inputs 
expect appropriate voltage levels to represent a logic high 
or a logic low. Ideally, these levels would be +5 volts for a 
logic high (1) and 0 volts for a logic low (0).   
 
To convert the two resistive states of the switch into 
acceptable  inputs,  it must be placed in series with a 
resistor across the +5 volt supply of the BASIC Stamp. This 
forms a voltage divider circuit in which the resistive status 
of the switch is compared to the resistive value of the 
reference resistor. Figure 2.2 shows the two possibilities 
for our simple N.O. pushbutton switch.  Figure 2.2a will 
result in +5 volts being fed to the input pin when it is 
pressed. When the switch is open, there is no continuity; 
therefore, no current flows through the 10K resistor and 
the input pin is grounded.   
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Reference Resistor: 

The 10K-ohm fixed resistor in Figures 2.2a 
and 2.2b is required to get dependable logic 
levels. It is wired in series with the switch.  
Its value must be much greater than the 
closed resistance of the switch and much 
less than its open resistance. When the 
switch is open in Figure 2.2a, the resistor 
gets no voltage and the input point is “pulled 
down” to ground. In Figure 2.2b, the open 
switch causes the input to be “pulled up” to 
+5 volts.  You must consider the use of pull-
up and pull-down resistors when working 
with all mechanical switches and some 
electronic switches.    

 
 
In Figure 2.2b, the switch closure results in grounding of the 
input pin. Zero volts is a logic low. When the switch is opened, 
there is again no voltage drop across the 10K-ohm resistor and 
the voltage at the input is +5, a logic high. The circuits are 
essentially the same, although the results of pressing the switch 
are exactly opposite. From a programming standpoint, it is 
important to know with which configuration you are dealing.  
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Exercise #1: Switch Basics 
 
To begin an investigation of programming for simple switch activity, wire the two pushbutton switches shown 
in Figure 2.2 onto the Board of Education breadboard. Connect the active-high configuration (Figure 2.2a) to 
I/O Pin 1 and the output of the active-low configuration (Figure 2.2b) to Pin 2. Note which one is which. As 
stated earlier, this is important. Figure 2.3 shows a pictorial of how the circuit is built on the Board of 
Education.     
 

Figure 2.3: Pictorial of Parts Layout for circuits of Figure 2.2  
 

 

 

Exercises 
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The following program is written to use the StampPlot Lite interface for displaying the status of the switches. 
The procedure will be the same as you followed in Experiment #1, Flowcharting and StampPlot Lite. First, 
enter Program 2.1. You may omit from the program all comments which include the apostrophe  (‘) and the 
text that follows.   
 
'Program. 2.1:  Switch Level Detection with StampPlot Lite Interface 
 
DEBUG "!TITL Pushbutton Test",CR  ' Titles the StampPlot screen 
 
INPUT 1      ' Set P1 as an input 
INPUT 2      ' Set P2 as an input 
PB1 VAR IN1 
PB2 VAR IN2 
 
Loop: 
  PAUSE 100     ' Slow the program loop 
  DEBUG IBIN PB1, BIN PB2, CR    ' Plot the digital status   
  DEBUG DEC 0, CR    ' Output a 0 to allow for screen shift 
  IF (PB1 = 1) and (PB2 = 0) THEN Both ' Test for both pressed 
  IF PB1 = 1 THEN PB1_on   ' Test if active-high PB1 is pressed 
  IF PB2 = 0 THEN PB2_on   ' Test if active-low PB2 is pressed 
DEBUG "!USRS Normal states    - Neither pressed", CR   
 ' Report none pressed 
GOTO Loop 
 
PB1_on:         ' Report PB1 pressed 
  DEBUG "!USRS Input 1 is High  - PB1 is pressed ", CR 
GOTO Loop 
 
PB2_on:         ' Report PB2 pressed 
  DEBUG "!USRS Input 2 is Low   - PB2 is pressed ", CR 
GOTO Loop 
  
Both:          ' Report both pressed 
  DEBUG "!USRS PB1 High & PB2 Low - Both pressed", CR 
  DEBUG "!BELL", CR    ' Sound the bell. 
GOTO Loop 
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Run the program. DEBUG will scroll the switch status and the input’s digital value.  Close the debug screen and 
open StampPlot Lite. Select the appropriate COM port and check the Connect and Plot Data boxes. Press the 
reset switch on your Board of Education and the trace of In1 and In2 should start across the screen. Your 
display should look similar to Figure 2.4. Press the pushbuttons and become familiar with the operation of 
your system. Next, we will look at how the program works.   
 

Figure 2.4: Typical Screen Shot of StampPlot Monitoring the Status of Pushbuttons 
 

 
 
The purpose of this program is to run code based on the pressed or not-pressed condition of the two 
pushbuttons. This simple exercise gives insight to several considerations when dealing with digital inputs, 
programming multiple if-then statements, and using some of the PBASIC logical operators.     
 
First, the statements in1 and in2 simply return the logic value of the input pins: +5 V = logic 1 and 0 V = logic 
0. The active-high PB1 returns a 1 if pressed. The active-low PB2 returns a 0 when it is pressed. The program 
is testing for the “logical” status of the inputs; as the programmer, you must understand how this correlates 
to the “pressed” or “not pressed” condition of the pushbuttons involved. This is evident in the first line of the 
program loop where the logic operator AND is being used.  
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When you consider our switch configurations, it makes logical sense that if In1 returns a logic high and In2 
returns a logic low then both switches are pressed. Output actions of industrial controllers often are 
dependent upon the status of multiple switches and contacts. A review of the PBASIC logical operators, 
including AND, OR, XOR, and NOT, can provide useful tools in meeting these requirements using the BASIC 
Stamp.   
 
Another aspect of Program 2.1 is to notice the flow of the program loops. The IF-THEN structures test for a 
condition and if the condition is met, THEN the program execution is passed to the label. In this case, the 
label routine simply prints the conditions of the switches to the StampPlot Lite Status box. In industrial 
applications, this portion of the program would cause the appropriate output action to occur. Since the last 
line of each label is GOTO Loop, program execution returns to the top of the loop and any code below that 
IF-THEN statement is circumvented. The flowchart in Figure 2.5 shows how the program executes. 
 

Figure 2.5: Flowchart for Program 2.1 
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If both switches are pressed, “IF (PB1 = 1) and (PB2 = 0)” is true. Program execution then would go to 
the Both label. The “both pressed” condition would be indicated in the User Status Bar and your computer 
bell would ring. After this, program execution is instructed to go back to Loop and test the switches again. As 
long as both switches remain pressed, the result of this test is continually true and looping is occuring only 
within this part of the program.   
 
If either or both switches become not pressed, the next three lines of code will do a similar test for the 
condition.   
 
Pressing PB1 results in “IF PB1 = 1” being true, execution is passed to the PB1 label action, and a return to 
the top of the loop; “IF PB2 = 0” is never tested. Is this good or bad? Neither, really. But, understanding the 
operation of multiple IF-THEN statements can be a powerful tool for programming applications.  Forgetting 
this can result in frustrating and not-so-obvious bugs in your program. For instance, what would happen in 
our program if the test for both switches being pressed “IF (PB1 = 1) AND (PB2 = 0) THEN Both” 
was put after the individual switch tests? 
  
Quick Challenge 
    
While running the program, try to reproduce the switch status shown in the screen shot of Figure 2.4.    
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Exercise #2 – Switch Bounce and Debouncing Routines 
 
In the previous exercise, the steady-state level of the switch was being reported. The routine of reporting the 
switch status was performed on each program loop. What if you wanted to quickly press the switch and have 
something occur only once? There are two issues with which to contend. The first is: How quickly can you 
press and release the switch? You have to do it within the period of one program cycle. The second problem is 
contending with switch bounce. Switch bounce is the tendency of a switch to make several rapid on/off 
actions at the instant it is pressed or released. 
 
The following program will demonstrate the difficulty in accomplishing this task. Two light-emitting diodes 
have been added as output indicators on Pin 4 and Pin 5. Wire the LEDs relative to Figure 2.6. 
 
 

Figure 2.6: Active-High LED Circuit to be Added to the Schematic in Exercise #1 
 

 
 
 
Enter and run the program according to StampPlot Lite procedures. The status of the pushbutton and the 
LEDs is being indicated. When PB1 is pressed, the LEDs will toggle. Can you be quick enough to make them 
toggle only once on alternate presses? Try it. 
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'Program 2.2 No Debouncing 
 
PAUSE 500 
DEBUG "!TITL Toggle Challenge",CR  ' Titles the StampPlot screen 
DEBUG "!TMAX 25", CR    ' Sets the plot time (seconds) 
DEBUG "!PNTS 300", CR    ' Sets the number of data points 
 
INPUT 1      ' Set P1 as an input 
INPUT 2      ' Set P2 as an input 
OUTPUT 4     ' Green LED 
Out4 = 1     ' Initialize ON 
OUTPUT 5     ' Red LED 
Out5 = 0     ' Initialize OFF 
 
Loop: 
  DEBUG IBIN In1, BIN In4, BIN In5, CR ' Plot the digital status. 
  DEBUG DEC 0, CR    ' Output a 0 to allow for screen shift 
  IF In1 = 1 THEN Action   ' Test the switch 
      ' Optional pause 5 if StampPlot locks up 
GOTO Loop 
 
Action:      ' Toggle last state  
  TOGGLE 4 
  TOGGLE 5 
GOTO Loop 
 
 
If StampPlot Lite isn’t responding to data sent by the BASIC Stamp, you may need to insert a very short delay 
in the Loop: routine. A PAUSE 2 or PAUSE 5 (even up to 10 on slower computers) will alleviate any 
transmission speed problems you may encounter. 
 
It is nearly impossible to press and release the pushbutton fast enough to perform the action only once. The 
problem is twofold as Figure 2.7 indicates. The program loop executes very fast. If you are slow, the program 
has a chance to run several times while the switch is closed. Add to this several milliseconds of switch bounce, 
and you may end up with several toggles during one press.      
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Figure 2.7: Slow Response and No Debounce Can be a Problem 

 
 
Further slowing the execution time of the program loop can help remedy the problem. (If the above program 
didn’t work properly with StampPlot Lite, a delay in execution speed will allow for serial data transmission). 
Add a delay of 250 milliseconds to the Action: routine. This allows 250 milliseconds for the switch to settle 
after closing and  then return to its open position.    
 
Modify your program to include “PAUSE 250” to increase the loop time and negate switch bounce. 
 
'Program 2.3 (modify program 2-2 to slow it down) 
Action:    ' Toggle last state 
  TOGGLE 4 
  TOGGLE 5  
  PAUSE 250    ' Added to allow for settling time 
 
GOTO Loop 
 
 

Figure 2.8: Adding a Pause Makes the Toggle Challenge Much Easier 
 

 
 
 
By allowing settling time and pressing the button quickly, you make it much easier to get the Action: to 
occur only once. This technique helps debounce the switch and gives you enough time to release it before the 
next program cycle.  The PAUSE must be long enough to allow for these factors. If the PAUSE is too long, 
however, a switch closure may occur and never be seen.    
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Exercise #3 – Edge Triggering 
 
Counting routines pose additional problems for digital input programming. Exercise #2 used the  PAUSE 
command to eliminate switch bounce, which is compounded in industrial applications such as counting 
products on a conveyor. Not only does the switch have inherent bounce, but the product itself may have 
irregular shape, be wobbling, or stop for some time while activating the switch. There may be only one 
product, but the switch may open and close several times. Also, if the one product stays in contact with the 
switch for several program loop cycles, the program still should register it only once, not continually like in 
Program 2.2.    
 
Program 2.4 uses a flag variable to create a program that responds to the initial low-to-high transitions of 
the switch. Once this “leading edge” of the digital input is detected, Action: will be executed. Then the flag 
will be set to prevent subsequent executions until the product has cleared and the switch goes low again. 
Enter Program 2.4. 
 
' Program 2.4: Switch Edge Detection   
' Count and display the number of closures of PB1.   
' Reset total count with a closure of PB2.    
  
PAUSE 500 
DEBUG "!TITL Counting Challenge",CR  ' Titles the StampPlot screen 
DEBUG "!TMAX 50",CR    ' Sets the plot time (seconds) 
DEBUG "!PNTS 300",CR    ' Sets the number of data points 
DEBUG "!AMAX 20",CR    ' Sets vertical axis (counts) 
DEBUG "!MAXR",CR     ' Reset after reaching max data points 
 
INPUT 1 
INPUT 2 
PB1 VAR In1 
PB2 VAR In2 
Flag1 VAR bit     ' flag for PB1 
Flag2 VAR bit     ' flag for PB2 
 
COUNTS VAR word    ' word variable to hold count 
Flag1 = 0     ' clear the flags and Counts 
Flag2 = 0 
COUNTS = 0 
 
Loop:  
  PAUSE 50 
  DEBUG "!USRS Total Count = ",DEC Counts,CR    
  ' Display total counts in Status box 
  DEBUG DEC Counts, CR    ' Show counts on analog trace 
  DEBUG IBIN PB1, BIN PB2,CR   ' Plot the digital status. 
 
  IF PB1 = 1 THEN Count_it   ' If pressed, count and display 
  Flag1 = 0     ' If not pressed, reset flag to 0 
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  IF In2 = 0 THEN Clear_it   ' If PB2 is pressed, clear counts to 0 
  Flag2 = 0 
GOTO Loop 
 
Count_it: 
  IF (PB1 = 0) OR (Flag1 = 1) THEN Loop  ' If no longer pressed OR the  
  ' flag is set, skip 
  Counts = Counts +1    ' Increment Counts 
  Flag1 = 1     ' Once Action executes, set Flag to 1  
GOTO Loop 
 
Clear_it: 
  IF(In2 = 1) OR (Flag2 = 1) THEN Loop  ' If no longer pressed,Or the flag is  
      ' set, skip 
   
  Counts = 0      ' Clear counts to 0 
  Flag2 = 1     ' Prevents from clearing it again 
  DEBUG "Counter Cleared. Total Count = ", DEC Counts, CR 
GOTO Loop 
 
 
When PB1 is pressed, the program branches to the Count_it routine. Notice that the first line of this routine 
tests to see if the switch is open or Flag1 is set.  Neither is true upon the first pass through the program. 
Therefore, Counts is incremented, Flag1 is set to 1 and program execution goes back to Loop. If PB1 still is  
being held down, Count_it is run again. This time, however, with Flag1 set, the IF-THEN statement sends 
the program back to Loop without incrementing Counts again. No matter how long the pushbutton is 
pressed, it will only register one “count” upon each closure. Although you are only incrementing the Count 
variable in this program, it could be part of a routine called for in an industrial application.  Figure 2.9 is a 
screen shot that is representative of what you may see when running the program. 
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Figure 2.9:  Running Program 2.4 - Edge Trigger Counting 

 

 
 
 
Programming Challenge 1: The Parking Lot. 
 
Use the indicating LEDs on output Pins 4 and 5, along with the two pushbuttons, to simulate a parking lot 
application. Assume your parking lot can hold 24 cars. Pushbutton PB1 will be counting cars as they enter the 
lot. Pushbutton PB2 will count cars as they leave. Write a program that will keep track of the total cars in the 
parking lot by counting “up” with PB1 and “down” with PB2. Have the green LED on as long as there is a 
vacancy in the lot. Turn the red LED on when the lot is full.  Continually display how many parking spaces are 
available in the User Status window (!USRS). Plot continually the number of cars in the parking lot. 
 
Additional StampPlot Lite Challenge 
 
Keep a file of the number of times your parking lot went from “Vacancy“ to “Full” (see Appendix A and the 
StampPlot Lite help file for information on  using the Save Data to File option). 
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BUTTON Command: PBASIC’s Debouncing Routine 
 
Debouncing switches is a very common programming task. Parallax built into the PBASIC2 instruction set a 
command specifically designed to deal with digital input signal detection. The command is called button.  The 
syntax for the command is shown below. 

 
 
To try it with our counting  routine, load and run program Program 2.5. 
 
' Program 2.5: Button Exercise with StampPlot Interface   
' Use Button to count and display the number of closures of PB1.   
' Reset total count with a closure of PB2.    
  
PAUSE 500 
DEBUG "!TITL Counting Challenge",CR  ' Titles the StampPlot screen 
DEBUG "!TMAX 50",CR    ' Sets the plot time (seconds) 
DEBUG "!PNTS 300",CR    ' Sets the number of data points 
DEBUG "!AMAX 20",CR    ' Sets vertical axis (counts) 
DEBUG "!MAXR",CR     ' Reset after max data points is reached 
 
Wkspace1  VAR  byte    ' Workspace for the BUTTON command for PB1 
Wkspace1 = 0     ' Must clear workspace before using BUTTON 
Wkspace2  VAR  byte    ' Workspace for the BUTTON command for PB2 
Wkspace2 = 0     ' Must clear workspace before using BUTTON 
 
Counts VAR word    ' Word variable to hold count 
Counts = 0 
 
Loop:  
  PAUSE 50 
  BUTTON 1,1,255,0,Wkspace1,1,Count_it  ' Debounced edge trigger detection of PB1  
  BUTTON 2,0,255,0,Wkspace2,1,Clear_it  ' Debounced edge trigger detection of PB2  

PBASIC Command Quick Reference: BUTTON 
 

BUTTON pin, downstate,delay,rate,bytevariable,targetstate, address 
 

• Pin:  (0-15)  The pin number of the input. 
• Downstate: (0 or 1) Specifiying which logical state occurs when the switch is activated.   
• Delay:  (0-255) Establishes a settling period for the switch.  Note: 0 and 255 are special cases.  If delay is 0, Button

performs no debounce or auto-repeat.  If delay is 255, Button performs debounce but no auto-repeat.  
• Rate: (0-255) Specifies the number of cycles between autorepeats.   
• Bytevariable:  The name of  a byte variable needed as a workspace register for the BUTTON instruction. 
• Targetstate:  The state of the pin on which to have a branch occur.   
• Address:  The label to branch to when the conditions are met.    
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  DEBUG "!USRS Total Count = ", DEC Counts, CR   
     ' Display total counts in Status box 
  DEBUG DEC Counts, CR   ' Show counts on analog trace 
  DEBUG IBIN In1, BIN In2, CR  ' Plot the digital status. 
GOTO Loop 
 
Count_it: 
  Counts = Counts +1   ' Increment Counts    
GOTO Loop 
 
Clear_it: 
  Counts = 0     ' Clear counts to 0 
  DEBUG "Counter Cleared. Total Count = ", DEC Counts, CR      
 ' Display in Text Box 
GOTO Loop 
 
 
Review the documentation concerning the BUTTON command in the BASIC Stamp Programming Manual 
Version 1.9. This is a very handy command for industrial applications. Experiment by changing the delay time 
from 50 to 100 and to 200. See if you can press the switch more than one time but only get one Action to 
take place. What would be the risk of allowing for too much settling time in “high speed” counting 
applications? Save this program; it will be modified only slightly for use with the next programming challenge. 
 
Electronic Digital Input Sources 
 
It is very common for digital inputs to come from the outputs of other electronic circuits. These inputs may be 
from a variety of electronic sources, including inductive or capacitive proximity switches, optical switches, 
sensor signal-conditioning circuits, logic gates, and outputs from other microcontrollers, microprocessors, or 
programmable logic control systems.      
 
There are several things to consider when interfacing these sources to the BASIC Stamp. Primarily: “Are they 
electrically compatible?”    
 

1. Is the source’s output signal voltage within the BASIC Stamp input limits? 

2. Is the ground reference of the circuit the same as that of the BASIC Stamp? 

3. Is protection of either circuit from possible electrical failure of the other a concern such that 
isolation may be necessary? 

 
Figure 2.10 shows a variety of electrical interfacing possibilities you may face.   
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Once a compatible signal is established, the next question becomes,  “Is the program able to respond to the 
signal?”    
 

1. Is digital bounce an issue? 

2. How fast is the data?  What is its frequency?  What is the minimum pulse time? 

3. Is action to be taken based on the data’s steady-state level or on its leading or trailing edges?     

 
Techniques to deal with switch bounce and edge triggering that were discussed relative to the manual 
pushbuttons also apply to the electronic switch.   
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Figure 2.10: Input Interfacing of Electronics to the BASIC Stamp 
 

 
 
 

(a) TTL and CMOS logic inputs powered from a +5-volt supply can be applied directly to the BASIC Stamp’s input 
pins. If the two systems are supplied from the same 5 volts, great. If not, at least the grounds must be common 
(connected together).  

(b) Low-voltage (+3 V) devices can be interfaced using a 74HCT03 or similar open-drain gate with a pull-up 
resistor to the BASIC Stamp’s +5-volt supply. Supply the chip with the low-voltage supply and make the 
grounds common.   

(c) Higher-voltage digital signals can be interfaced using a 74HC4050 buffer or 74HC4049 inverter powered at +5 
volts. These devices can safely handle inputs up to 15 volts. Again, the grounds must be common.  

(d) A referenced comparator op-amp configuration can establish a High/Low output based on the analog input 
being above or below the setpoint voltage. The LM358 is an op-amp whose output will go from ground to nearly 
Vdd on a single-ended, +5-volt supply. It will be used in the upcoming application.  

(e) An opto-coupler may be used to interface different voltage levels to the BASIC Stamp. The LED’s resistor holds 
current to a safe level while allowing enough light to saturate the phototransistor. The input circuit can be 
totally isolated from the phototransistor’s BASIC Stamp power supply. This isolation provides effective 
protection of each circuit in case of an electrical failure of the other.   
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Proximity switch? 

Proximity switches detect the presence of an 
object without contacting it.  The switches below 
represent the three main categories:  
 

Inductive, Capacitive, and Optical 

 
Exercise #4: An Electronic Switch 
 
Electronic switches that provide “non-contact” detection are very popular in industrial applications. No 
physical contact for actuation means no moving parts and no electrical contacts to wear out. The pushbutton 
switch used earlier should be good for several thousand presses. However, its return spring eventually will 
fatigue, or its contacts will arc, oxidize, or wear to the point of being unreliable.  
 
Industrial electronic switches operate on one of three principles.   
 

• Inductive proximity switches sense a change in an oscillator’s performance when metal objects are 
brought near it.  Most often the metal objects absorb energy via eddy currents from the oscillator 
causing it to stop.     

• Capacitive proximity switches sense an increase in capacitance when any type of material is brought 
near them.  When the increase becomes enough, it causes the switch’s internal oscillator to start 
oscillating.  Circuitry is then triggered and the output state is switched.   

• Optical switches detect the presence or absence of a narrow light beam, often in the infrared range.  
In retroreflective optical switches, the light beam may be reflected by a moving object into the 
switch’s optical sensor.  Through-beam optical switches are set up such that the object blocks the 
light beam by going between the light source and the receiver.  

 
The output of an electronic switch is a bi-state signal. It’s final 
stage may be any one of the types seen in Figure 2.10. As a 
technician and application developer, you must consider the 
nature of this signal circuit and condition it for the digital 
input of the microcontroller. The manufacturer’s datasheet 
will give you information on the operating voltage for the 
switch and typical load connections.   
 
Although you can think of the BASIC Stamp’s digital input pin 
as the load, the electronic switch may require a reference 
resistor as used earlier in Figure 2.2. Most likely, the output of 
the proximity switch will be very near 0 volts in one state and 
near its supply voltage in the other state. It is always a good 
idea to test the switch’s output states with a voltmeter before 
applying it to the unprotected input of the microcontroller. If 
the output voltages are not within the compatible limits of the 
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BASIC Stamp, you will need to use one of the circuits in Figure 2.10 as an appropriate interface. 
 
The following exercise focuses on the design and application of an optical switch. We will use this switch to 
detect and count objects. Then the switch will be used as a tachometer to determine RPM.  
 
In Figure 2.11, the infrared light-emitting diode (LED) and the infrared phototransistor form a matched 
emitter/detector pair. Light emitted by the LED will result in phototransistor collector current. An increase in 
collector current drives the phototransistor toward saturation (ground). If the light is prevented from striking 
the phototransistor, it goes toward cutoff and the collector voltage increases positively. These conditions of 
light and no-light will most likely not provide a legal TTL signal at the collector of the transistor. Applying this 
signal to the input of a referenced comparator will allow us to establish a setpoint somewhere between the 
two conditions. The output of the comparator will be a compatible TTL logic signal. It’s level is dependant on 
which side of the setpoint the phototransistor’s output is on. The LM358 op-amp is a good choice for this 
application. It can operate on a +5-volt single supply and its output saturation voltages are almost equal to 
the supply potentials of +5 and ground.   
 
Carefully construct the circuit in Figure 2.11 on the Board of Education breadboard. Mounting the devices 
near one end as pictured in the diagram allows for additional circuits in upcoming exercises. Make a 90o bend 
in the LED and phototransistor leads so the devices lie parallel to the the benchtop. The phototransistor and 
infrared LED should be placed next to each other, pointing off the edge of the breadboard.   
 
The LED in Figure 2.11 is emitting a continuous beam of infrared light. With the LED and phototransistor side-
by-side, there is little or no light coming into the phototransistor because there is nothing reflective in front 
of it. If an object is brought toward the pair, some of the LED light will bounce back into the phototransistor. 
When light strikes the phototransistor, the collector current will flow and the collector voltage will drop. In 
this setup, the scattered reflection of light off an object as it passes in front of the pair will be sensed by the 
phototransistor. The amount of reflected light into the sensor depends on the optical reflectivity of the target 
object and the geometry of the light beam. We will attempt to determine the presence of a flat-white object. 
With the emitter and detector mounted side-by-side, you will try for detection of the object at a distance of 
one inch.   
 
You must make a couple of voltage measurements to calibrate the presence of the object. Begin by placing a 
voltmeter across the phototransistor’s collector and emitter. Measure the voltage when there is no object in 
front of the sensor. Record this value in Table 2.3. Next, move a white piece of paper toward and away from 
the pair and notice the variation in voltage. As the paper is brought near the IR pair, the reflected light 
increases collector current and drives the transistor toward saturation –“low.” Record the voltage reading 
with the white paper approximately one inch in front of the sensor in Table 2.3. The difference between these 
measurements may be quite small, like 0.5 V, but that will be enough to trigger the op-amp. This signal is 
applied to the inverting input of the LM358 comparator. The potentiometer provides the non-inverting input 
reference voltage. This reference should be a value between the “no reflection” and “full reflection”  readings.  
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Figure 2.11a and b: Retro-reflective Switch Pictorial and Schematic 
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Adjust the potentiometer to provide the proper reference voltage, which is halfway between the 
measurements.   
  
Testing the output of the LM358 should result in a signal compatible with the BASIC Stamp. The output should 
be low with no object and high when the white object is placed in front of the emitter/detector pair. Measure 
these two output voltages of the LM358 and record the values in Table 2.3. If the output signal is compatible, 
apply it to the BASIC Stamp’s Pin 3. Detecting light reflected by an object is called retro-reflective detection. 
 

 
Table 2.3: LM358 Values 

 
 

Condition 
Phototransitor 

Voltage 
LM358 Output 

Voltage 
No object – no reflection   
Object – full reflection   
Reference voltage setpoint  

 
This ability to yield a switching action based on light received lends itself to many industrial applications such 
as product counting, conveyor control, RPM sensing, and incremental encoding. The following exercise will 
demonstrate a counting operation. You will have to help, though, by using your imagination.   
 
Let’s assume that bottles of milk are being transferred on a conveyor between the filling operation and the 
case packer. Cut a strip of white paper to represent a bottle of milk. Passing it in front of our switch 
represents a bottle going by on the conveyor. Only a slight modification of the previous program is necessary 
to test our new switch. If you have Program 2.5 loaded, simply modify the first button instruction by 
changing the input identifier from Pin 1 to 3. The modified line would look like this:     
 
' Program 2.6 (modification to Program 2.5  
' for the retroreflective switch input) 
 
BUTTON 3,1,255,0,Wkspace1,1,Count_it  
' Debounced edge trigger detection of optical switch  
 
Programming  Challenge #2:  Milk Bottle Case Packer  
 
Refer back to Experiment #1 and consider the conveyor diverter scenario in Figure 1.2. We will assume that 
the controller is counting white milk bottles.  Our retroreflective switch detecor could replace the 
“Detector1” switch in the original figure.  The active high PB1 would toggle the conveyer motor ON and OFF.  
The LED on P4 can indicate that the motor is ON by lighting up.  The LED on P4 is controlling the diverter gate.  
When high the gate is to the right and when low,the gate is to the left.  Your challenge is to start the motor 
with PB1 and count bottles as they pass.  Each sixth bottle, TOGGLE the diverter gate’s position as indicated 
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by the ON and OFF status of the LED on P4.  After a case (4 six-packs) have been diverted t each side, turn off 
the motor.  The process would start over by pressing the pushbutton again. Refer to Flowchart 2.12 to gain an 
understnding of the program flow.   
 

Figure 2.12: Flowchart of Milk Bottle Challenge 
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Exercise #5: Tachometer Input 
 
Monitoring and controlling shaft speed is important in many industrial applications. A tachometer measures 
the number of shaft rotations in a unit of time. The measure is usually expressed in revolutions per minute 
(RPM).   
 
A retroreflective switch can open and close fast enough to count white and black marks printed on a motor’s 
shaft. Counting the number of closures in a known length of time provides enough information to calculate 
RPM. Figure 2.13 represents five possible encoder wheels that could be attached to the end of a motor shaft. 
If the optical switch is aimed at the rotating disk, it will pulse on-off with the alternating segments as they 
pass. The number of white (or black) segments represent the number of switch cycles per revolution of the 
shaft. The first encoder wheel has one white segment and one black segment. During each revolution, the 
white segment would be in front of our switch half the time, resulting in a logic high for half the rotation.   
 
During the half rotation the black segment is in front of the disk, it absorbs the infrared light and with no 
reflected light, the switch will be low. One cycle of on-off occurs each revolution. The PBASIC2 instruction set 
provides a very useful command called COUNT that can be used to count the number of transitions at a digital 
input occuring over a duration of time. Its syntax is shown below. 
 
 
 
 
 
 
 
 
 
 
The following exercise uses the count instruction, the optical switch, and the shaft encoder wheels to capture 
speed data.  
 
Lets begin by cutting out the first encoder wheel. Fold a piece of cellophane tape onto the back of the 
encoder wheel to hold it on the shaft hub of the fan motor (a full-size set of encoder wheels may be pulled 
from Appendix B of this text).  The fan is rated at 12 V. Its speed changes with varying voltages from 12 V 
down to approximately 3.5 V. This is the dropout voltage of the brushless motor control circuitry. Test your 
fan by directly connecting it across the Vdd (+5 volt supply) and then test it across the +Vin (unregulated) 
supply.  Pin 20 of connector X1 provides access to the unregulated supply (Vin). You must observe the poalarity 
on brushless motors.  The red lead is positive (+V) and the black lead is connected to Vss. The fan should be 
located so the encoder wheel is pointed at the emitter/detector pair.  
 

PBASIC Command Quick Reference: COUNT 
 

COUNT pin, period, variable 
 

• Pin:  (0-15) Input pin identifier. 
• Period:(0-65535) Specifies the time in milliseconds during which to count. 
• Variable:  A variable in which the count will be stored. 
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Figure 2.13: Retro-reflective Encoder Wheels 
(cutouts are available in Appendix B) 
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The first encoder wheel has one white and one black segment on it. As it rotates, the opto-switch should cycle 
on-off once for each revolution. Enter the Tachometer Test Program 2.7 below. 
 
' Program 2.7 Tachometer Test - with the StampPlot Interface 
 
' Initialize plotting interface parameters.   
' (Can also be set or changed on the interface)  
DEBUG "!AMAX 8000",CR   ' Full Scale RPM 
DEBUG "!AMIN 0",CR   ' Minimum scaled RPM 
DEBUG "!TMAX 100",CR   ' Maximum time axis 
DEBUG "!TMIN 0",CR   ' Minimum time axis 
DEBUG "!AMUL 1",CR   ' Analog scale multiplier 
DEBUG "!PNTS 600",CR   ' Plot 600 data points  
DEBUG "!PLOT ON",CR   ' Turn plotter on 
DEBUG "!RSET",CR   ' Reset screen 
 
Counts VAR word   ' Variable for results of count  
RPM VAR word    ' Variable for calculated RPM 
Counts = 0    ' Clear Counts 
 
Loop: 
  COUNT 3,1000, Counts   ' Count cycles on pin 3 for 1 second 
  RPM = Counts * 60   ' Scale to RPM    

    ' Send out RPM value to plotter and status bar 
  DEBUG DEC rpm, CR 
  DEBUG "!USRS Present RPM is ", DEC RPM, CR 
GOTO Loop 
 

 
As the fan spins, the cycling of the photo switch will be counted for 1000 milliseconds (one second). With the 
duration of the Counts routine being one second and one cycle occurring with each rotation, we get the 
cycles per second of fan rotation. Most often, the speed of a rotating shaft is described in terms of 
revolutions per minute (RPM). Multiplying the revolutions per second times 60 converts cycles per second to 
RPM.   
   
Run your program. The debug window will first appear with the serial information for configuration and 
display of the StampPlot Lite interface. Close the BASIC Stamp debug window and open StampPlot Lite. Check 
“Connect and Plot Data” and click on “Restart.” Press the Board of Education reset button and your interface 
should start plotting. Figure 2.14 shows a representative screen shot of the interface plotting RPM at various 
motor voltages.   
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Figure 2.14: RPM of the Brushless DC Fan at Varying Voltages 

 

 
 
 
The spinning encoder wheel may result in a slightly different phototransistor peak output for “light” and “no-
light” conditions. If your system is not reporting correctly, change the setpoint by adjusting the potentiometer 
to the new average value. If you have access to an oscilloscope, measure the peak-to-peak output of the 
phototransistor and your potentiometer setpoint being applied to the comparator. Placing the setpoint 
midway between the peak-to-peak DC voltage levels would allow for optimal performance. Notice the 
frequency and wave shape of the signal. An example of the oscilloscope reading is pictured in Figure 2.15.  The 
84.7 Hz equated to a debug readout of  “Counts = 84 RPM = 5040.” The 84.7 Hz measured by the oscilloscope 
reflects an actual RPM of 84.7 x 60 = 5,082. Only 84 complete cycles fell within the one-second capture time 
of our routine.      
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Figure 2.15: Two-Segment Encoder Oscilloscope Trace 

 

 
 
Record your tachometer readout when the maximum voltage is applied to the motor. You can use the Board 
of Education’s Vin (unregulated 9 V) for high speed, or the Vdd (regulated 5 V) for different speeds.  
 

Counts = ___________     RPM = _____________ 
 
When testing your tachometer, notice the effects of slowing the motor with slight pressure from your finger. 
The counts will decrease by factors of one. In the Figure 2.13 example, it would decrease from 83 to 82 to 81, 
etc., and the resulting RPM readings drop by a factor of 60  (4980 to 4920 to 4860, etc.).   
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Because we are counting for one second and we get one cycle per revolution, the program can resolve RPM 
only to within an accuracy of 60. To get a more accurate assessment of RPM, you have a couple of choices: 
increase the time you count cycles, or increase the cycles per revolution.   
 
Let’s try the first choice. Increase the count time in Program 2.7 from 1000 milliseconds to 2000 milliseconds. 
By doing so, you are now reading during a two-second window and RPM would equal {(Counts/2 seconds) x 
60}.  This simplifies to RPM = 30 * Count and the resolution is now to within 30 RPM. In program 2.7, change 
the line RPM = Counts * 60 from the scaling value of 60 to 30. Test your system.    
 
Increasing the count duration time increases the accuracy of the RPM reading. Refer to Table 2.4.    
 

Table 2.4: Given Encoder Frequency of 84.7 Hz 
From the 1 cycle/second Encoder is an RPM of 5082 

 
Duration Counts Scaler RPM Resolution 
1000 mS 84 60 5040 60 RPM 
2000 mS 169 30 5070 30 RPM 
3000 mS 254 20 5080 20 RPM 

60000 mS 5082 1 5082 1 RPM 
   
As you can see, to gain a resolution of one RPM, our count routine had to be one full minute (60,000) in 
duration.   Unless you are very patient, this is unacceptable! In terms of programming, the BASIC Stamp is tied 
up with the COUNT routine for the total duration. During this time, the rest of the program is not being 
serviced.   For this reason, long duration also is not good.    
 
Another method of improving resolution is to increase the number of cycles per revolution. Cut out the 
second encoder wheel and tape it to your fan motor hub. This wheel has two white segments and will produce 
two count cycles per revolution. During a one-second-count duration, this encoder will produce twice as 
many pulses as the first encoder. The RPM calculation line of the code would be RPM = Counts x 60 / 2 
for this encoder, or RPM = Counts x 30. Try it! 
 
The third encoder wheel yields even more resolution by with four cycles per revolution. Tape this encoder to 
your motor’s hub and change the program’s RPM line to RPM = Counts * 15. You may have to vary the 
setpoint potentiometer as you switch from one encoder wheel to another.   
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If you use the six-cycle encoder, what value would you use to scale the Counts to RPM? Fill in your answer in 
Table 2.5. 
 
Figure 2.16 includes oscilloscope traces recorded from using the two-cycle, four-cycle, and six-cycle encoder 
wheels on a shaft rotating at 4,980 RPM. It is the focal properties of the emitter/detector pair that will limit 
the maximum number of segments on the encoder wheel. You may find it difficult to use the six-cycle encoder 
wheels without devising some sort of shielding and/or focusing of the light beam. 
 
 

Figure 2.16: Two-cycle, Four-cycle, and Six-cycle Encoder Wheel Oscilloscope Traces 

 
 
 
The accuracy required of a tachometer system is dependent on the application. Commercial shaft encoders 
are available with resolutions greater than 500 counts per revolution. Fill in the appropriate values in Table 
2.5 for an encoder with a resolution of 360 counts per revolution.    
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Table 2.5: Given a Shaft Speed of 4,980 RPM 

 
Cycles per 
Revolution  

 
Counts

 
Scaler

 
RPM

1 83 60 4,980
2 166 30 4,980
4 312 20 4,980
6 498 ______ 4,980
360 ______ ______ _______

   
 
Challenge #3:  Monitor and Control Motor Speed. 
 
Varying the voltage applied to the small brushless motor varies its speed.  The BASIC Stamp does not have a 
continuous analog output.  The pulse-width modulation (PWM) command allows the BASIC Stamp to generate 
a controllable average analog voltage.   
The syntax of PWM is shown below. 
 
 
 
 
 
 
 
 
 
 
The command PWM 7,190,30 will produce at output pin 7 a series of pulses whose average high time is .75 
(190/255) for a duration of 30 milliseconds. For this time, the average voltage at the pin is .75 * 5 or 3.5 volts.  
To deliver this average voltage throughout the duration of a program loop, a sample and hold circuit must be 
developed.  Figure 2.17 is a sample and hold circuit that will work well for the brushless fan.  Capacitor Chold 
charges during the PWM command to the average voltage.  At the end of the Cycle time, PWM changes the 
direction of the output pin to an input.  This places the pin in a high impedance condition and the charge on 
the capacitor is held due to the high impedance of pin 7, the dielectric of the capacitor, and the input to the 
op amp.  The op amp is set to a gain of 3 by the RF/Rin network (Av = Rf/Rin + 1).  The output of this amplifier 
drives transistor Q1.  It provides current boost for the majority of the load current.  Ideally, a charge could be 
held indefinitely.  Small capacitor leakage currents and op amp bias currents result in slight variations in 

PBASIC Command Quick Reference: PWM 
PWM Pin, Duty, Cycles.   

• Pin: specifies the output pin which is driven. 
• Duty: is a value between 0 and 255 that expresses the average analog output between 0

and 5 volts. 
• Cycles: is a value between 0 and 255 that specifies the duration of the PWM signal in

milliseconds. 
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voltage between PWM commands.  Usually the bias currents dominate and result in a slight rise in voltage 
during this time.   
 
Figure 2.17 is designed around the second op amp in your LM358 package. Carefully add this circuit to your 
tachometer circuit on the Board of Education.  Note that the supply voltage to the op amp is changed to the 9 
volt unregulated supply. This allows this circuit to have a voltage output that will approach 14 volts. Your 
tachometer op amp comparator will also have a higher output. Note: It is imperative that the zener diode in 
Figure 2.11 is in place to clamp the input to P3 at 5 Volts.  Your BASIC Stamp is at risk if voltages exceed 5V.  
 

Figure 2.17: Brushless fan with sample and hold PWM drive. 
 

 
Testing the Sample and Hold  
 
The fan’s electronics requires 4 to 5 volts to operate.  The voltage applied to the fan will be approximately 
equal to: (5V * Duty/255)*3.  According to this equation, voltages from 4 to 12 will be produced by Duty values 
of 70 to 210.  Replace “Duty” with values from this range in the following program.  Use a voltmeter and Table 
2.6 to record the voltage applied to the fan for the values of “Duty” listed.  
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'Program 2.8  Sample and Hold Test  
Loop: 
 
PWM 7, (Duty), 60 
 
PAUSE 500 
 
GOTO Loop 
 
 

Duty Voltage Duty Voltage 
60 160
80 180
100 200
120 220
140 254

 
 
Next, the tachometer Program 2.7 will be modified to include your PWM with the Sample and Hold circuit. 
Recall that this program reported motor RPM by accumulating pulse counts from the encoder wheel over a 
period of 1 second.  Without Sample and Hold, the motor would come to a stop during this one-second off 
period.  Program 2.9 includes these modifications in bold print.  The program will operate the motor at Duty 
Cycle increments between 70 and 210. Each increment will be tested for approximately 5 seconds.  StampPlot 
will report the steps in the status box and plot the RPM continually.  The formula for calculating the expected 
voltage assumes that the circuit is following the transfer function discussed earlier.  You may modify this 
formula to better fit your circuit based on the tests performed in Program 2.8. 
 
Modify program 2.7 as indicated below (additions are shown in bold).  Run the program and record the speed 
voltage characteristics in Table 2.6.    
 
'Program 2.9 (Modified Program 2.7 Tachometer Test - with the StampPlot Interface) 
 
' Initialize plotting interface parameters.   
' (Can also be set or changed on the interface)  
DEBUG "!AMAX 8000",CR   ' Full Scale RPM 
DEBUG "!AMIN 0",CR   ' Minimum scaled RPM 
DEBUG "!TMAX 150",CR   ' Maximum time axis 
DEBUG "!TMIN 0",CR   ' Minimum time axis 
DEBUG "!AMUL 1",CR   ' Analog scale multiplier 
DEBUG "!PNTS 600",CR   ' Plot 600 data points  
DEBUG "!PLOT ON",CR   ' Turn plotter on 
DEBUG "!RSET",CR   ' Reset screen 
 
Counts VAR word   ' Variable for results of count  
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RPM VAR word    ' Variable for calculated RPM 
Counts = 0    ' Clear Counts 
 
OUTPUT 7    ' Declare the PWM pin. 
x VAR word    ' Duty variable 
y VAR byte    ' Interations per Duty value 
Tvolts VAR word 
 
Loop: 
 FOR x = 70 TO 210  ' Duty variable  
 FOR y = 0 TO 5   ' Test a Duty value for 5 seconds  
 
 PWM 7, x, 50   ' Deliver PWM at a Duty of x 
 Tvolts = 50 * x / 255 * 3  ' Calculate voltage in tenths of a volt. 
 
  COUNT 3,1000, Counts   ' Count cycles on pin 3 for 1 second 
  RPM = Counts * 60   ' Scale to RPM    
     ' Send out RPM value to plotter and status bar 
  DEBUG DEC rpm, CR 
  DEBUG "!USRS Duty =  ",DEC x, " RPM is ",DEC RPM," at " ,DEC Tvolts," Tvolts", CR 
 NEXT 
 x = x + 9 
 NEXT 
 END 
GOTO Loop 
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 Duty Voltage RPM 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

 
 
 
StampPlot Lite will plot the speed voltage characteristics of your motor. Use the mouse cursor to read the 
stable RPM at each step on the plot. Summarize the response of the motor to changes in voltage.   
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Questions 
 
1. An industrial device whose output is either one of two possible states is termed ______________. 

 
2. What is the “ideal” resistance of a mechanical switch in the open state? In the closed state? 
 

Open-state resistance = ___________ and, Closed-state resistance = _____________ 
 

3. Explain the purpose of placing a resistance in series with a switch for conditioning a digital input signal.   
 

4. A normally-open pushbutton switch configured in an “active low” state will be read as a logic _______ 
when not being pressed.  
 

5. What is the absolute maximum input voltage to the BASIC Stamp? 
 

6. For some CMOS devices, an input of 1.3 volts is in the ________ area of operation. 
 

7. Low-voltage logic devices operate on ______ volts DC. 
 

8. What type of proximity switch activates only on metal objects? 
 

9. When light strikes the base of a phototransistor, the collector current will __________ and collector to 
emitter voltage will ___________. 
 

10. A car’s six-cylinder engine RPM can be determined by counting the pulses delivered to the ignition coil.  
Six pulses are required for one revolution. If 20 pulses occur in one second, what is the RPM of the 
engine? 

 

 

Questions and Challenge 
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Design it! 
 

1. Draw a diagram of a normally-open pushbutton switch and its “pull-up” resistor.  The diagram should 
be drawn so pressing the switch results in a logic “low” output. 

 
 
 
 
 
 
 
 
 
 

2. Draw a diagram of a normally-closed pushbutton switch and a 10K-ohm series resistor. The diagram 
should be drawn so pressing the switch results in a logic-low output. 
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Analyze it! 
 
1. Consider the two phototransistor circuits below. Which one has an increasing output voltage with 

increases in light level? Why? What is the output voltage of Circuit B if the light level saturates transistor 
Q1? 
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2. The comparator circuit below is used to determine when to turn on and off a dusk-to-dawn security 

lamp. What would be the output status of the comparator during “light” conditions? Would it be better to 
program for detecting the voltage level or the edge triggering of this circuit?  Why?  

 

 
 
3. The retroreflective optical switch below must be interfaced to the Basic Stamp.  Its data sheet specifies 

that it to operates on 10 volts as a “current sink”.   Refer to Figure 2.10 and fill in the appropriate values 
for the +V, +Vdd, and Interface device. 
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Program it! 
 
1. Pretend that your retro-reflective tachometer is providing the input to an anti-lock braking system on an 

automobile. In conjunction with this input, use a pushbutton to model the brake pedal switch. An active 
high LED will represent the braking action. Write a program that will detect the pressing of the brake 
pedal that would slow the vehicle.  Have your program turn on the LED as long as speed is above zero. 
When shaft speed drops to zero, turn off the LED.  Use a potentiometer to set initial motor speed. 
Configure the two pushbutton switches as active-high inputs.  Wire one LED as an active-high output.   
 

2. Write programs to duplicate the operation of an OR, AND, and XOR gate.  
  

OR Gate 
PB1 PB2 LED 
0 0 0 
1 0 1 
0 1 1 
1 1 1 

 
AND Gate 

PB1 PB2 LED 
0 0 0 
1 0 0 
0 1 0 
1 1 1 

 
XOR Gate 

PB1 PB2 LED 
0 0 0 
1 0 1 
0 1 1 
1 1 0 

 



Experiment #2: Digital Input Signal Conditioning 

Industrial Control Version 1.1 • Page 69 

 
Field Activity 
   
How many digital (bi-state) field devices can you identify in a new car? List as many as you can. Make a note as 
to whether you suspect that the field device directly controls load current , drives some sort of relay, or if you 
think its status is being monitored by a microcontroller.    
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he outputs of a microcontroller can be used to control the 
status of output field devices. Output devices are those devices 
that do the work in a process-control application. They deliver 
the energy to the process under control. A few common 
examples include motors, heaters, solenoids, valves, and lamps. 
The low- power output capability of the BASIC Stamp (or any 

microcontroller) prevents it from providing the power required by these loads. With proper signal 
conditioning, the BASIC Stamp can control power transistors, thyristors, and relays. These are the devices 
that can deliver the load current and voltage demands of the field devices. In some applications, you may use 
a BASIC Stamp output to communicate with another microcontroller or electronic circuit. There may be 
compatibility issues of different logic families, separate power supplies, or uncommon grounds that require 
special consideration. The focus of this experiment is to present some of the signal conditioning techniques 
used to interface your BASIC Stamp to output field devices.  
 
Appropriate signal conditioning design begins with a brief look at the characteristics and limitations of the 
BASIC Stamp’s outputs. The output of the BASIC Stamp is considered “standard TTL” level. As we discussed in 
Experiment #2, this means it can switch between logic high of approximately 5 volts or logic low of nearly 0 
volts. According to the BASIC Stamp’s datasheet, each output can sink 25 mA and source 20 mA of current. 
Relating this to the partial diagram in Figure 3.1, notice how the load can be connected. In Figure 3.1a, the 
load is wired from the output pin to ground. When you set an output pin high, five volts appear across the 
load resistor (RL). Load current will flow from ground through the resistor and into the output pin. This is the 
current source mode, and the BASIC Stamp can deliver a maximum of 20 mA to the load.  
 

Figure 3.1: BASIC Stamp Output Pin Current Capability 
 

 
 

Figure 3.1a: Current Source Figure 3.1b: Current Sink 
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Output Capability of Digital Circuits 
The output capability of digital circuits is listed in the manufacturer’s datasheet.  Devices usually can  
“sink” more current than they can “source.”  Some devices do not have the capability to source current 
because the internal path from their output to +V is not present.  You may see this output design 
referred to as a device with an “open collector” output.  

In Figure 3.1b, the load is between the output pin and the +5-volt Vdd supply. Electrons will flow through the 
load now when the BASIC Stamp output pin is set Low (ground). Current will flow out of the output pin and up 
through the load resistor to Vdd. This is the current sinking mode, and the BASIC Stamp can deliver a 
maximum of 25 mA to the load when configured in this manner.     
 

  
 
 
 
 
 
 

Outputs have been used to drive LEDs in previous exercises as pictured in Figure 3.2a. When the BASIC Stamp 
output is low, the diode is forward-biased at approximately one volt, and the remaining four volts, dropped 
across the 220-ohm resistor, limit current flow to approximately 22 mA. The light emitted by the diode gives 
visual indication of the output action. In previous programming challenges, you have assumed that the on-off 
status of an LED represents process action taking place. This is a valid assumption when you consider the 
operation of a solid-state relay (SSR). Figure 3.2b is a schematic representation of the solid-state relay. The 
input circuit (terminals 1-2) is equivalent to Figure 3.2a. The +3 to +24 V DC input identifies a range of control 
voltages. Control voltages must be above the minimum voltage to produce enough LED current for turn-on. 
Exceeding the maximum control voltage may cause damaging amounts of current to flow in the input LED. The 
light generated in the SSR strikes an optically controlled output circuit. The detail of this circuit is not shown, 
but is represented by the normally-open contact symbol. The current and voltage limitations of the output 
are listed in the device’s datasheet and are usually printed on the device itself.   
 
 

Figure 3.2: BASIC Stamp to LED and Solid-State Relay Schematics 
 

 
 

Figure 3.2a: BASIC Stamp to LED  Figure 3.2b: BASIC Stamp to Solid-State Relay 
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Solid-state relays are available in a wide variety of output ranges. They may be designed to drive either AC 
loads or DC loads. The load you are driving defines the minimum specification of the SSR required.   
 
An added benefit of the solid-state relay is electrical isolation. The BASIC Stamp is controlling the load by an 
optically-coupled signal. There is no electrical connection between the microcontroller and the high-power 
load device. Electrical failures of the load, or power line problems such as spikes, are not fed back to the 
BASIC Stamp. The datasheet for the Potter-Brumfield SSR may be found in Appendix C. Refer to this 
datasheet and find the following information. 
 
 Input voltage range:   ____________ 
 Input current requirement @ five volts: ____________ 
 Maximum output load current:   ____________   
 Maximum output load voltage:  ____________ 
 Electrical isolation:    ____________ 
 
A word of caution when selecting and implementing solid-state relays:   
 

1. Do not push the specifications to their limits. Oversize the output capability of your selection by at 
least 20%. 

2. Pay close attention to any heatsink requirements. Maximum load current capability is usually 
dependent upon incorporating a proper heatsink. 

3. The load’s supply source and all wiring and connections must be able to conduct the load’s current. If 
relays are placed on the breadboard for prototyping, be aware that the breadboard traces are rated 
at only 1 amp. 

4. Respect the output circuit voltage. Be sure all connections are solidly secured and correct before 
applying line voltage. There is the risk of electrical shock. Take measures to prevent contact with 
high-voltage potentials. Shield or encase these contacts. Clearly identify high-voltage potentials with 
appropriate labeling.       

5. Some electronic relays will not contain an internal current-limiting resistor on the input. In these 
cases, an external current-limiting resistor must be added in series with the internal LED. The value 
of the resistor is based on your control voltage and the manufacturer’s recommended input current 
specification. 

 
Solid-state relays provide an easy interface for controlling loads in an industrial application. Become familiar 
with the SSR datasheet specifications in order to make the right selection for your application.  
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Exercise #1: Sequential Control 
 
The BASIC Stamp is well suited to perform sequential control operations. Many processes depend on the 
orderly performance of operations. Consider the machining operation pictured in Figure 3.3a.   
 

Figure 3.3a: AutoDrill Sequence Operation 
 

 

 

Exercises 
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Figure 3.3b: Sequential Control 
(outputs are on the left; inputs shown to right) 

 

 
 
 
A conveyor is moving parts through a machining station. When a part is detected in the staging area, the 
conveyor is turned off. After a short pause, the solenoid clamp is activated to hold the part; another short 
pause, and then the drill is brought down to the part. A proximity switch detects proper depth of the hole. 
When the depth switch closes, the “drill down” command is stopped and the drill is retracted. After allowing a 
short time for the drill to retract, the clamp is released and the conveyor is started. This moves the processed 
part out of the staging area, and the conveyor continues until a new part is detected.  Upon detecting another 
part, the sequential process continues.     
 
With proper signal conditioning, the BASIC Stamp can easily control this sequence. For our exercise purposes, 
you are asked to use your imagination to allow LEDs to simulate the SSRs that could control the conveyor, 
clamp, and drill. Two pushbuttons and your two fingers must simulate the part coming into position and the 
drill coming down to proper depth. Construct Figure 3.3b on your Board of Education. For easier 
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identification, use your green LED for the conveyor, your yellow LED for the clamp, and the red LED for the 
drill.   
  
Sequential control lends itself well to flowcharting. The time required to develop your flowchart will be 
quickly saved as you write your program. Compare the flowchart in Figure 3.4 to the description of the 
machining process.         

Figure 3.4: Sequential Control Flowchart 
 

Start

Energize 
Conveyor

Part ?

De-energize 
conveyor

2 Second 
Pause

Close 
Clamp

2 Second 
Pause

Energize drill 
(down)

Drill at 
Depth?

De-energize 
drill (up)

2 Second 
pause

A

A

Yes

No

No
Yes

 
 

 
Program 3.1 follows the flowchart very closely. Study the program; compare its structure to the flowchart. 
Enter the program and try it. Again, you will have to use your imagination to simulate our process.   
 
When the program starts, the green LED will be on. This represents the conveyor starting. To simulate a part 
coming into the staging area, you must press and hold Pushbutton P1. The conveyor LED will instantly turn OFF 
and the yellow LED indicating the Clamp relay will turn on after a one-second delay. After the Clamp has had 
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two seconds to secure the part, the drill will come down toward the part as indicated by the red LED. At this 
time bring another finger down to simulate the drill. Pushbutton P2 represents a proximity switch, which will 
indicate when proper drill depth has been reached. Your “drill” finger pressing P2 will be turned OFF; the red 
LED indicating the drill is retracting. Your finger now coming off of the P2 pushbutton indicates the bit has 
started retracting and two seconds will be allowed for the drill to clear the part. After this delay, the clamp 
will be opened (yellow light OFF) and the conveyor will start again. The part is completed and leaves the 
staging area.  From this point the sequence starts again.  
 
Run the program a few times. Other than the DEBUG report that a part has been completed, there is no need 
for your computer. Unplug the serial cable from the Board of Education and continue to simulate the 
sequential process. The BASIC Stamp could function as the “embedded controller” in this application. Wiring 
the actual field devices to the BASIC Stamp would allow it to continuously repeat the process. 
 
After understanding this sequential process, we will redefine your two inputs and three outputs to simulate 
another operation. You will be challenged to develop the program necessary for this embedded control 
application. 
' W 1 seconds 
'Program 3.1: Sequential Process Control Machining Operation - Embedded 
 
INPUT 1     ' Part detection switch 
INPUT 2     ' Drill depth switch 
OUTPUT 3    ' Conveyor motor relay (green) 
OUTPUT 4    ' Clamp solenoid relay  (yellow) 
OUTPUT 5    ' Drill press relay (red) 
 
Off CON 1    ' Current sink loads 
On  CON 0    ' Negative logic 
 
OUT3 = Off    ' Initialize outputs off 
OUT4 = Off 
OUT5 = Off 
Start: 
  OUT3 = On    ' Conveyor on 
  IF IN1 = 1 THEN Process  ' If pressed, start "Process" 
GOTO Start 
 
Process:    ' The process begins  
  OUT3 = Off    ' Stop conveyor 
  PAUSE 1000 
  OUT4 = On    ' Begin clamping part in place 
  PAUSE 2000    ' Wait 2 seconds to turn drill on 
 
Drill_down:  
  OUT5 = On    ' Turns on drill and drill begins dropping 
  IF IN2 = 1 THEN Pull_drill  ' If drill is deep enough, pull drill 
GOTO Drill_down 
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Pull_drill:        
  OUT5 = OFF    ' Turns off drill and drill retracts 
  IF IN2 = 0 THEN Drill_up  ' Indicates drill is moving up   
GOTO Pull_drill 
 
Drill_up: 
  PAUSE 2000    ' Continue pulling drill up for 2 seconds 
 
Release: 
  OUT4 = Off    ' Open clamp to release part 
  PAUSE 1000    ' Wait 1 second 
  OUT3 = On    ' Conveyor on 
  IF IN1 = 0 THEN Next_part  ' Finished part leaves process area 
GOTO Release 
 
Next_part: 
  PAUSE 1000    ' Wait 1 second 
  DEBUG "Part leaving clamp. Starting next cycle", CR 
GOTO Start 
 
The real beauty of microcontrollers is to have the capability of embedding all of the intelligence necessary to 
perform sophisticated control within the equipment.   
 
There are times, however, that being able to retrieve information from the microcontroller adds to its 
capabilities. The StampPlot Lite interface can be effectively used to monitor the sequential machining process. 
Program 3.2 uses this interface. The machine functions in Program 3.2 are the same as those in the previous 
program. DEBUG commands have been embedded to send data to the StampPlot Lite interface. The program 
plots the status of the digital I/O, reports process steps in the User status bar, and keeps a time-stamped list 
of the total parts produced. Figure 3.5 is a representative screen shot of the sequential process being 
monitored by StampPlot Lite. Load Program 3.2 and run it. Study the StampPlot Lite DEBUG commands that 
have been added to the original program. Become familiar with their use. Graphical user interfaces such as 
this are very useful in the maintenance and data acquisition of embedded control systems. Use StampPlot to 
monitor the Sequential Control Mixing Challenge at the end of this section.    
 
Program 3.2: Sequential Process Control Machining Operation with StampPlot Interface 
 
Pause 500 
DEBUG "!TITL Sequential Process Control Machining Operation", CR  
' StampPlot title 
DEBUG "!TMAX 100", CR   ' Set sweep plot time (seconds) 
DEBUG "!PNTS 500", CR   ' Sets the number of data points 
DEBUG "!AMAX 20",  CR   ' Sets vertical axis (counts) 
DEBUG "!CLRM", CR   ' Clear List Box 
DEBUG "!CLMM", CR   ' Clear Min/Max 
DEBUG "!RSET", CR   ' Reset all plots 
DEBUG "!DELD", CR   ' Delete old data file 
DEBUG "!PLOT ON", CR   ' Turn Plot on   
DEBUG "!TSMP ON", CR   ' Time-stamp part completion 
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DEBUG "!SAVD ON", CR   ' Save data to file 
 
INPUT  1    'Part Detection Switch 
INPUT  2    'Drill Depth Switch 
OUTPUT 3    'Conveyor motor relay (green) 
OUTPUT 4    'Clamp solenoid relay (yellow) 
OUTPUT 5    'Drill press relay    (red) 
   
Off CON 1    'Current sink mode  
ON  CON 0    'Negative logic 
 
OUT3 = Off    ' Initialize outputs off 
OUT4 = Off 
OUT5 = OFF 
 
Parts VAR byte 
Parts = 0 
 
Start: 
  GOSUB Plot_data   ' Plot the status 
  OUT3 = On    ' Conveyor on 
  DEBUG "!USRS Start conveyor",CR ' User status prompt 
  IF IN1 = 1 THEN Process  ' If pressed, start "Process" 
  PAUSE 100 
GOTO START 
 
Process:    ' The process begins  
  GOSUB Plot_data   ' Plot the status 
  OUT3 = Off    ' Stop conveyor 
  DEBUG "!USRS Detected part. Stop conveyor",CR  
     ' User status prompt 
  PAUSE 1000 
 
  GOSUB Plot_data   ' Plot the status 
  OUT4 = On    ' Begin clamping part in place 
  DEBUG "!USRS Clamp part.",CR ' User status prompt 
  GOSUB Plot_data   ' Plot the status 
  PAUSE 2000    ' Wait 2 seconds to turn drill on 
 
Drill_down:  
  GOSUB Plot_data   ' Plot the status 
  OUT5 = ON    ' Turns on drill and drill drops 
  DEBUG "!USRS Drill coming down!",CR ' User status prompt 
  IF IN2 = 1 Then Pull_drill  ' If drill is deep enough, pull drill 
  PAUSE 100 
GOTO Drill_down 
 
Pull_drill:        
  GOSUB Plot_data   ' Plot the status 
  OUT5 = OFF    ' Turns off drill and drill retracts 
  DEBUG "!USRS Stop Drill and Retract",CR  
 ' User status prompt 
  IF IN2 = 0 Then Drill_up ' Indicates drill is moving up   



Experiment #3: Digital Output Signal Conditioning 

Page 80 • Industrial Control Version 1.1 

  PAUSE 100 
GOTO Pull_drill 
 
Drill_up: 
  GOSUB Plot_data    ' Plot the status 
  DEBUG "!USRS Drill coming up!!",CR ' User status prompt 
  PAUSE 2000     ' Pull drill for 2 seconds 
 
Release: 
  GOSUB Plot_data    ' Plot the status 
  OUT4 = Off     ' Open clamp to release part 
  DEBUG "!USRS Clamp released. Conveyor moving.",CR   
      'User status prompt 
  PAUSE 1000     ' Wait 1 seconds 
  OUT3 = On     ' Conveyor on 
  IF IN1 = 0 Then Next_part 
  GOTO Release 
 
Next_part: 
  GOSUB Plot_data    ' Plot the status 
  DEBUG "!USRS Part Complete. Start next cycle",CR  
      ' User status prompt 
  Parts = Parts + 1    ' Parts counter 
  PAUSE 1000     ' Wait 1 seconds 
  DEBUG "Parts completed = ", DEC Parts,CR  
  ' Post parts count in the List Box 
GOTO Start 
 
Plot_data:  
  DEBUG IBIN IN1,BIN IN2,BIN OUT3,BIN OUT4, BIN OUT5,CR  
      'Plot the digital status.  
  DEBUG DEC Parts,CR    'Plot analog count 
RETURN 
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Figure 3.5: Screen Shot of the Sequential Machining Process using StampPlot Lite 
 

 
 

Note that the traces appear from top to bottom in the order which they were listed in the Debug digital plot 
command. Therefore, the top two traces are of the active high pushbuttons IN1 (product in position) and 
IN2 (depth switch). The next three traces are outputs OUT3 (conveyor), OUT4 (clamp), and OUT5 (drill). 
Remember that the outputs are wired in the current sink mode. A High is OFF and a Low is ON. 
  
Notice that in the initial setting for the StampPlot Lite interface, “Save data to file” (!SAVD) is ON. During the 
production run, the data at each sample point is saved into a text file, stampdat.txt. The data includes the time 
of day and program time that the sample was taken, the sample number, and the analog and digital values at 
the time of each sample. The data are comma delimited (separated by commas), and therefore, ready to be 
brought into a variety of spreadsheet or database software packages. Once the data is in the package, it is 
available for analysis and manipulation. Figure 3.6 represents a portion of the production run data, as it would 
appear in a Microsoft Excel spreadsheet. The complete file contains 500 samples (rows of data).  Figure 3.7 is 
an Excel graph constructed from the data file.   
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Figure 3.6: Sequential Control Production Run (samples only) 
 

Time of Day Run Time
Sample 
number

Units 
Completed

Sample 
number

Digital 
Status

11:46:50 AM 0.21 1 1 1 111
11:46:50 AM 0.21 2 2 2 11
11:46:50 AM 0.21 3 3 3 11
11:46:50 AM 0.21 4 4 4 11
11:46:50 AM 0.27 5 5 5 11
11:46:50 AM 0.27 6 6 6 11
11:46:50 AM 0.27 7 7 7 11
11:46:50 AM 0.27 8 8 8 11
11:46:50 AM 0.27 9 9 9 11
11:46:50 AM 0.27 10 10 10 11
11:46:50 AM 0.32 11 11 11 11
11:46:50 AM 0.32 12 12 12 11
11:46:51 AM 0.43 13 13 13 11
11:46:51 AM 0.50 14 14 14 11
11:46:51 AM 0.71 15 15 15 11
11:46:51 AM 0.98 16 16 16 11
11:46:51 AM 1.26 17 17 17 11
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Figure 3.7: Graph of Sequential Control Production Run  
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Programming Challenge: Sequential Mixing Operation 
 
A mixing sequence is pictured in Figure 3.8. In this process, an operator momentarily presses a switch to open 
a valve and begin filling a vat. A mechanical float rises with the liquid level and closes a switch when the vat is 
full. At this time, the “fill” solenoid is turned off, and a mixer blends the vat contents for 15 seconds. After the 
mixing period, a solenoid at the bottom of the vat is opened to empty the tank. The mechanical float lowers, 
opening its switch when the vat is empty. At this point, the “empty” solenoid is turned off and the valve closes. 
The process is ready for the operator to start another batch. 
 

Figure 3.8: Mixing Sequential Control Process 
 

 
 
 
Assign the following to the BASIC Stamp inputs and outputs to simulate the operation.  
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 Operator pushbutton  Input P1  (N.O. active high) 
 Float switch  Input P2  (N.O. active high) 
 Fill Solenoid  Output P13 (red LED) 
 Mix Solenoid  Output P14 (yellow LED) 
 Empty Solenoid   Output P15 (green LED) 
 
Construct a flowchart and program the operation. 
 
 
Exercise #2: Current Boosting the BASIC Stamp 
 
The BASIC Stamp’s output current and/or voltage capability can be increased with the addition of an output 
transistor. Either the bipolar transistor shown in Figure 3.9a or the power MOSFET transistor in Figure 3.9b 
can be effective when loads need more power than the BASIC Stamp’s output can deliver. Understanding each 
of these circuits will be important in future industrial applications.   
 
For this exercise, and upcoming experiments, we have two loads that we wish to drive in this manner. They 
are a brushless DC fan and a 47-ohm, half-watt resistor. The brushless fan specifications include a full line 
voltage of +12 V and line current of 100 mA. The resistor will draw approximately 190 mA when powered by 
the +9 V Vin power supply.  
 
Let’s consider the design of the biplar transistor for driving the 47-ohm resistor.  The circuit values should be 
designed such that a high (+5V) output of the BASIC Stamp drives Q1 into saturation without drawing more 
current than the BASIC Stamp can source.   
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Figure 3.9: Current Boost Transistor Driver Circuits 
 

  
 

 
Circuit component values stem from the load current and voltage requirements. The process of determining 
minimum component values is as follows: Since Q1 acts as an open collector current sink to the load, the 
load’s supply voltage is not limited to the BASIC Stamp’s +5-volt supply. If separate supplies are used, 
however, their common ground lines must be connected. When Q1 is driven into saturation, virtually all of the 
supply voltage will be dropped across the load and the load current will be equal to Vsupply/Rload. Q1’s maximum 
collector current capability must be higher than this load current. The Q1 base current required to yield the 
collector current may be calculated by dividing the load current by the “beta” of Q1. IB = IC/bQ1. Given a 20 mA 
maximum BASIC Stamp output current, a minimum transistor beta may be calculated by rearranging this 
formula.  bQ1(min) = IC/IB. Where IB is the 20 mA maximum BASIC Stamp drive current.   
 
A transistor must be chosen that meets, and preferably exceeds, these minimum requirements. Exceeding the 
minimum values by 50 to 100% or more would be best. Once the transistor is chosen, an appropriate base-
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limiting resistor value can be determined. This value must allow more base current than that defined by IC/bQ1, 

yet less than the 20 mA BASIC Stamp limit. The voltage drop across Rlimit is equal to the +5 V BASIC Stamp 
output minus the PN junction drop of Q1 (approximately +5V-.7V, or 4.3V).        
 
Following the procedure outlined above, the transistor must handle collector currents of at least 190 mA and 
have a beta specification greater than 10. Figures 3.9c represents a 2N3904 as Q1. Specifications for the 
2N3904 include a collector current capability of 300 mA and a minimum Beta of 75. Added features to the 
selection of this transistor include that it is very common, it is inexpensive, and it can deliver the load current 
without need of a heat sink. Rlimit values were selected based on minimum beta specifications and a desire to 
keep the BASIC Stamp output current demand well below 20 mA. This 1K-ohm resistor allows approximately 5 
mA of base current, which ensures saturation.  
 
Construct the transistor-driver circuits in Figure 3.9c on your Board of Education.  
 
Next, consider the power MOSFET drive circuit in Figure 3.9b. The MOSFET is driven into saturation by applying 
gate voltage.  A positive five volts from the BASIC Stamp’s output is sufficient to place the MOSFET in an “ON” 
state. When the device is fully saturated, its ON-state resistance (rson) is typically less than 1 ohm.  Applying a 
low (0V) to the gate places the device in cutoff.  In this state there is virtually no load current and the MOSFET 
acts as an open switch.   
 
The power MOSFET is very easy to drive with the BASIC Stamp. A metal oxide (MOS) layer between the source 
and the gate acts as a very good insulator. The extremely high input impedance provided by this MOS layer 
means that no gate current is required to control this device.  Since no current is required to drive the gate, a 
single output from the BASIC Stamp can control multiple MOSFETs.   
 
With proper heatsinking, the BS170 can handle load currents up to 5 amps. These features make the power 
MOSFET very easy to apply in industrial applications such as driving relays, solenoids and small DC motors.  It 
should be noted that these types of loads are inductive.  When switching off the load, this inductance can 
produce a reverse voltage transient that may be damaging to the MOSFET. The diode D1 provides protection 
for the transistor when driving inductive loads such as these. This diode is not necessary for the small 
brushless motor used in our experiments. Construct the circuit in Figure 3.9d.       
 
Note:  Power MOSFETs, like their CMOS cousins, are suseptable to damage from static discharge and reverse 
voltage transients. Care should be taken when handling and installing the device. Hold the device by its body, 
avoid touching its leads, and be sure that the work surface and soldering equipment is properly grounded.    
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Test the current-boost drive circuits using the following code.  The Debug window will prompt you to make 
voltage measurements across the transistors and their loads at the proper times.    
  
'Program 3.3: Current-boost for the fan and heater. 
 
Output 7   ' Output for Fan drive 
Output 8   ' Output for Heater drive 
 
Loop: 
 
OUT7 = 0 
OUT8 = 0 
DEBUG "Fan and Heater OFF - Measure the unloaded Vin voltage source.",CR 
PAUSE 10000  
OUT7 = 1 
DEBUG "Fan ON – Measure the voltage across the fan.", CR  
PAUSE 10000 
DEBUG "Fan ON – Measure the saturation voltage across the MOSFET.", CR  
PAUSE 10000 
OUT7 = 0 
DEBUG "Fan OFF",CR 
PAUSE 2000 
 
OUT8 = 1 
DEBUG "Heater ON – Measure the voltage across the 47-ohm resistor", CR  
PAUSE 10000 
DEBUG "Heater ON – Measure the saturation voltage across the Bipolar.", CR  
PAUSE 10000 
OUT8 = 0 
DEBUG "Heater Off",CR 
PAUSE 2000 
 
GOTO Loop 
 
Record the voltage readings in Table 3.1. 
 

Table 3.1 Transistor Current Boost 
Condition On-state    load 

voltage 
On-state saturation 

voltage 
Off-state cutoff 

voltage 
Bipolar     Fig. 3.9c    
MOSFET      Fig. 3.9d    
 
The fan will be running at full speed, and the resistor will be warming up due to the current flowing through it.  
Saturation voltages should less than 300 mV.  The line voltage Vin is provided by the unregulated 9-volt 300 
mA supply.  Off-state voltage may measure as high as 14 volts.  When the loads are energized, this voltage will 
drop to around 9 volts.     
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In the next experiment, we will use the resistor to simulate a heating element. The fan will simulate a process 
disturbance that cools the heater. Our objective will be to investigate various types of control to maintain a 
constant temperature. Leave these circuits constructed on your Board of Education. 
 
Before we leave this exercise, it is worth mentioning some other interfacing challenges that you may be 
confronted with as a designer. Consider the circuits in Figure 3.10.     
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Figure 3.10: BASIC Stamp Output Interfacing 

 

 
 
 

(a) The opto-coupler can be used to interface different voltages and to electrically isolate an output from the 
microcontroller circuit in Figure 3.10a.  

(b) Figure 3.10b can be used to interface to HCMOS or 4000-series CMOS devices. The 74HC4050 can be operated 
on low voltages, allowing interfacing to +3-volt logic. 

(c) There is a large variety of peripheral driver chips available.  The 75452 driver depicted in Figure 3.10c can sink 
up to 300 mA of load current. Its open-collector output allows for loads up to 30 volts.     

(d) Figure 3.10d includes the 74LS26 NAND gate. This is one of a family of open-collector gates.  With the 10K-ohm 
pull-up resistor referenced to the next circuit stage, the BASIC Stamp can be interfaced to higher-voltage 
CMOS circuits.       
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Questions 
 
1. Output field devices are those devices that do the ________ in a process control application. 
 
2. Field devices usually require more power than the BASIC Stamp can deliver. List three power interface 

devices that can control high-power circuits and be turned on and off by the BASIC Stamp. 
a. ________________ 
b. ________________ 
c. ________________ 

 
3. The BASIC Stamp output is acting as a current sink when the load it is driving is connected between the 

output pin and ____________. 
 
4. The BASIC Stamp can source __________mA per output. 
 
5. Electronic and electromagnetic relays offer a level of protection to the microcontroller because they 

provide electrical _____________ between the BASIC Stamp and the power devices. 
 
6. The input circuit of an SSR is usually an __________ ,which provides light that optically triggers an 

output device. 
 
7. The current rating of an SSR should be oversized by at least _______ percent of the continuous load 

current demand. 
 
8. Maximum continuous current ratings of solid-state relays usually involve applying a ____________ for 

proper heat dissipation.    
 
9. ______________ control involves the orderly performance of process operations.   
 
10. When the output current from the BASIC Stamp is not sufficient to turn on the control device, an output 

______________ may be used for current boosting. 
 
 

 

Questions and Challenges 
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11. If a transistor has a Beta of 150, a BS2 must deliver _______ milliamps of base current to drive a 600 mA 

load. 
 
12. When a power MOSFET is saturated, its Drain to Source resistance is given as a specification termed 

_______.  
 
 
13. The contacts of an electromagnetic relay are shown in schematics in the “normal” position.  Normal 

means the relay’s coil is ___________ energized. 
 
14. The “contacts” of an AC solid-state relay are actually the main terminals of a TRIAC.  These contacts would 

be depicted in a schematic as being normally __________.  
 
  
Design It! 
 
1. Given the figure below, solve for the maximum value of the base limiting resistor (Rlimit) that would allow 

the 440 mA of coil current to flow when the BASIC Stamp output Pin 12 is high.   
 

 
 

2. To ensure deep saturation of  transistor Q1, the value of Rlimit should be ____________ than this value.    
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3.   The internal connection diagram of the SHARP S101S05V solid-state relay is given below.  Notice that its 

input circuit is just an LED. The datasheet specifies that the LED has a forward voltage drop of 1.2 volts 
and that 15 mA through the LED will turn on the relay. Use the following components to complete the 
diagram for controlling the SSR with Pin 14 of the BASIC Stamp. Configure it as a current sink. Calculate 
the proper value of Rlimit. Draw the lamp and 120 VAC source as they would be connected to the SSR 
outputs. 
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Analyze it! 
 
1. Consider circuits A and B below.  Write a line of BASIC Stamp code that will result in turning the lamp ON 

for each. 
 
 Circuit A _____________________________. Circuit B __________________________. 

 
 

 



Experiment #3: Digital Output Signal Conditioning 

Industrial Control Version 1.1 • Page 95 

 
2. Study the three figures shown below. Would you write a logic High or a logic Low to the BASIC Stamp 

output to yield a 12-volt Vout value? 
 
 Circuit A _______________ 
 
 Circuit B _______________ 
 
 Circuit C _______________ 
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Program it! 
 
1. Given the input and outputs pictured back in Figure 3.3b, write a sequential program that will do the 

following: 
 
 Momentarily pressing P1 will cause P3 to turn ON for three seconds and then go OFF. Pressing P1 a 

second time will cause P4 to come ON for three seconds and then go OFF.  When P4 goes OFF, P5 will 
come ON until P2 is pressed.   

 
 
2. Try this one.  Using the same I/O, write a program that will do the following: 
 
 Press and hold P1 and P3 goes ON.  Holding P1 and pressing P2 causes P3 to go OFF and P4 to come ON.  

Releasing P1 while continuing to hold P2 turns OFF P4 and ON P5.  And lastly, releasing P2 will turn all 
three outputs ON for three seconds, then all OFF, and the process is set to repeat.   
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Continuous process control involves maintaining desired 
process conditions. Heating or cooling objects to a certain 
temperature, holding a constant pressure in a steam pipe, or 
setting a flow rate of material into a vat in order maintain a 
constant liquid level, are examples of continuous process 
control. The condition we desire to control is termed the 

“process variable.” Temperature, pressure, flow rate, and liquid level are the process variables in these 
examples. Industrial output devices are the control elements. Motors, valves, heaters, pumps, and solenoids 
are examples of devices used to control the energy determining the outcome of the processes.    
 
The control action taken is based on the dynamic relationship between the output device’s setting and its 
effect on the process. Generally speaking, process control can be classified into two types: open loop and 
closed-loop. Closed-loop control involves determining the output device’s setting based on measurement and 
evaluation during the process. In open-loop control, no automatic check is made to see whether corrective 
action is necessary.   
 
A simple example of open-loop control would be cooling your bedroom on a hot summer evening. Your 
choices are using a window fan or an air conditioner. The window fan is a device that you set – low, medium, 
or high speed – based on your evaluation of what the situation needs for control. This evaluation involves an 
understanding of what the cause-and-effect relationship is of your speed setting vs. the room conditions. 
There is also an element of prediction involved. Once you make the setting decision, you are in for the night. 
You are setting up an open-loop control system. If your evaluations are correct, you will have a great night’s 
sleep. If they are not, you may wake up shivering and cold or sweaty and hot! On the other hand, a room air 
conditioner allows you to set a certain desired temperature. A thermostat continuously compares the desired 
temperature with a measurement of actual room temperature. When room temperature is over the desired 
setpoint, the air conditioner is turned on. As the room cools below the setpoint, the air conditioner is turned 
off. As the night goes on and the outside temperature cools down, this closed-loop system will automatically 
spend less time on than off. This is an example of closed-loop feedback control, because the action is taken 
based on measurement of room temperature. 
  
Which is better? Arguably, some people prefer air conditioning to a fan, but others do not. If the objective is 
to maintain a comfortable sleeping temperature, they both have their advantages. In terms of industrial 
control, the lower cost and simplicity of setting the window fan in an open-loop mode is very attractive. On 
the other hand, the automatic control of the closed-loop air conditioner ensures a more consistent bedroom 
temperature as the outside temperature changes.   

 

Experiment #4: 
Continuous Process 
Control 
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Determining the best control action for an application and designing the system to provide this action is what 
the field of process control engineering is all about.   
 
Microcontrollers have proven to be a dependable, cost-effective means of adding a level of sophistication to 
the simplest of control schemes. The next three exercises will focus on the characteristics of various methods 
of continuous control. We will develop an environment in which we can model process control, get process 
variable data into the BASIC Stamp, and study open-loop control principles. The first two exercises will take a 
little time and effort, but will be worthwhile, because the setup and circuitry will be used again for 
Experiments #5 and #6.   
 
Temperature is by far the most common process variable that you will encounter. From controlling the 
temperature of molten metal in a foundry to controlling liquid nitrogen in a cryogenics lab, the measurement, 
evaluation, and control of temperature are critical to industry. The objective of this exercise is to show 
principles of microcontroller-based process control and enlighten you about interfacing the controller to 
real-world I/O devices. The exercises are restricted to circuits that fit on the Board of Education and to 
output devices that can be driven by its 9-volt, 300-mA power supply. As you monitor and control the 
temperature of a small environment, realize that, through proper signal conditioning, the applications for 
which you can apply the BASIC Stamp are limitless.     
 

 
 
 
 
 
 

Exercise #1: Closed-Loop, On-Off Control 
 
To set up our small environment, you will need the following parts: 
   

• 35 mm plastic film container 
• 47-ohm, half-watt carbon resistor with leads 
• LM34DZ integrated circuit temperature sensor with leads 
• Electrical tape  

 

 

Exercises 
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You will put the 47-ohm resistor and the temperature sensor inside the 35-mm film canister.  Leads from 
these devices will come back to the Board of Education. Placing the cap on the canister creates a closed 
environment. High current through the resistor will heat the environment, and the sensor will convert 
temperature to an analog voltage. A current-boost transistor from Experiment #3 will drive the 
resistor/heater, and you will add an analog-to-digital converter to get binary temperature information into 
the BASIC Stamp. Figure 4.1 depicts this construction step. Follow the procedures on the next page to 
construct the canister environment and signal-conditioning circuitry. 

 
 

Figure 4.1: Film Canister Heated Environment 
 

 

 



Experiment #4: Continuous Process Control 

Page 100 • Industrial Control Version 1.1 

 
Preliminary Preparation 
 
The 35-mm film canister has two holes drilled in it. The sensor and the “heater” will be placed into these 
holes. 
  
In the last exercise, we controlled the on-off status of a 47-ohm resistor acting as a heating element. The 
current-boost transistor acts as a switch, controlling the unregulated 9-volt supply to the resistor. As you 
should have seen, when the transistor turned on, the 9-volt supply was placed across the resistor and it 
became quite warm, since the power consumed was P = V2/R= 92/47, or 1.7 watts! This is beyond the 
resistor’s half-watt rating, but we are using it as a heater. It may become discolored, but should be all right 
otherwise.  
 
Place the resistor through the lower hole in the canister. Bend the leads and tape them down to the outside 
of the canister so the resistor is suspended in the middle of the canister.   
 
The LM34 probe will be used to measure the temperature of our system.  The LM34 is an excellent sensor in 
terms of its linearity, cost, and simplicity. The sensor’s output voltage changes 10 mV per degree Fahrenheit 
and is referenced at 0 degrees. With a DC power supply and a voltmeter, you have a ready-made Fahrenheit 
temperature sensor.  
 
Refer to Figure 4.2 and the device’s datasheet in Appendix D. 
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Figure 4.2: LM34 Temperature Probe 

 

 
 

 
Test your temperature probe by connecting your probe to the +5-volt Vdd supply and ground. Use your 
voltmeter to monitor the LM34 output voltage of .01 volts per degree F. Simply move the decimal of the 
meter reading two places to the right to convert to temperature. For example; .75 V = 75 oF;  .825 V = 82.5 oF;  
1.05 V = 105 oF, etc.  Then, try this: 
 

• Measure and record the room temperature.   
• Hold the device between your fingers and watch the temperature rise.  
• Hold it until the temperature becomes stable.  How hot are your fingertips?    
• The LM34 can measure temperatures up to 300 degrees. Briefly wave a flame under it and monitor 

higher temperatures.   
  
Now, insert the sensor through the top hole of the film canister. Bend and tape its leads to the canister so the 
sensor is suspended inside. Cap your canister, and your model environment is complete. Keep in mind that 
although our laboratory setup is small and low power, it could represent controlling the temperature of a 
large kiln, a brewing vat, or an HVAC system. Appropriate output signal conditioning identified in Experiment 
#3 can allow the BASIC Stamp to control almost any industrial device.  
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Next, let’s turn our attention to the Board of Education and set up the circuitry necessary for the experiment. 
Figure 4.3 represents the four circuits used in the exercises. All four circuits can fit on the Board of Education; 
you just have to be efficient with your use of the space. Figure 4.3a is a simple active-high pushbutton switch. 
It will be used to toggle the heater on and off. The output drive circuit depicted in Figure 4.3b also is very 
simple. Your board will contain the current-boost transistor (from Experiment 3) to drive the heater. Notice 
that an LED and current-limiting resistor have been added to indicate the status of this drive circuit. Note also 
that this circuit goes to the +5 Vdd supply, not the 9-volt unregulated supply.  
 
Since the BASIC Stamp microcontroller does not have analog input capability, we must add an analog-to-
digital converter to change the analog output of the LM34 temperature sensor to digital data. A one-step 
solution to signal conditioning is to use the serial analog-to-digital converter shown in Figure 4.3c.  National’s 
ADC0831 is a suitable A/D converter for our application, and will prove to be a very useful device for this and 
future applications. It’s worth a moment at this point to look at the device’s features and limitations.  
 
This converter will take an input voltage and convert it to 8-bit digital data with a range of 256 possible binary 

representations. Potentiometers can be used to externally set the analog voltage range spanned by the 0 to 
25510 digital output capability of the ADC0831. The voltage at Vin(-) Pin 3 sets the zero value. The Vref voltage 
at Pin 5 sets the voltage span above Vin(-) over which the resolution of 255 is spread.  Setting Vin(-) to .7 will 

reference the span of coverage at 70 degrees.  Vref set to .5 volts results in a span of coverage of 50 degrees.  
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Figure 4.3: Process Control Circuitry 
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These voltages are used to focus the range of the A/D device to cover the analog voltage being converted. The 
application will operate from room temperature (70o) up to 120 oF. This temperature range equates to an 
LM34 voltage output of .70V to 1.20V. To maximize resolution, the span of interest is .5 V (1.2V-.7v); and the 
zero reference, termed the offset, is .7 V. Since we focus on just this range, each binary step represents 
approximately 0.2 degrees. This allows us to accurately resolve the temperature.   
 
Construct the A/D converter circuit on the Board of Education. By using multi-turn trim potentiometers, the 
reference and span voltage levels can be set very accurately. Carefully measure and adjust these potentials.   
Attach the output of the LM34 to the input of the A/D converter.   
 
Controlling the ADC0831 is relatively simple. A program control line tells the device to make a conversion. 
Once a conversion has been performed, the binary value can be output one bit at a time to the BASIC Stamp. 
The serial flow of data from the converter is controlled by output pins of the BASIC Stamp driving the “chip 
select” and “clock” lines. The chip select line (CS) is set low, followed by a low-to-high clock pulse.  This starts 
the conversion. Subsequent clock pulses initiate the transfer of each binary bit starting with the most 
significant bit first. Parallax provides a convenient instruction, called SHIFTIN, specifically designed for 
controlling synchronous serial communication.  Once the binary data is clocked into the BASIC Stamp, it is 
converted to temperature, based on the zero and spanning values. (The use of the ADC0831 is detailed in the 
Parallax Basic Analog and Digital text, which can be used as a further reference to this section.)  
 
Program 4.1 has been written to test your converter and driver circuits, and exercise the StampPlot Lite 
Interface. The first section of the program configures StampPlot Lite. A section that establishes variables and 
constants follows this.  The program is designed for the circuit of Figure 4.3. Double-check the proper 
connections to I/O Pins 1,3,4,5 and 8. Accurately set the Zero and Span voltages of the ADC0831 to .7 and .5, 
respectively.   
 
Load the program. Running the program will result in the DEBUG window opening and scrolling values and 
messages to the screen. Close the DEBUG window and open the StampPlot Lite Interface. At this point, select 
the appropriate COM port and check “Connect.” Momentarily press the “Reset” button on the BASIC Stamp 
Board of Education to load the configuration and begin plotting the data. The user-status box will report the 
current temperature and the output of the A/D converter’s binary and decimal values. The temperature and 
status of the heater will be plotted on the interface. Pressing PB1 will TOGGLE the heater ON and OFF.  (Feel 
free to omit the comments from this code, if you wish). 
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'Program 4.1: Analog-to-Digital & ON-OFF test with StampPlot Interface 
 
'Pushbutton P1 toggles the heater fully ON and OFF.  It then establishes  
'constants and variables used to acquire data from the ADC0831 serial A-to-D.  'StampPlot is 
used to graphically display results.  Program assumes that the 'circuitry is set according to 
Figure 4.3. ADC0831: "chip select" CS = P3, "clock" 'Clk=P4, & serial 'data output"Dout=P5.  
‘Zero and Span pins: Digital 0 = Vin(-) = '.70V and Span = Vref = .50V.   
 
 
'Configure Plot 
Pause 500    ' Allow buffer to clear 
DEBUG "!RSET",CR    ' Reset plot to clear data  
DEBUG "!TITL HEATER CONTROL SAMPLE",CR 'Caption form 
DEBUG "!PNTS 6000",CR    ' 6000 sample data points 
DEBUG "!TMAX 600",CR    ' Max 600 seconds 
DEBUG "!SPAN 70,120",CR   ' 70-120 degrees 
DEBUG "!AMUL .1",CR    ' Multiply data by .1 
DEBUG "!DELD",CR    ' Delete Data File 
DEBUG "!SAVD ON",CR    ' Save Data 
DEBUG "!TSMP ON",CR    ' Time Stamp On 
DEBUG "!CLMM",CR    ' Clear Min/Max 
DEBUG "!CLRM",CR    ' Clear Messages 
Debug "PLOT ON”,CR   ' Start Plotting 
DEBUG "!RSET",CR    ' Reset plot to time 0 
 
' Define constants & variables 
      
CS CON 3    ' 0831 chip select active low from BS2 (P3)  
CLK CON 4    ' Clock pulse from BS2 (P4) to 0831  
Dout CON 5    ' Serial data output from 0831 to BS2 (P5) 
Datain VAR byte   ' Variable to hold incoming number (0 to 255)  
Temp VAR word    ' Hold the converted value representing temp 
 
TempSpan VAR word   ' Full Scale input span in tenths of degrees.   
TempSpan = 5000   ' Declare span.  Set Vref to .50V and   
     ' 0 to 255 res. will be spread over 50  
     ' (hundredths).  
 
Offset VAR word   ' Minimum temp.  @Offset, ADC = 0 
Offset = 700  
     ' Declare zero Temp.  Set Vin(-) to .7 and  
     ' Offset will be 700 tenths degrees.  At these  
     ' settings, ADC output will be 0-255 for temps  
     ' of 700 to 1200 tenths of degrees.  
 
Wkspace1  VAR  byte   ' Workspace for the PB1's BUTTON command  
Wkspace1 = 0    ' Clear the workspace before using BUTTON 
LOW 8     ' Initialize heater OFF 
 
Main:       
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  GOSUB Getdata 
  GOSUB Calc_Temp 
  GOSUB Control 
  GOSUB Display 
  GOTO Main 
 
Getdata:     ' Acquire conversion from 0831 
  LOW CS     ' Select the chip  
  LOW CLK     ' Ready the clock line.  
  PULSOUT CLK,10    ' Send a 10 uS clock pulse to the 0831 
  SHIFTIN Dout, CLK, MSBPOST,[Datain\8]  ' Shift in data  
  HIGH CS     ' Stop conversion   
RETURN     
 
Calc_Temp:     ' Convert digital value to  
  Temp = TempSpan/255 * Datain/10 + Offset ' temp based on Span &  
RETURN      ' Offset variables.  
 
Control:     ' Manual heater control 
  BUTTON 1,1,255,0,Wkspace1,1,Toggle_it   
RETURN 
 
Toggle_it: 
  TOGGLE 8 
RETURN 
 
Display:     ' Plot Temp, binary ADC, & Temp status 
  DEBUG DEC Temp,CR       
  DEBUG IBIN OUT8,CR       
  DEBUG "!USRS Temperature = ", DEC Temp,"   ADC Data in = %", BIN Datain,  "    Decimal", 
DEC Datain, CR  
RETURN 
 
The StampPlot Lite interface will give you a dynamic representation of temperature changes in your canister.  
Toggle the heater ON and OFF and watch the response. The screen shot in Figure 4.4 represents the closed 
canister heating to 120 degrees and then cooling after the heater is turned off. Play with your system to 
become more familiar with its response; then, let’s take a little closer look at the subroutines that make up 
the program.    
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Figure 4.4: Screen Shot Using Program 4.1  
 

 
 
 
The main loop of this program simply executes three subroutines, Getdata, Calc_Temp, and Display. When 
running, the BASIC Stamp jumps back to the Getdata subroutine first. The last line of this routine instructs 
the processor to RETURN to the main loop and executes the next instruction, GOSUB Calc_Temp.  The 
Calc_Temp subroutine executes, and it ends with a return. The BASIC Stamp returns to GOSUB_Display. 
After Display executes, its RETURN goes back to the instruction of GOTO Main and the process starts over. 
This is an organized approach to structuring our program. Later, when we include evaluation and control in 
our program, we simply add another subroutine, such as GOSUB_Control.   
 
Let’s take a closer look at the two primary subroutines of program 4.1.  The Getdata subroutine begins with 
a high-to-low transition on the “chip select” line. This readies the A/D for operation.   
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The LOW CLK and pulsout CLK,10 instructions tell the A/D converter to make a conversion of the Vin(+) 
voltage at this time. The ADC0831 is an 8-bit successive approximation converter. It’s 256 possible digital 
combinations are spread over a voltage range determined by the potentials at the V in(-) and Vref pins.  Vin(-) 
defines the voltage for which 0000 0000 would be the conversion. Vref defines the range of input voltages 
above this point over which the other 255 digital combinations are spread. Figure 4.5 represents the Zero and 
Span settings for our application.   
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Figure 4.5: Zero and Span Settings for Our Application 
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With these settings, the ADC0831 is focused on a temperature range of 70 to 120 degrees. There can be an 
infinite number of possible temperature values within the .7 to 1.2-volt output range of the LM34. Only a few 
representative values are given. Since the 8-bit A/D converter has a resolution of 255, it can resolve this 
range of 50-degree temperatures to within .31 degrees. The conversion will be a binary number equal to [(Vin 
- .7) /.5] *255. Let’s try a value within the range. Let’s say the temperature is 98.6, which results in an LM34 
output of .986 volts.   
 
If Vin = .986, what would be the binary equivalent?   
 

[(.986-.7)/.5] *255 = 145.86.  The answer is truncated to the whole integer of 145.   
The binary word would be 1001 0010.    

 The binary conversion will be held and ready for transfer.  
 
The SHIFTIN instruction is designed for synchronous communication between the BASIC Stamp and serial 
devices such as the ADC0831.  The syntax of the instruction is SHIFTIN dpin, cpin, mode, 
[result\bits]. The parameters indicate:   
 

• which pin data will arrive on (dpin), 
• which pin is the clock (cpin), 
• (mode) identifies which bit comes first, the least significant (LS) or most significant (MS), and on 

which edge of the clock it is released, rising (PRE) or falling (POST), 
• and, what the word width is and where you want it stored [Datain\8]. 

 
For our system, we previously declared Pin 5 as dpin and Pin 4 as the clock (CLK) pin. The ADC0831 outputs the 
most significant bit first on the trailing edge of the clock. Therefore, MSPOST is the mode. And, finally, the 8-
bit data will be held in a byte variable that we declared as Datain.  
 
After the binary data is brought into the BASIC Stamp, it is available for our program to use. It would be most 
convenient to use if it were expressed in terms of the actual measurement units. For our application, that 
would be in degrees. The next subroutine, Calc_Temp, does just that. By knowing the zero and span transfer 
function of the conversion process, we use the standard y = mx + b formula.  Where: y =Temperature, m = 
slope of the transfer function, and b is the offset. Temperature will be resolved and expressed in tenths of 
degrees.   
 
Refer to the Calc_Temp formula: Temp = Tempspan/255 * Datain/10 + 700 
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To increase the accuracy in resolving the slope (m), the Tempspan variable is scaled up by 10, to 5000 
hundredth degrees. The slope is therefore, 5000/255 ~ 19  or .19 degrees per bit. Multiplying 19 times Datain 
tells you how far the measurement is into the span. This is in one one-hundredth of a degree at this point; 
therefore, divide by 10 to scale it back to tenths. Adding this to the Zero value of 700 (70 degrees) results in 
the actual temperature in tenths of a degree. Resolution is approximately .2 degrees over a range of inputs 
from 70.0 to 120.0 degrees.   
 
The graph in Figure 4.6 plots the transfer function of the input A/D decimal equivalent input to temperature of 
the canister. Changing the span of coverage changes the slope of the transfer function. Changing the Zero 
value changes the y intercept.   
 

Figure 4.6: Transfer Function 
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An additional word of caution about the BASIC Stamp math operation:    
 

• A formula will be executed from left to right unless bracketing is used to set precedence.   
• At no point can any subtotal exceed 32,759 or -32,760.   
• Also, all remainders will be truncated, not rounded up.   

 
Challenge #1: Change the Zero and Span voltages and edit the program to match the new range.  
 
1. Your system should be able to raise the temperature of the closed canister beyond the 120-degree limit 

set by Program 4.1. Change the Zero and Span potentiometers for coverage of a temperature range from 
75 degrees to 200 degrees. This allows for a wider range of coverage, but what is the resolution of your 
system now? Be patient, and let your system stabilize. Record the maximum temperature of your system. 

 
2. Set the Zero and Span of your system to focus on the very narrow range of one degree below your room 

temperature to four degrees above it. Set the Calc_Temp variables to display in hundredths of degrees.  
Track these changes by leaving the cap off of the canister and simply touching the sensor with your warm 
finger. As you see, the resolution is great, but the trade-off is a decreased range of operation.  

 
Having the ability to control the span and reference of the ADC0831 allows you to focus on a range of analog 
input.  This helps maximize the resolution and accuracy of your system. The following exercise will require the 
original range of 70 to 120 degrees. Return the Zero and Span potentiometers back to .7 and .5 volts, 
respectively. 
 
Now, after all of that, we can get back to a study of control theory! 
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Exercise #2: Open-Loop vs. Closed-Loop Control 
 
Open-Loop Control  
 
The simplest form of control is open loop. The block diagram in Figure 4.7 represents a basic open-loop 
system. Energy is applied to the process through an actuator. The calibrated setting on the actuator 
determines how much energy is applied. The process uses this energy to change its output. Changing the 
actuator’s setting changes the energy level in the process and the resulting output. If all of the variables that 
may affect the outcome of the process are steady, the output of the process will be stable.  
 

 
Figure 4.7: Open-Loop Control 

 

 
 
The fundamental concept of open-loop control is that the actuator’s setting is based on an understanding of 
the process. This understanding includes knowing the relationship of the effects of the energy on the process 
and an initial evaluation of any variables disturbing the process. Based on this understanding, the output 
“should” be correct. In contrast, closed-loop control incorporates an on-going evaluation (measurement) of 
the output, and actuator settings are based on this feedback information.   
 
Consider the temperature control process shown in Figure 4.8. The material being drawn from the tank must 
be kept at a 101o temperature. Obviously, this will require adding a certain amount of heat to the material.  
(The drive on the transistor determines the power delivered to the heating element.) The question becomes 
“How much heat is necessary?”   
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Figure 4.8: Open-Loop Heating Application 
 

 
 
 
For a moment, consider the factors that would affect the output temperature. Obviously, ambient 
temperature is one. Can you list at least three others? How about: 
 

• The rate at which material is flowing through the tank.   
• The temperature of the material coming into the tank.   
• And, the magnitude of air currents around the tank.   

 
These are all factors that represent BTUs of heat energy taken away from the process. Therefore, they also 
represent BTUs that must be delivered to the process if the desired output is to be achieved. If the drive on 
the heating element were adjusted to deliver the exact BTUs being lost, the output would be stable.   
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In theory, the drive level could be set and the desired output would be maintained continuously, as long as the 
disturbances remained constant. 
 
Let’s now assume that it is your objective to keep the interior of your film canister at a constant temperature.  
A good real-world example would be that of an incubator used to hatch eggs. To hatch chicken eggs, it is 
important to maintain a 101oF environment.   
 
Turning on the heater will warm up the interior of the canister. In our earlier test, you turned on the heater’s 
drive transistor, and the temperature rose above 101oF. Obviously, to maintain the desired temperature, we 
will not need to have full power applied to the resistor. Through a little testing, you can determine just what 
drive level would be needed to yield the correct temperature.    
  
The drive to the power transistor in Figure 4.8 is labeled as PWM. This is the acronym for pulse-width 
modulation. PWM is a very efficient method of controlling the average power to loads such as heating 
elements. The square wave is driving the transistor as a current-sinking switch. When the drive is high, the 
transistor is saturated, and full power is applied to the heater. A logic Low applied as base drive puts the 
transistor in cutoff; therefore, no current is applied to the load. Multiplying the percentage of the total time 
that the load receives full power times the full power will give the average power to the load. This average on-
time is the duty cycle and is usually stated as a percentage. A 50% duty cycle would equate to half of the full 
power drive, 75% duty cycle is three-quarters full power, etc. It was stated earlier that the 47-ohm “heater” 
resistor in our canister would receive 1.7 watts when fully powered by the 9-volt unregulated source supply. 
The pushbutton switch was used to toggle the power on and off. If you were to press the switch rapidly at a 
constant rate, the resistor would receive 1.7 watts during the ON time and 0 watts during the OFF time. This 
50% duty cycle would result in an average power consumption of .85 watts (Paverage = Pfull * duty cycle).   
Complete the table in Figure 4.9 below for power consumed at duty cycles of 75% and 25% for your system. 
 

Figure 4.9: Average Power 
 

Paverage = Pfull * duty cycle 
Full Power (Pfull) Duty cycle Average Power (Pavg) 

1.7 W 100% 1.7 W 
1.7 W 75%  
1.7 W 50% 0.85 W 
1.7 W 25%  
1.7 W 0% 0 W 
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PBASIC provides a useful instruction for providing pulse-width modulation.   
Its syntax is: PWM pin, duty, duration   
 
 Where:  pin is the output pin you are driving. 
   duty is the duty cycle relative to 255 being 100%. 
   duration is the window of time in milliseconds over which the duty cycle is provided.  
 
 
Challenge 2: Graphing PWM duty vs. Vout. 
 
Use your multi-meter to measure the average voltage across the heating element at various PWM commands.  
Change the duty variable in Program 4.2 to increments between 0 and 255. Plot the average voltage on the 
graph in Figure 4.10.   
 
'Program 4.2:  PWM vs. Vout 
 
' Change the Duty = 50 in increments of 10 between 0 and 100.  Measure the 
' average output voltage that results.   
 
DutyCycle   VAR  byte   
Duty   VAR  byte 
 
DutyCycle = 50     ' Begin with a 50% duty cycle 
 
Loop:  
  Duty = (DutyCycle * 255/100)  ' Scale DutyCycle to PWM (0-255) duty 
  PWM 8, Duty, 200    ' Apply a PWM of “Duty” to the heater 
  DEBUG " Testing at a Duty Cycle of  ",  DEC DutyCycle, "%.", CR 
GOTO Loop 
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Figure 4.10: Graph of Heater Voltage vs. PWM Duty Cycle 

 

 
 
If you are not familiar with PBASIC’s PWM instruction, refer to the BASIC Stamp Manual Version 2.0 pp. 247-
250. One aspect of using the command should be understood.  PWM applies pulses for a period of time 
defined by the duration value. During the time when the rest of the program is executing, there is no output 
applied to the load.  As a result, the average voltage at a 100% duty cycle (duty =255) will result in a value less 
than the full voltage expected. The slower your program cycle time, the greater is this disparity. To get a 
better understanding of cycle time, place a PAUSE 200 in Program 4.2. Compare the resulting output voltage 
with earlier readings.  Change the length of the pause and notice the results. 
 
Recall the Sample and Hold circuit introduced in Challenge #3 of Experiment #2.  This circuit held the average 
PWM voltage across the brushless motor during the entire program loop.  This was necessary because of the 
long program loop and fast response of the fan.  The Sample and Hold circuit was effective in delivering the 
desired average voltage regardless of the program loop-time.  In terms of power control, it is more efficient 
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to not use Sample and Hold. This can be understood if you consider driving the circuit at 50%.  A 50% drive 
would result in ½ of the supply voltage appearing across the load continually. This is great. Right? Well if half of 
the supply voltage is across the load continually, the other half must be across the transistor.  This collector-
to-emitter voltage times the collector current represents power wasted in the transistor. When system 
response is fast (like the brushless fan) you have no choice but to use this type of linear power control.   
 
The resistor heating element in our model incubator is a good example of a slow responding system.  Straight 
PWM control of the resistor wastes little power in the transistor because it is only operated in an ON/OFF 
switching mode. As long as the PWM period is much longer (>10x) than the time required to run the rest of 
the program loop there will little discrepancy in the Duty cycle and expected average voltage.        
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Challenge #3: Analyzing your Open-Loop System 
 
The following program is developed to study the relationship between PWM drive on your heater and the 
resulting stable temperature. The program will apply PWM drive levels in 10% increments. Each increment will 
last approximately four minutes. The program will end after 100% drive has been applied. StampPlot Lite will 
give you a graphical representation of your system’s response, along with time stamp information in the list 
box. Furthermore, if you are really interested, the StampPlot Lite data file can be imported into a 
spreadsheet, applied to a graph and analyzed. 
 

Figure 4.11: Screen Shot of PWM Drive vs. Temperature 
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Figure 4.11 is typical of a StampPlot Lite screen shot resulting from this test. Load Program 4.3. Before 
running the program, be sure your canister has cooled to room temperature. Place the cap on your canister 
and start the program. When the DEBUG window appears, close it and start StampPlot Lite. Connect using 
StampPlot Lite and press the restart button to reload the program and begin the test.   
 
'Program 4.3: PWM vs. Temp Test with StampPlot Interface 
 
'This program tests the canister's temperature rise for incremental increases of  
'PWM drive. Program runtime is approximately 40 minutes.  This can be adjusted  
'by 'changing the "tick" and/or "Drive" increments.  
'Program assumes that the circuitry is set according to Figure 4.3.  
'ADC0831: '"chip select" CS = P3, "clock" 'Clk=P4, & serial data output"Dout=P5.   
'Zero and Span pins: Digital 0 = Vin(-) = .70V and Span = Vref = .50V.   
 
'Configure Plot 
Pause 500     'Allow buffer to clear 
DEBUG "!RSET",CR     'Reset plot to clear data  
DEBUG "!TITL PWM vs. Temp Test",CR   'Caption form 
DEBUG "!PNTS 24000",CR    '24000 sample data points 
DEBUG "!TMAX 6000",CR     'Max 6000 seconds 
DEBUG "!SPAN 70,120",CR    '70-120 degrees 
DEBUG "!AMUL .1",CR     'Multiply data by .1 
DEBUG "!DELD",CR     'Delete Data File 
DEBUG "!SAVD ON",CR     'Save Data 
DEBUG "!TSMP ON",CR     'Time Stamp On 
DEBUG "!CLMM",CR     'Clear Min/Max 
DEBUG "!CLRM",CR     'Clear Messages 
DEBUG "!PLOT ON",CR     'Start Plotting 
DEBUG "!RSET",CR     'Reset plot to time 0 
 
' Define constants & variables 
      
CS CON 3     ' 0831 chip select active low from BS2 (P3)  
CLK CON 4     ' Clock pulse from BS2 (P4) to 0831  
Dout CON 5     ' Serial data output from 0831 to BS2 (P5) 
Datain VAR byte    ' Variable to hold incoming number (0 to 255)  
Temp VAR word     ' Hold the converted value representing temp 
TempSpan VAR word    ' Full Scale input span in tenths of degrees.   
TempSpan = 5000    ' Declare span.  Set Vref to .50V and   
  ' 0-255 res. will be spread over 50   
  '(hundredths).  
 
Offset VAR word    ' Minimum temp.  @Offset, ADC = 0 
Offset = 700     ' Declare zero Temp.  Set Vin(-) to .7 and  
      ' Offset will be 700 tenths degrees.  At these  
      ' settings, ADC output will be 0 - 255 for temps  
      ' of 700 to 1200 tenths of degrees.  
 
LOW 8      ' Initialize heater OFF 
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Drive VAR word     ' % Drive 
Duty VAR word     ' variable for PWM duty cycle 
Tick VAR word 
 
 
 
Drive = 0     ' Initialize variable to 0 
Tick = 0  
Duty = 0 
 
' Get and display initial starting values. 
  
  GOSUB Getdata 
  GOSUB Calc_Temp 
  DEBUG "Temp = ", DEC Temp, " Duty = ", DEC Duty,CR   
  DEBUG "!USRS Begining Test! -- Testing at ", DEC Drive, "% Drive.",CR  
 
Main:      ' main loop  
  PAUSE 10       
  GOSUB Getdata 
  GOSUB Calc_Temp 
  GOSUB Control 
  GOSUB Display 
  GOTO Main 
 
Getdata:     'Acquire conversion from 0831 
  LOW CS     'Select the chip  
  LOW CLK     'Ready the clock line.  
  PULSOUT CLK,10    'Send a 10 uS clock pulse to the 0831 
  SHIFTIN Dout, CLK, MSBPOST,[Datain\8]  'Shift in data  
  HIGH CS     'Stop conversion   
RETURN     
 
Calc_Temp:     'Convert digital value to  
  Temp = TempSpan/255 * Datain/10 + Offset  'temp based on Span &  
RETURN      'Offset variables.  
 
Display:     'Plot present temperature  
  DEBUG DEC Temp,CR      
RETURN 
 
Control:     ' Testing system at different % duty cycles 
  PWM 8,Duty,200    ' PWM 
  Tick = Tick + 1    ' increment tick variable  
  IF Tick = 2000 Then Increase  ' Program cycles per drive level change  
RETURN 
 
Increase:     'Bump up the drive 
  Drive = Drive + 10    'Drive increments = 10% 
  Duty = (Drive * 255/100)   'Scale %Drive to Duty 
  If Duty > 256 Then Stopit   'Stop test after 100% PWM 
  DEBUG "Ending Temp = ", DEC Temp, " Now testing at ", DEC Drive, "% Drive", CR 
  DEBUG "!USRS Testing at ", DEC Drive, "% Drive",CR  
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  Tick = 0 
RETURN 
 
Stopit:      ' Stop and print summary 
  DEBUG "Test Over. Ending Temp = ", DEC Temp," at 100 % Drive",CR 
  DEBUG "!USRS Temperature = ", DEC Temp,"Test Over",CR  
END 
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Challenge #4: Open-Loop Control--Desired Setpoint = 101o Fahrenheit 
 
It is our objective to maintain a constant canister temperature of 101o Fahrenheit.  Follow these procedures.  
Record values in the table of Figure 4.12. 
 

1. Study the StampPlot Lite analysis that resulted from running Program 4.2. From the Text Box listing, 
record in the table the beginning ambient temperature, the temperature at the end of the 50% drive 
test, and the ending maximum temperature after 100% drive.   

 
2. Use your cursor to find the Drive level that resulted in a temperature of 101 degrees.   

 
3. Next, modify the Control subroutine of Program 4.2 so that the duty cycle remains at the constant 

value declared initially.  Do this by removing the two lines indicated below. 
  
Control:           ' Testing system at different % duty cycles 
 PWM 8,duty,200         ' PWM 
 tick = tick + 1   ' increment tick variable  
 IF tick = 2000 Then Increase      ' Program cycles per drive level change  
 RETURN 
 
4. At the beginning of the program, declare the DutyCycle to be the value that yielded 101o in our test 

StampPlot Lite. Run the program and allow the system to stabilize. How close was your estimation?  
Bump it up or down accordingly to find the setting that yields the desired result. In line #5 of the table, 
record the percent of drive that places the system at or near 101 degrees. Let it run for a moment and 
take note of the system stability. Once a drive setting has been established, an open-loop system will 
stabilize; and, as long as the disturbances that affect the process stay constant, so will the output. 

 
5. Plug in the brushless fan across the Vdd supply and aim it directly toward the canister. The moving air 

represents a change in the disturbance on your process. According to theory, heat will be removed from 
the process at a greater rate and the new stable temperature will be lower than 101o. With the fan 
blowing on the canister, try to find the new “correct” drive for this condition. Record your data in line #6 
of the table. 
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Figure 4.12: Open-Loop Control Table 

 
Line# Condition % Drive Temp 
#1 Desired Temperature   101o 
#2 Ambient Temperature 0  
#3 50 % Drive Temperature 50%  
#4 Full Drive Temperature 100%  
#5 Appropriate % Drive for 101o 

Without fan disturbance 
 101o 

#6 Appropriate % Drive for 101o 
With direct fan disturbance 

 101o 

#7 Appropriate % Drive for 101o 
With partial fan disturbance 

 101o 

 
 
6. Finally, leaving the proper setting established in line #6, change the position of the fan so it is blowing less 

directly on the canister. This represents a medium disturbance level on the system. Assess the situation 
and make your best guess as to the proper drive setting required by this new condition. Program the 
BASIC Stamp for this drive level. Once the system stabilizes, record your results in line #7 of the table.  

 
Challenge #5: Determining an Open-loop Setting 
 
1. Select a new “desired temperature” for your system. Predict and program an open-loop drive value that 

will maintain this temperature. 
 

2. Place a couple of glass marbles in your canister. See how increasing the mass of the system affects the 
response and the drive setting necessary to maintain the new condition. What conclusions can you draw 
from the system’s behavior?  

 
There are many variables that can affect the relationship of drive level and temperature in your small 
environment. Given some time to experiment and become familiar with the dynamic relationship between 
temperature, drive level, and disturbances, you could get pretty good at assessing the conditions and setting 
the right amount of drive in an open-loop manner. As we see, however, if any condition of our process 
changes, so will the output. Open-loop control can be useful in some applications. When a process requires 
that its output remain constant for all conditions, then closed-loop control must be employed. In closed-loop 
control, action is taken based on an evaluation of the measurement and the desired setpoint. This evaluation 
results in what is called an “error signal.”  Experiment #5 and #6 will guide you through 5 modes of closed-
loop control.  
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1. Give two examples of continuous process control other than those given in the text.  

 
2. How is the drive level in open-loop control determined? 

 
3. What is the primary advantage of open-loop control? 

 
4. What is the primary disadvantage of open-loop control? 

 
5. The ADC0831 will convert a range of analog input to one of 256 possible binary values.  The number 256 

identifies the _________ of the converter. 
 

6. The purpose of the chip select and clock lines to the ADC0831 are to ____________ the conversion 
process.   
 

7. If the LM34 were placed in a 98.6-degree environment, the expected output would be _________volts. 
 

8. In pulse-width modulation, the amount of drive action is based on the __________ of time ON over the 
total time.  
 

9. If a 40-watt heater were pulse-width modulated at a 75% duty cycle, the average power consumed would 
be __________ watts. 
 

10. When disturbances change in an open-loop process, so does the ____________. 
 

 
 

Challenge:  Open-loop Control of the Fan   
 
Recall in Experiment #2, the circuit in Figure 4.13 was introduced to control the speed of the brushless motor 
fan. 

 

Questions and 
Challenge  
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Figure 4.13:  Sample and Hold PWM Drive 
 

 
 
 

Because of the fan’s quick response to voltage fluctuations, the Sample and Hold circuit is necessary to 
effectively control speed using the PWM instruction.  Construct this circuit to be able to vary fan speed.  
Directly connect the resistor across the +Vin supply.  With the fan directly pointed toward the canister, 
experiment with different PWM drive levels to the fan.  What drive level is necessary to cool the canister to 
101oF? 
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An open-loop control system can deliver a desired output if the 
process is well understood and all conditions affecting the 
process are constant. However, Experiment #4 showed us that 
an open-loop control system couldn’t guarantee the desired 
output from a process that was subject to even mild 

disturbances. There is no mechanism in an open-loop system to react when disturbances affect the output. 
Although you were able to find a drive setting that would yield the desired temperature in Experiment #4, 
when the fan was moved closer or further from the heater, the fixed setting was no longer valid. Closed-loop 
control provides automatic adjustment of a process by collecting and evaluating data and responding to it 
accordingly. A typical block diagram of an automatic control system is depicted in Figure 5.1.   
 

Figure 5.1: Closed-Loop Control 
 

 
 
In this diagram, an appropriate sensor is measuring the Actual Output. The signal-conditioning block takes the 
raw output of the sensor and converts it into data for the Controller block. The Setpoint is an input to the 
Controller block that represents the desired output of the process. The controller evaluates the two pieces of 
data. Based on this evaluation, the controller initiates action on the Power Interface. This block provides the 
signal conditioning at the controller’s output. Experiment #3 discussed several methods of driving power 
interface circuits. The Power Interface has the ability to control the Actuator. This may be a relay, a solenoid 
valve, a motor drive, etc. The action taken by the Actuator is sufficient to drive the Actual Output toward the 
desired value.   
 

 

Experiment #5: 
Closed-Loop 
Control 
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As you can see, this control scenario forms a loop, a closed-loop. Furthermore, since it is the process’s output 
that is being measured, and its value determines actuator settings, it is a feedback closed-loop system. The 
input changes the process output Æ the output is monitored for evaluation Æ the evaluation changes the 
input Æ that changes the process output, etc., etc.  
 
The type of reaction that takes place upon evaluation of the input defines the process-control mode. There 
are five common control modes. They are on-off, on-off with differential gap, proportional, integral, and 
derivative. The fundamental characteristic that distinguishes each control mode is listed below in Table 5.1.   
 

Table 5.1: Five Common Control Modes 
 

Process 
Control Mode 

 
Evaluation 

 
Action 

On-off Is the variable above or below a 
specific desired value? 

Drive the output fully ON or fully OFF. 

On-off with 
differential gap 

Is the variable above or below a range 
defined by an upper and lower limit? 

Output is turned fully ON and fully OFF to drive 
the measured value through a range. 

Proportional How far is the measured variable away 
from the desired value? 

Take a degree of action relative to the 
magnitude of the error.  

Integral Does the error still persist? Continue taking more forceful action for the 
duration the error exists. 

Derivative How fast is the error occurring? Take action based on the rate at which the 
error is occurring.  

 
Continue taking more forceful action for the duration the error exists. 
 
This exercise will focus on converting the open-loop temperature control system of Experiment #4 into an 
on-off closed-loop system. Our system will show advantages and disadvantages to this method of control. The 
characteristics of the system being controlled determines how suitable a particular control mode will be. 
Experiment #6 will use the same circuitry to overview and apply proportional, integral, and derivative control 
modes. Leave the circuit constructed after completing this step. 
 
Figure 5.2 is a schematic of the circuitry necessary for the next two exercises. As you see, this is identical to 
Experiment #4.  The 35-mm film canister provides the environment we wish to control. The heater drive 
provides full power for developing heat in the resistor. The LED is also driven by Pin 8. Remember that the LED 
is driven by the +5-Vdd supply, and the heater is driven by the +9-volt unregulated line supply. The LM34 
sensor will provide temperature data. In closed-loop control, we will monitor the temperature and use it to 
determine control levels. The fan’s air currents will act as a disturbance to the process.   
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Figure 5.2: Closed-Loop Control Circuitry 
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If the circuit isn’t already on your board, carefully construct it. Use space on the small Board of Education 
efficiently to allow for the circuitry. Take your time, plan your layout, and be careful not to inadvertently short 
any wires. Refer back to Experiment #4 for details on the film canister construction, the operation of the 
LM34, and the use of the ADC0831 analog-to-digital converter.   
 
Double-check the Zero and Span voltages of the ADC0831. Use your voltmeter to set the Zero voltage (Vin(-)) 
to .7 and the Span (V(ref)) to .5 volts.  This will establish a full-scale temperature measurement range from 70 
to 120 degrees F. 
 

 
 
 
 
 

 
Exercise #1: Establishing Closed-Loop Control 
 
Let’s assume it is our objective to maintain temperature within the canister at 101.50 oF + 1 degree. This 
would be representative of the requirements of an incubator used for hatching eggs. Maintaining the eggs at 
the setpoint temperature of 101.5 oF is perfect, but the temperature could go up to 102.50 or down to 100.50 
without damage to the embryos. Although it may be hard to imagine an incubator when you look at your film 
canister, the BASIC Stamp would be well suited as the controller in a large commercial hatchery incubator.   
 
To maintain temperature at the desired value seems like a pretty “common sense” task. That is, simply 
measure temperature; if it is above the setpoint, turn the heater OFF; and, if it is below, turn the heater ON.  
The simplest kind of control mode is on-off control. There are drawbacks to this control mode, however.  
During the following exercise, you will establish on-off control of your model incubator. Pay close attention to 
the characteristics exhibited by your model. These characteristics would also apply to real control 
applications.  
 
Procedure 
 
Programming for this application requires data acquisition, evaluation, and control action. Our display routine 
will also include storing and displaying the minimum and maximum overshoot in the process.  
 
The structure and much of the content of Program 4.1 may be used to acquire and calculate our 
measurement. Instead of turning the heater on continually, a new subroutine will be added to evaluate and 
control it.  Evaluation will be based on a setpoint variable. Refer to Program 5.1 following. 

 

Exercises 
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'Program 5.1: Simple ON/OFF Control with the StampPlot Interface 
 
'This program establishes simple ON/OFF control of the model incubator.   
'Program I/O is based on the circuitry of Figure 5.2.    
'Zero and Span voltages: Digital 0 = Vin(-) =.70V and Span = Vref = .50V.   
 
'Configure Plot 
Pause 500     'Allow buffer to clear 
DEBUG "!RSET",CR     'Reset plot to clear data  
DEBUG "!TITL Simple ON/OFF Control",CR 'Caption form 
DEBUG "!PNTS 60000",CR    '60000 sample data points 
DEBUG "!TMAX 300",CR     'Max 300 seconds 
DEBUG "!SPAN 70,120",CR    '70-120 degrees 
DEBUG "!AMUL .1",CR     'Multiply data by .1 
DEBUG "!DELD",CR     'Delete Data File 
DEBUG "!CLMM",CR     'Clear Min/Max 
DEBUG "!CLRM",CR     'Clear Messages 
DEBUG "!USRS  ",CR    'Clear User status bar 
DEBUG "!SAVD ON",CR     'Save Data 
DEBUG "!TSMP ON",CR     'Time Stamp On 
DEBUG "!SHFT ON",CR    'Enable plot shift 
DEBUG "!PLOT ON",CR     'Start Plotting 
DEBUG "!RSET",CR     'Reset plot to time 0 
 
' Define constants & variables 
      
CS CON 3     ' 0831 chip select active low from BS2 (P3)  
CLK CON 4     ' Clock pulse from BS2 (P4) to 0831  
Dout CON 5     ' Serial data output from 0831 to BS2 (P5) 
Datain VAR byte    ' Variable to hold incoming number (0 to 255)  
Temp VAR word     ' Hold the converted value representing temp 
 
TempSpan VAR word    ' Full Scale input span in tenths of degrees   
TempSpan = 5000    ' Declare span 50 (1/100ths degrees)  
 
Offset VAR word    'Minimum temp. Offset, ADC = 0 
Offset = 700     'Declare zero Temp. Set Vin(-) to .7 and  
  'Offset will be 700 tenths degrees.  At these  
  'settings, ADC output will be 0 - 255 for  
  'temps  
  'of 700 to 1200 tenths of degrees.  
Setpoint VAR word 
Setpoint = 1015    ' Initialize setpoint to 101.5 degrees 
 
MMFlag VAR bit  
MMFlag = 0 
 
LOW 8      ' Initialize heater OFF 
 
Main:       
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  GOSUB Getdata 
  GOSUB Calc_Temp 
  GOSUB Control 
  GOSUB Display 
GOTO Main 
 
Getdata:     'Acquire conversion from 0831 
  LOW CS     'Select the chip  
  LOW CLK     'Ready the clock line.  
  PULSOUT CLK,10    'Send a 10 uS clock pulse to the 0831 
  SHIFTIN Dout, CLK, MSBPOST,[Datain\8]  'Shift in data  
  HIGH CS     'Stop conversion   
RETURN     
 
Calc_Temp:     'Convert digital value to  
  Temp = TempSpan/255 * Datain/10 + Offset 'temp based on Span &  
RETURN      'Offset variables.  
 
Control:     'ON/OFF control 
  IF Temp > Setpoint THEN OFF  
  HIGH 8      'Heater ON 
RETURN 
 
OFF:      'Heater OFF 
  LOW 8 
RETURN 
 
Display:     'Plot Temp and heater status 
  IF OUT8 = 0 AND MMFlag = 0 THEN MMClear ' Clear Min/Max 
  DEBUG DEC Temp,CR       
  DEBUG IBIN OUT8,CR  
RETURN 
 
MMClear:     'Clear Min/Max When setpoint is first reached. 
  DEBUG "!CLMM",CR  
  DEBUG "!USRS Overshoot/Undershoot Test Ready",CR    
  MMFlag = 1 
RETURN 
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Run the program and observe the behavior of the system. StampPlot Lite will graphically plot the temperature 
response of the system and the on-off status of Output 8. Follow the StampPlot Lite procedures of running 
the program, closing the debug window, opening StampPlot Lite, and pressing the “reset” button.    
 
When you start your system, the heater will be on as indicated by the LED. The heater/resistor becomes quite 
hot when full power is applied. This heat transfers through the environment and warms the temperature 
sensor. When the sensor has heated to 101.5, the BASIC Stamp will turn off the heater. For a period after the 
heater is turned off, the temperature continues to rise. This is called overshoot. At this point, it is important 
to understand the dynamics of your system. The heat held within the mass of the resistor will continue to 
dissipate into the air, the air becomes warmer, and the LM34 reports that overshoot has occurred. Similar to 
the mechanical inertia of a moving object, this phenomenon is called thermal inertia. Overshoot becomes 
large when the heat energy contained in the mass of the resistor is large, relative to the heat already in the 
canister. The 35-mm canister is small, but the mass of the half-watt resistor also is small. As a result, the 
overshoot of your system will probably be less than one degree.     
 
When the temperature does turn around and begin to fall, as it passes the setpoint, the heater is once again 
turned on. Undershoot will occur for similar reasons as did the overshoot. During the time the heater is 
coming up in temperature, the ambient temperature has continued downward. Continuous cycling above and 
below the desired setpoint is typical of on-off control. The rate of this cycling and the degree of the 
overshoot depend on the characteristics of the system. On-off control is suitable for processes that have 
large capacity, can tolerate sluggish response, and sustain a relatively constant level of disturbance. If our 
incubator were large, well insulated, and kept in a constant room environment, on-off control would be 
acceptable. After the process has had a chance to cycle a few times, record the minimum and maximum 
overshoot values.   
 

Maximum overshoot _______________ Minimum Overshoot __________________ 
 
Using your cursor, investigate time between cycles.  Record these times below. 
 
Time at which the heater first turned OFF (T1off): ____________ 
 
Time at which the heater turned back ON (T1on): ____________ 
 
Time at which the heater turned OFF again (T2off): ____________ 
 
Cycle time =  (T2off) – (T1off):   ____________ 
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A major problem with on-off control is that the output drive may cycle rapidly as the measurement hovers 
about the setpoint. Noise riding on the analog sensor measurement would be interpreted as rapid fluctuation 
above and below the setpoint. The timing diagram in Figure 5.3 represents this problem 
 
 

Figure 5.3: On-Off Control When Noise Rides on the Data 
 

 
 
 
          
 
 
 
           
 
 
 
         
 
 
     
 
 
The slow-moving data that is cycling through the setpoint has a high-frequency noise component riding on it.  
As you can see, the coupled effects of the noise results in the data passing above and below the setpoint 
several times.  The microcontroller would attempt to turn the heating element on and off accordingly.    
 
In an actual incubator application where larger amounts of power are controlled, this rapid switching could 
cause unwanted RF noise. This rapid cycling could also be damaging to electromechanical output elements 
such as motors, relays, and solenoids.   
 
Do you observe the rapid cycling of the LED as the temperature approaches the setpoint? ___________ 
 
Remove the 10-uF capacitor from across the sensor output. Does this increase the cycling problem? Why? 
Figure 5.4 is a typical screen shot resulting from this experiment. Overshoot and rapid cycling are a problem.  
Is this similar to your system’s response? 
 
 

Heat ON  

Heat OFF  

Setpoint  
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Figure 5.4: Simple ON/OFF Control 

 

 
 
 



Experiment #5: Closed-Loop Control 

Page 136 • Industrial Control Version 1.1 

 
Challenge!  Change the Dynamics of Your System   
 
1. Connect your brushless fan to the Vcc supply and aim it toward the canister. Reset the program and 

watch the control action. Describe any effect that the new level of disturbance has on the overshoot 
and/or the cycling. Summarize how you have changed the dynamics of your system. 
 

2. Place a single glass marble in your canister. Reset the program and watch the control action. Describe 
any effect that changing the mass of your system has on the overshoot and/or the cycling. Summarize 
how you have changed the dynamics of your system. 
 
 

Exercise #2: Differential-Gap Control  
 
The rapid cycling resulting from noise or the measurement hovering around a single setpoint is the biggest 
disadvantage of simple on-off control. Most practical on-off control systems lend themselves to allowing a 
minimum and maximum value of measurement. An incubator is a good example. Although the desired 
temperature is 101.5 degrees, it allows + 1 degree of variance about the setpoint. Differential-gap control is a 
mode of control that takes action based on the measurement crossing a defined upper and lower limit. When 
the measured value goes beyond one limit, full appropriate action is taken to drive the temperature to the 
opposite limit. Full opposite action is then taken to drive the process back again. Figure 5.5 graphically 
diagrams the action taken by differential-gap control. When the system is started and its temperature is 
below the Lower limit, the heater will come on and the temperature rise. When the temperature passes the 
upper limit, the heater is turned OFF, heat will begin to leave the process, and the temperature will begin to 
drop to below the Lower limit. The heat then is turned back on and the cycle begins again.   
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Figure 5.5: Differential-Gap Control Action 
 

 
 
 
The result is a slower on-off cycle time and no cycling resulting from noisy data. Notice how the timing 
diagram in Figure 5.6 differs from the earlier one depicting noisy data in a simple on-off control mode.   
 
Whenever the measurement is anywhere between these limits, the heater state is not changed.  The result is a 
slower ON/OFF cycle time and no cycling from noisy data. The heater is switched when the data (+noise) 
passes a limit. After that, the data (+noise) has to exceed the other limit before switching will occur again.   
Because the differential gap is wider than the effect of the noise, rapid cycling is eliminated.   
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Figure 5.6: Differential-Gap Control Action when Noise is Riding on the Data 

 
 
 
 
 
 
       
 
  

    
These advantages come at the compromise of allowing the measured variable to drift further from the 
desired “average” value. The thermal inertia of our system will still result in some amount of overshoot and 
undershoot. We are accepting a wider variance in temperature. When processes allow this variance, 
differential-gap control is usually preferred over simple on-off control. 
 
 The Control subroutine can be easily changed to accommodate differential-gap control.  Make the following 
modifications to Program 5.1. 
   
Declare the new variables of Upper_limit and Lower_limit at the beginning of the program and initialize 
them to 102 oF and 101 oF respectively. 
 
Upper_limit VAR word 
Lower_limit VAR word 
Upper_limit = 1020     ‘102 degrees in 1/10ths 
Lower_limit = 1010     '101 degrees in 1/10ths 
 

   Heat ON 

   Heat OFF 

Desired Value

UTP 

LTP
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Next, replace the on-off Control subroutine with the following code. 
 
Control: 
  IF Temp > Upper_limit THEN OFF ' Over upper limit then Heat OFF 
  IF Temp < Lower_limit THEN ON ' Under lower limit then Heat ON 
RETURN     ' return leaving heat in last state 
 
OFF:  
  Out8 = 0    ' Heater Off 
  MMFlag = 1 
RETURN  
 
ON:      ' Heater On 
  Out8 = 1 
RETURN 
 
 
Run the program and observe the behavior of your system.   
 
 
Challenge! Observe and Evaluate Differential-Gap Control 
 
Allow the program to cycle a few times.  Report on the following: 
 
Record the minimum and maximum overshoot temperatures.   
 
Maximum overshoot _______________ Minimum Overshoot __________________ 
 
With your cursor, investigate time between cycles.  Record these times below. 
 
Time at which the heater first turned OFF (T1off) ____________ 
 
Time at which the heater turned back ON (T1on) ____________ 
 
Time at which the heater turned OFF again (T2off) ____________ 
 
Cycle time =  (T2off) – (T1off)    ____________ 
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Project the switching point of the digital output down to the plotted temperature. Can you determine the 
temperature at which switching occurred? Momentarily remove the 10-uF filter capacitor. Does the increase 
in noise cause rapid cycling about the limits?   
 
Use the fan to change the disturbances to the process. Reset the program and watch the control action.  
Describe any effect the new level of disturbance has on the overshoot and/or the cycling. Summarize how you 
have changed the dynamics of your system. 
 
Place a single glass marble in the canister. Restart the program and summarize how increasing the mass has 
affected the process control action. Investigate the cycle time and overshoot.   
 
 
Simple ON/OFF or Differential Gap? 
 
Hopefully, the data that you have observed and recorded will reveal some important characteristics of these 
two control modes. They both have advantages and disadvantages. Simple on-off control results in rapid 
cycling of the heating element. Reported cycle times of less than one second could easily result if your system 
has fast recovery or there is noise on the analog line. Rapid cycle time would not be acceptable if our heater 
were being controlled by an electromechanical relay. 
 
Notice, however, that the overshoot is approximately a half-degree and our average temperature is at the 
desired setpoint. Compare this control response to that observed when Differential Gap has been added to 
the On/OFF control.   
       
With Differential-Gap control, you will notice fundamental differences in the control action.   
 

1. Rapid cycling about the setpoint no longer occurs.   
2. The minimum and maximum values still overshoot, but now beyond the limits.  
3. Total cycle time between ON/OFF conditions is longer.   

 
Increased cycle time and noise immunity about the setpoint are definite improvements over simple on-off 
control. The tradeoff, however, is allowing the process to vary further from the desired temperature setpoint.  
Obviously, an understanding of your process and its hardware will determine the appropriate control mode.   
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Both modes took appropriate control action to maintain temperature under changing disturbance levels and 
load conditions. The drawback to either mode of ON/OFF control is that the controlled variable is constantly 
on the move. The fully-ON and fully-OFF conditions of the final control element are continually forcing the 
measurement past the limits.    
 
If you recall, in the Open-Loop Control exercise of Experiment #3, a value of drive between off and fully on 
was found to be appropriate to hold the temperature at the setpoint. If all disturbances to the process 
remained constant, the temperature would stay at the setpoint when the right percentage of drive was 
applied. We also saw that as conditions changed, so did the measurement. Experiment #6 will investigate 
controls that take an appropriate amount of action based on an evaluation of the measurement. Applying 
Proportional, Integral, and Derivative control theory can be employed to maximize the effectiveness of the 
control system.    
 
      
Programming Challenges  
 
1. Alter your program so a +1 degree differential gap can be calculated automatically, based on the desired 

setpoint. 
 
 
2. Add a variable called Differential_gap so the operator needs only to enter the Setpoint and the amount 

of Differential gap and the program automatically performs the desired action.      
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1. Write one complete sentence that clearly states the fundamental difference between Open-loop and 
Closed-loop controls. 

 
 

2. Simple ON/OFF control compares the measurement of the process variable to a 
________________. 

 
 

3. If the final control element to our model incubator were an air conditioner instead of a heater, what 
would change about Program 5.1? 

 
 

4. When the process variable continues to increase after the final control element is turned OFF, it is 
termed _______________. 

 
 

5. Rapid cycling about the setpoint of an ON/OFF control system is a result of __________ riding on 
the measurement data.   

 
 

6. List three devices that could not withstand rapid cycling of power. 
 

____________________ 
 
____________________ 
 
____________________ 

 
 

7. Process cycle time is directly affected by the amount of ____________ in the system.  
 
 

 

Questions and Challenge 
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8. Differential-gap control takes full action when the process variable crosses the ___________ 
points. 

 
 

9. Cycle time will be ______________ if differential-gap control is used in a system rather than simple 
ON/OFF control. 

 
 

10. Rapid cycling is not a problem in differential-gap control if the measurement data plus the 
___________ is less than the differential gap. 

 
 

11. When the measurement is between the limits, the output will be in the mode determined by which 
limit was exceeded __________. 

 
 

12. Adding more mass to a Differential-gap control system will ___________ the amount of overshoot 
and ___________ the cycle time of the process.  

 
 
Control Challenge: Reverse the Scenario 
 
Reverse the positions of the output devices in Figure 5.2.  Replace the heater in figure 5.2b with the brushless 
fan and place the heater across the +9V supply as shown in Figure 5.2c.  Control the temperature by turning 
the fan on and off while the heater is on all of the time. You will have to change the code to such that the 
output turns on to drive temperature down and off as temperature falls below the setpoint.  You may want to 
place the heater and sensor closer together and open the end of the canister to be able to blow air directly 
onto the pair.  This will change the dynamics of the system. It may cycle faster, perhaps overshoot less, and be 
more susceptible to chatter.  Experiment with it and note your observations.  Realize that every system that 
you work with will have its own unique dynamic characteristics.   
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PID is an acronym for Proportional-Integral-Derivative 
Control.  In this section, we will explore each of these 
methods and how they work together to efficiently control 
a system. 
 

Overview of PID Control 
 
One objective of a process control is to hold a system constant.  In the previous exercise, we used various 
means of cycling the heater of our incubator to maintain a desired temperature. Using differential gap, we 
created an allowable band in which the heater would cycle, causing the temperature to cycle above and below 
the setpoint. In Experiment #4, we saw how we could use pulse-width modulation (PWM) to add energy to our 
system in duty cycles between 0% (fully off) and 100% (fully on).  While these types of control had their 
advantages and disadvantages, PID control allows the greatest control of a system but can be more difficult to 
implement and tune (or adjust) for optimum performance. 
 
Holding a process constant involves continually adding energy that equals the system’s losses exactly.  If the 
system’s losses were constant, the process control would be as simple as applying one steady state level of 
drive.  However, the factors that affect a process do change.  They change in unpredictable magnitudes and at 
unpredictable rates. Compounding this problem is that a system has reaction delays that must be understood.  
An instant change in losses due to a disturbance is not felt immediately, and the change in drive to a system is 
not either.  Process control can be as much an art form as it is a science. 
 
The first step to understanding PID control is that every system has both gains and losses of energy. 

 
Esystem = Ein–Eout 

 
A system is said to be in equilibrium when the energy gained equals the energy lost. 

 
Equilibrium:  Ein = Eout 

 
When in equilibrium our incubator would maintain a constant temperature.  But this is seldom, if ever, the 
case.  Depending on the heater drive and conditions surrounding the incubator, temperature will either be 
increasing or decreasing.  As conditions change, such as room temperature changing, air movement changes 
on the canister, sunlight falling on the canister, or the resistor aging, the amount of heat added and removed 
is seldom constant. 

 

Experiment #6: 
Proportional-Integral- 
Derivative Control 
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Consider other examples of systems, such as an oil-flow system.  The drive element, the pump, is controlled to 
maintain a desired oil flowrate.  A sudden change in the system may be a valve being shut blocking one path 
for oil flow.  Slow change in the system may be corrosion of the piping causing friction or the changing of the 
oil temperature.  The pump needs to adjust in order to compensate for these losses.   
 
One other system to consider is an automobile.  Typically we want the car to maintain a constant speed on the 
highway.  The engine makes up for friction losses from the tires on the pavement and wind losses.  When the 
car is maintaining a constant speed, the system is in equilibrium and our foot keeps the accelerator in 
constant position.  When conditions change, such as the car climbing a hill, the cars velocity changes and it 
begins to slow.  The force of gravity increases on the car and these increased losses remove more energy than 
the engine is supplying and the car begins to slow.  Without depressing the accelerator more will the car 
eventually come to a stop on the hill? No, it will slow to a lower constant speed where once again losses = 
gains and a new equilibrium is reached. 
 
Conditions, or disturbances on our system, can change very rapidly, such as when a gust of air suddenly blows 
over the incubator or very slowly such as the heating element aging. PID control can measure and take action 
on: 

1) How far from the setpoint a system is, or the magnitude of the error. 
2) The duration that an error remains. 
3) How quickly an error occurs in the system, or the rate of change. 

 
The sums of these three evaluations comprise the output drive in an attempt to maintain a system in 
equilibrium.  Figure 6.1 illustrates the evaluation and control of a system for PID control. 
 
The classic PID formula for calculating the controller output is as follows: 

∫ ∆
∆

++= )*()*()*(
t
EKdEtKiEKpCo pid  

Where: 
  Co = controller output or drive 
  Kp = proportional gain 
  E  = error signal 
  Ki = integral gain 
  Kd = derivative gain 
 
The drive equation based on the above is: 
 

%DriveTotal = DrivePROP + DriveINT + DriveDERIV 
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Figure 6.1: PID Control Block Diagram 
 

 
 
In this section, the incubator will be controlled using PID control and the PID equation will be explored and 
illustrated. 
 
Circuit Construction 
 
We will use the same circuit from Exercise #5 (Figure…), but you will manually connect the fan to Pin 19 Vin 
power or regulated 5V when needed for a disturbance.  
 
The following is the full program for this section. We will change values in the PID Control Settings in testing 
the different areas of control. 



Experiment #6: Proportional – Integral – Derivative Control 

Page 148 • Industrial Control Version 1.1 

 
'Program 6.1: PID Control with the StampPlot Interface 
 
'********* PID CONTROL SETTING **************** 
SP CON   990   ' Initialize setpoint to YOUR bias Temp in TENTHS 
Range CON    20   ' Allowable temperature range in TENTHS (20=2F) 
B  CON  50   ' Bias drive setting 
Kp CON    0   ' Proportional Gain Setting in TENTHS (10=Gain of 1) 
Ki  CON  0   ' Integral gain constant in TENTHS (1=Gain of .001) 
Ti     CON    24   ' Interal Reset time (1=~5 seconds 
Kd  CON  0   ' Derivative gain constant 
MinA   CON    75   ' Minimum analog Y axis value 
MaxA CON    120   ' Maximum analog X axis value 
MaxT   CON    600   ' Maximum time in seconds X Axis 
'************************************************* 
 
'***** Configure Plot 
PAUSE 2000  
DEBUG "!TITL PID Control",CR  ' Title Plot  
 DEBUG "!RSET",CR   ' Reset Plot 
DEBUG "!PNTS 1000",CR   ' 1000 data points 
DEBUG "!TMAX ",DEC MaxT,CR  ' Set maximum time 
DEBUG "!AMAX ",DEC MaxA,CR  ' Set analog max 
DEBUG "!AMIN ",DEC MinA,CR  ' Set analog min 
DEBUG "!AMUL .1",CR   ' Analog multiplier of .1 
DEBUG "!TSMP ON",CR   ' Enable time-stamping 
DEBUG "!SAVM ON",CR   ' Save message to file 
DEBUG "!CLMM",CR   ' Clear min/max on reset 
DEBUG "!SHFT ON",CR   ' Enable plot shifts 
DEBUG "!PLOT ON",CR   ' Enable plotting 
     ' Display drive settings 
DEBUG "!USRS SP=",dec SP,"  Kp=",dec Kp,"  Ki=",dec Ki,"  Ti=",dec Ti,"  Kd=",dec Kd,CR 
DEBUG "!RSET",CR   'Reset Plot 
 
' ************** Define constants & variables 
CS   CON  3  ' 0831 chip select active low from BS2 (P3)  
CLK   CON  4  ' Clock pulse from BS2 (P4) to 0831  
Dout   CON  5  ' Serial data output from 0831 to BS2 (P5) 
Heater  CON  8  ' Output pin to heater 
Datain   VAR BYTE  ' Incoming Data (0 to 255)  
Temp   VAR WORD  ' Hold the converted value representing temp 
TempSpan CON  5000  ' Full Scale input span in tenths of degrees.   
Offset   CON  700  ' Minimum temp. Offset, ADC = 0 
Sign  VAR WORD  ' Used to hold sign for calculations 
 
Drive   VAR  WORD  ' Amount of total drive 
Err  VAR   WORD  ' Amount of error present 
P   VAR  WORD  ' Amount of Proportional drive 
I   VAR  WORD  ' Amount of Integral Drive 
D   VAR  WORD  ' Amount of Derivative Drive 
 
PWMCount  VAR  BYTE  ' Counter for amount of time to apply PWM 
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LastErr  VAR  WORD  ' Holds last temperature for derivative drive 
LastErr = 0 
 
IntCount  VAR  BYTE  ' Variable for counting cycles for integral drive 
PWMTime  CON  20  ' Variable defining how long PWM drive should last  
 ' V (20=~5 seconds) 
Ei  VAR  WORD  ' Cumulative error for integral calculations 
Ei = 0     ' Clear cumulative error 
 
'*************** Main loop 
Main: 
 GOSUB Getdata 
 GOSUB Calc_Temp 
 GOSUB Calc_Drive 
 GOSUB Plot_Data 
 GOSUB Drive_Heater 
 GOTO Main 
 
Getdata:    'Acquire conversion from 0831 
 LOW CS    'Select the chip  
 LOW CLK    'Ready the clock line.  
 SHIFTIN Dout, CLK, msbpost,[Datain\9]   'Shift in data  
 HIGH CS    'conversion   
 RETURN     
 
Calc_Temp:    'Convert digital value to  
 Temp = TempSpan/255 * Datain/10 + Offset 'temp based on Span &  
 RETURN    'Offset variables. 
 
Calc_Drive: 
 GOSUB ErrorCalc  'Error Calcs 
 GOSUB PropCalc   'Perform proportional error calcs 
 GOSUB IntCalc   'Perform Integral Calcs 
 GOSUB DerivCalc  'Perform Derivative calcs 
 Drive = (B + P + I + D) 'calculate total drive 
 Sign = Drive   'Sign adjust to max of 100 min 0 
 GOSUB SetSign 
 Drive = ABS Drive MAX 100 
 IF Sign = 1 THEN DriveDone 
 Drive = 0 
  DriveDone: 
 RETURN 
 
'********* Drive the heater 
Drive_Heater:  
 FOR PWMCount = 1 TO PWMTime 'Apply pwm at 220 mSec for each PWMTime repetion 
  PWM Heater,drive * 255/100,220 
 NEXT 
      RETURN 
 
'********* Plot Data 
Plot_Data: 
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 DEBUG DEC Temp,CR   
 
'** Nicely formatted message output for reading (4 lines) 
 DEBUG "Set:", DEC SP,"  Temp:", DEC Temp 
 DEBUG "  %Err:",SDEC Err,"  %B=", DEC B, "  %P=", SDEC P 
 DEBUG "  %I=",SDEC I,"  %D=", SDEC D    
 DEBUG "  %Drive:",SDEC Drive, CR 
'** Comma-seperated message output for import into spreadsheet 
' DEBUG ",",DEC Temp,",",SDEC Err,",",SDEC P,",",SDEC I,",",SDEC D,",",SDEC Drive,CR 
 RETURN 
 
'********** Calculate %Error - Sign adjusted 
ErrorCalc: 
 Err = (SP - Temp)   'Calculate temperature error 
 Sign = Err 
 GOSUB SetSign 
 Err = ABS Err*100/Range  'Calculate % error 
 Err = Err * Sign 
 Return 
 
'*********** Proportional Drive - Sign adjusted 
PropCalc: 
 Sign = Err 
 GOSUB SetSign 
 P = ABS Err * KP + 5/10  'Prop err = %Err * Kp  /10 to scale, +5 to round 
 P = P * Sign 
 RETURN 
 
'********** Integral Drive - Sign Adjusted 
IntCalc: 
 Ei = Ei + Err    'Accumulate %err each time 
 IntCount = IntCount + 1  'Add to counter for reset time 
 IF IntCount < Ti Then IntDone  'Not at reset count? -- done 
 Sign = Ei       
 Gosub SetSign 
 Ei = ABS Ei / Ti   'Find average error over time 
 Ei = Ei * Ki + 5 /10   'Int err = int. err * Ki 
 Ei = Ei * Sign 
 I = I + Ei    'Add error to total int. error 
 Sign = I 
 GOSUB SetSign 
 I = ABS I MAX 100   'Limit to 100-prevent windup 
 I = I * Sign 
 IntCount = 0    'Reset int. counter and accumulator 
 Ei = 0 
  IntDone: 
 RETURN 
 
'*********** DERIVATIVE DRIVE 
DerivCalc: 
 D = (Err-LastErr) * KD   ' Calculate amount of derivative drive 
      ' based on the difference of last error 
  DerivDone 
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 LastErr = Err    ' Store current error for next deriv calc 
       
 RETURN 
 
'********** Set sign of value 
SetSign: 
 IF Sign.bit15 = 0 THEN SignPos 'If signbit is 1, then negative 
 Sign = -1 
 Return 
  SignPos: 
 Sign = 1 
  SignDone: 
 Return 
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Figure 6.2: Main Process Flow 
 

 
 
Figure 6.2 is a flowchart of the main loop for the PID program.  Specifics of each of the processes will be 
discussed as they arise. 
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All microcontrollers have their limitations, as do other systems, such as Programmable Logic Controllers 
(PLCs).  In programming complex operations such as PID, it is important to understand the limitations and 
finding alternative means. 
 
We’ve been dealing with the restriction of integer values, such as temperature being in tenths of degrees.  
One other limitation we’ll deal need to deal with is that of negative numbers.  While the BASIC Stamp can use 
negative values, it cannot divide them or use the MIN and MAX instructions to set limits on their size.  In this 
section both of these will be important.  The values of drive for PID will be negative or positive depending if 
drive should be added to the total or subtracted.  We will also need to limit the maximum values so that we do 
not exceed 100% in certain circumstances, such as total drive. 
 
To perform these tasks, a routine called SetSign is used.  Several routines call it using a GOSUB.  The possibly 
negative value to be manipulated is saved to a word variable Sign.  When SetSign is called, the sign bit 
(bit15) is examined.  If the sign bit is 1, it is a negative value and the variable Sign is set to -1.  If the sign bit is 
0, it is positive and Sign is set to positive 1.  Back in our calling routine, the absolute value of our possibly 
negative number is manipulated.  The result is then multiplied by Sign to return the value back to positive or 
negative.  The range of signed values can be from –32,768 to +32767. 
 
PropCalc: 
 Sign = Err 
 GOSUB SetSign 
 P = ABS Err * KP + 5/10   'Prop err = %Err * Kp  /10 to scale, +5 
to round 
 P = P * Sign 
 RETURN 
... 
 
SetSign: 
 IF Sign.bit15 = 0 THEN SignPos  'If signbit is 1, then negative 
 Sign = -1 
 Return 
  SignPos: 
 Sign = 1 
  SignDone: 
 Return 
 
The first part of program to consider is the total drive calculations. Figure 6.3 is a flowchart for these 
routines. As discussed, the total drive is the sum of 3 different evaluations based on the error. The total drive 
% will then be applied to the heater using PWM for 5 seconds.  This allows a long on-time compared to a 
relatively short off-time when performing other operations. 
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Figure 6.3:  Flowchart of Drive Routine 
 

 
 
 

Drive_Heater:  
 FOR PWMCount = 1 TO PWMTime  'Apply pwm at 220 mSec for each PWMTime repetion 
  PWM Heater,drive * 255/100,220 
 NEXT 
      RETURN 

 
Calc_Drive: 
 GOSUB ErrorCalc    'Error calcs 
 GOSUB PropCalc     'Perform proportional error calcs 
 GOSUB IntCalc     'Perform Integral Calcs 
 GOSUB DerivCalc    'Perform Derivative calcs 
 
 Drive = (B + P + I + D)    'calculate total drive 
 Sign = Drive     'Sign adjust to max of 100 min 0 
 GOSUB SetSign 
 Drive = ABS Drive MAX 100 
 IF Sign = 1 THEN DriveDone 
 Drive = 0 
  DriveDone: 
 RETURN 
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Exercise #1: Bias Drive 
 
As discussed, a system in equilibrium is where the energy gains in a system equal the energy losses.  When a 
system is designed typically the engineers will have determined anticipated average losses on the system.  The 
Bias Drive is the drive needed to compensate for average losses. By designing the system so that a 50% drive 
is sufficient for average losses, provides the ability to add or subtract up to 50% due to other losses or large 
disturbances to the system.  This affords the maximum amount of control. 
 
Modifying our equation slightly: 

∫ ∆
∆

+++= )*()*()*(
t
EKdEtKiEKpCo Bpid  

B = Bias Drive 
 
Or: 
 

%DriveTOTAL = %DriveBIAS + %DrivePROP + %DriveINT + %DriveDERIV 
 
For the eggs in our incubator to hatch healthy chicks, 50% drive on our heater would provide sufficient 
energy to maintain temperature in the incubator near 101.5F with average losses.  Unfortunately, our system 
is not well engineered.  Being a non-insulated plastic canister with a small resistor for a heater, chances are 
that 50% drive will not be sufficient under most circumstances for our desired setpoint. Some limitations on 
our experimental incubator are: 
 

• A bias of 50% PWM drive is insufficient to provide a temperature of 101.5F. 
• Every incubator will have a different stable temperature for 50% bias drive due to many factors. 
• Our incubator is a fragile, steady state system. Factors such as room temperature and vents or fans 

blowing on the canister will shift the temperature.   
• Moving or bumping the incubator will cause air mixing and affect the measured temperature. 

 

 

Exercises 
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We will deviate from our optimum incubator setpoint in order to operate the system around a 50% bias 
temperature.  Note that this bias temperature may fluctuate due to room conditions.  It is recommended that 
the student read through all of the Chapter 6 material first and then try to perform as many hands-on 
portions consecutively as possible. 
 

BpidCo =  

 
%DriveTOTAL = %DriveBIAS 
 
Determining the Bias Temperature: 
 

1) De-energize your system and allow it to cool to room temperature. 
2) Verify that the Drive Control Setting matches the following: 

 
'********* PID CONTROL SETTING **************** 
SP CON   990  ' Initialize setpoint to YOUR bias Temp in TENTHS 
Range CON    20  ' Allowable temperature range in TENTHS (20=2F) 
B  CON  50  ' Bias drive setting 
Kp CON    0  ' Proportional Gain Setting in TENTHS (10=Gain of 1) 
Ki  CON  0  ' Integral gain constant in TENTHS (1=Gain of .001) 
Ti     CON   24  ' Interal Reset time (1=~5 seconds 
Kd  CON  0  ' Derivative gain constant 
MinA   CON    75  ' Minimum analog Y axis value 
MaxA CON    120  ' Maximum analog X axis value 
MaxT   CON    600  ' Maximum time in seconds X Axis 

 
Note that Kp, Ki and Kd are all 0 providing 0 drive from these evaluations allowing only bias drive of 50% to 
the heater. 
 

3) Energize your system and download the program to the BASIC Stamp 2. 
4) Close the debug window and connect on StampPlot Lite. 
5) Reset your BASIC Stamp 2 by pressing “reset” on the Board of Education. 
6) Allow the incubator temperature to stabilize to the find the 50% bias temperature. 
7) Round your stabilized temperature to the nearest whole degree and set it as your SP (setpoint) 

constant (98.8 = 990). 
 
Figure 6.4 is the plot of our test incubator stabilizing. 
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Figure 6.4: Bias Temperature at 50% Drive 
 

 
 
Note the amount of time it took the temperature to stabilize.  In our test, approximately 450 seconds.  In a 
system with a first-order response, such as our incubator, the system requires 5 time-constants (5TCs) to 
stabilize (or reach 99% of the new value) following a step-change in conditions, in this case going from 0% to 
50% drive.  1 time-constant (1TC) for our system would be 450/5 or 90 seconds.  The response time of the 
system is important in tuning a system as you will see later. 
 
Record for your system:  50% Bias Temperature: ______ 

   Time for 5TCs: _____ 
   Time for 1TC:  _____ 
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Expercise #2: Proportional Control 

(Kp*E)BCo pid +=  
%DriveTotal = %DriveBIAS +% DrivePROP 

 
The next evaluation in the PID equation is proportional control of the system.  The amount of drive from 
proportional control is a direct relationship to how much error exists in the system.  The greater the error 
the greater the amount of proportional drive. 
 
Let’s say our setpoint is 101.5F, and a bias of 50% PWM is sufficient to maintain this temperature. If the 
temperature drops to 101.0F, giving a -0.5F error, do we want to drive at 100% PWM, or something lower, to 
bring the temperature back to the setpoint?   
 
For our incubator example, we want to maintain a temperature of 101.5F. The steadier we maintain this 
temperature, the healthier our eggs will be.  It is allowable, though, to go 0.5F above or below this setpoint.  
So our setpoint will be 101.5 with an allowable band of +/- 0.5F, or 101.0F to 102.0F degrees. 
 
If any error correction reaches the upper or lower limits, we want to take full action to return temperature 
back to the setpoint. Any error between the setpoint and the limits will provide a proportional amount of 
drive action.  Figure 6.5 is a graphical representation of the incubator temperature verses the amount of 
drive needed for the given band. 
 

Figure 6.5: Temperature vs. Drive 
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From Figure 6.5, if the temperature is at 101.5F, 50% drive will be used to add heat energy to our system. If 
the temperature drops to 101 F, 100% drive will be used to increase the temperature, and any temperature in 
between will result in a proportional amount of drive. 
 
If the temperature rises above 101.5F, the drive will proportionally decrease to lower the temperature until, 
at 102F, %drive has decreased to 0%.    
 
From the graph, what would the drive be at 101.2 degrees? ______; at 101.7 degrees? _______. 
 
Now let’s look at it mathematically.  The error of our system is calculated by subtracting the current 
temperature from the setpoint: 

Error = Setpoint-Actual 
 
The percent error is found by dividing the error value by the full temperature range and multiplying by 100%: 
 

x100%
FullRange

Error%Error =  

 
For our incubator the full temperature range is: 
 

102.0-101.0 = 1.0F. 
 
If the temperature is 101.2: 

Error = 101.5 – 101.2 = .3 
%Error (E) = .3/1.0*100% = 30% 

 
The general gain formula is: 

∆Input
∆OutputGain =  

 
For our example, we are changing 100% of the drive over 100% of the allowable temperature range: 

 

1
%100
%100

∆Input
∆OutputGain(Kp) ===  

 
Our system would have a proportional gain (Kp) of 1. 
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The amount of proportional drive at 101.2 degrees would be: 
%DrivePROP = Kp*E = 1 * 30% = 30% 
 
The total drive of our system would then be: 

%DriveTOTAL = B+(Kp*E)= 50%+30% = 80%. 
 
Does this values match what you read from the Figure 6.3 for a temperature of 101.2F? 
 
Calculate the total drive for a temperature of 101.7:  __________ 
Compare your value to Figure 6.3.  Do they match?  ________. 
 
One more term to consider is Proportional Band.  Figure 6.3 is termed a 100% Proportional Band because 
the full range of drive covers 100% of our allowable band (101.0-102.0). Does this mean the temperature will 
not exceed our high and low limits? No. This simply means that at those limits our system will be taking full 
action to get the temperature back to the setpoint.  
 
What if we wanted tighter temperature control of our system?  Our allowable band for healthy eggs is still 
101.0 to 102.0, but we can adjust our values to take full control over half the allowable range.  Figure 6.6 is a 
plot of this control. 
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Figure 6.6: Temperature vs. Drive Over 50% of Range 
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In Figure 6.6 the system is driving twice as hard for any deviation from the setpoint.  What would be the 
proportional gain for this system? 

2
%50
%100

∆Input
∆OutputGain(Kp) ===  

 
Note from the equation the system is driving the full range of output over only 50% of the allowable 
temperature range.  This is also known as a 50% Proportional Band because full control action happens over 
50% of the allowable range. 
 
Use the equations to calculate the following at 101.7F: 
 
Error = __________ 
%Error = _________ (Hint: The allowable band is still 1.0) 
Proportional Drive = ________ 
Total Drive = _________. 
 
Note the relationship between proportional gain and proportional band: 
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%50%100*
2
1%100*

Gain nalProportaio
1Band alProportion ===  

What if we wanted a slower responding system? We can define that the full range of drive will be over 
temperatures greater than the allowable range.  If 100% drive were to cover twice as much as the allowable 
range: 
 

5.0
%200
%100

∆Input
∆OutputGain(Kp) ===  

 
Calculate the Proportional band: ________ 
 
Graph the Drive vs. Temperature for this gain: 
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Calculate the following for a temperature of 101.7F: 

Error =    _________ 
%Error =   _________ (Hint: The allowable band is still 1.0) 
Proportional Drive =   _________ 
Total Drive =   _________. 
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Controlling the Incubator: 
 
Theory is nice, but now we need to deal with the temperature inside our actual canister using proportional 
control and some limitations we’ll need to work with. 
 

1) The bias temperature at 50% bias drive will not be 101.5F. The 50% bias temperature for your 
incubator was found in Exercise #1 of this experiment. If need be, repeat that portion to find the 
current bias temperature. This should be done if you think conditions in or around the canister are 
different. For instance if the room temperature is now higher than it was before, your stable 
temperature at 50% bias will stabilize at a higher value. 

2) The BASIC Stamp works in integer math.  Our temperatures are in tenths of degree (101.5=1015), and 
we will want to work with gain settings that are less than 1. 

3) The resolution of the A/D is 0.19 degrees, which would not provide very fine control with an allowable 
temperature band of 101.0 – 102.0.  For these experiments we will increase the allowable band to +/-
1.0F or 100.5F – 102.5F for a range of 2.0F. 

 
In performing these experiments, the general sequence will be to allow the incubator to stabilize at the bias 
temperature.  Once stable, the PID program with the appropriate settings will be downloaded.  After 1 minute 
the fan positioned approximately 1 inch from the canister will be energized manually by connecting the 
positive lead to the Vin supply for 10 seconds. 
 
Figure 6.7 is the flowchart for the error calculations and proportional drive. Notice in the code for the 
proportional calculations the result is divided by 10 to scale our Kp value down from tenths. 
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Figure 6.7:  Error and Proportional Calculations 

 
 
 

'********** Calculate %Error - Sign adjusted 
ErrorCalc: 
 Err = (SP - Temp)    'Calculate temperature error 
 Sign = Err 
 GOSUB SetSign 
 Err = ABS Err*100/Range   'Calculate % error 
 Err = Err * Sign 
 Return 
 
'*********** Proportional Drive - Sign adjusted 
PropCalc: 
 Sign = Err 
 GOSUB SetSign 
 P = ABS Err * KP/10    'Prop err = %Err * Kp  /10 to scale 
 P = P * Sign 
 RETURN 
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PID Control: 100% Proportional Band, Proportional Gain = 1 
 

1) Find the 50% drive bias temperature if needed. Allow the temperature to stabilize at the bias 
temperature. 

2) Set the PID Control settings program 6.1 accordingly, setting the value of SP to your bias 
temperature in tenths and the value of Kp to 10 for a gain of 1. 

3) Disconnect on SPL, download the BS2 program, close the debug window, reconnect on SPL and 
reset your BS2. 

4) Monitor temperature on SPL.  When 1 minute (60 seconds) has passed, energize the fan for 10 
seconds. 

5) Monitor the incubator’s response to the disturbance. 

 
Figure 6.8a: Response with Kp = 1, 100% Band 

 

 
 
Note how the temperature overshoots the setpoint then turns, goes down, overshoots, and goes up again.  
This is termed hunting. Drive is added and removed based on the response of the system to finally settle at 
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the setpoint value. Depending on the needs of your system, PID may be tuned to prevent hunting.  The cruise 
control in our cars might make for an interesting drive if the speed hunting around the setpoint speed! 
 
The user status box at the top of the plot shows the current settings for PID control.  The message window 
displays the setpoint and current temperatures, %Error, and the amount of drive from each evaluation along 
with the total drive. 
 
Let’s do the math to analyze some of these values.  The setpoint is 970 or 97.0F, the bias temperature for our 
testing.  At a temperature of 962 (96.2F) the total drive was 90% with 50% from the Bias drive and 40% from 
the proportional drive. 
 

Error = Setpoint – Temperature = 97.0F-96.2F=0.8F 
%Error = Error/Range * 100 = 0.8F/2F * 100 = 40% 
%DrivePROP = Kd*E = 1*40% = 40% 
%DriveINT and DriveDERIV will be 0 since their gains are 0.  
%DriveTotal = %DriveBIAS + %DrivePROP + %DriveINT + %DriveDERIV =  

= 50% + 40% + 0% + 0% = 90% 
 
The calculations worked! 
 
Using the alternative line for the message file logging in the Display routine, the data saved to the message file 
may be imported into a spreadsheet, such as Excel, for analysis.  It is a simple coma-separated version of the 
message window data suitable for importation and graphing. 
 
'** Comma-seperated message output for import into spreadsheet 
' DEBUG ",",DEC Temp,",",SDEC Err,",",SDEC P,",",SDEC I,",",SDEC D,",",SDEC Drive,CR 
 
Figure 6.8b is the message data imported into Excel will show the error, proportional drive and total drive. 
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Figure 6.8b: Message file plotted in Excel 
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Note that with a proportional gain of 1, the %Error line is barely seen because the %P (Proportional Error) 
exactly overlaps it.  %DrivePROP = %Error.  The amount of proportional error is added to the bias drive of 50% 
and follows the error. 
 
PID Control: 50% Proportional Band, Proportional Gain = 2 
 
Repeat the experiment for a proportional band of 50% at a gain setting of 2. Change Kp = 20 in the control 
settings and run the program. 
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Figure 6.9a: Response with Gain = 2, 50% Band 

 
 
With a gain of 2, note that the response time is slightly faster though there is greater hunting. 
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Figure 6.9b: Data File Plotted in Excel 
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From Figure 6.9b note that at this gain setting the amount of proportional drive (%P) is twice as much as the 
error (%Err). 
 
Verify the drive amounts shown in the message window of Figure 6.7a at 96.7F: 
 

Error =   __________ 
%Error =  __________ 
%DrivePROP =  __________ 
%DriveTOTAL =  __________ 

 
 
PID Control: 20% Proportional Band, Proportional Gain = 5 
 
Too much gain can be unsuitable for control.  Repeat the experiment for a proportional band of 20% at a gain 
setting of 5.   Kp = 50 in the control settings. Figure 6.10 is our SPL result. 
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Figure 6.10: Response with Gain = 5, 20% Band 
 

 
 

Note that the response time of the system is again slightly faster, but there is much more hunting and 
continued instability in the system. 
 
As a final experiment, set the setpoint (SP) temperature substantially higher than the bias temperature, but 
within a controllable temperature range with a proportional gain of 1 (Kp=10).  We tested at 10F above the 
bias temperature (107F).  Plot the results.  Figure 6.11 is the result of our tests. 
 



Experiment #6: Proportional – Integral – Derivative Control 

Industrial Control Version 1.1 • Page 171 

Figure 6.11:  Setpoint 10F (107F) above Bias Temperature 
 

 
 
While trying awfully hard, the temperature is not stabilizing at 107 degrees. If 107F is an achievable 
temperature for the system, why doesn’t it stabilize there? Remember that for our system 50% drive 
stabilized around 97F.  Additional drive is added because an error exists. If the incubator were able to 
stabilize at the setpoint, the error would be 0, providing 0% drive from proportional and only bias drive that 
is insufficient to maintain the temperature creating an error. 
 

%DriveTOTAL = %DriveBIAS + %DrivePROP 
%DrivePROP = Kp*E.  If E = 0 then %DrivePROP = 0%. 
%DriveTOTAL = 50% + 0% 

 
If the setpoint temperature is not the bias temperature, some error MUST exist to provide additional drive 
from the proportional control.  The higher the proportional gain, the smaller the remaining error.  In the next 
section, we will see how Integral Error may be used to drive away this remaining error. 
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Challenge! 
 

1. If the proportional gain were set to .5 (Kp=50), what type of response would you expect from the 
system? Why? 

2. If the temperature is 0.6F below your setpoint, what would the total drive be? 
3. Confirm your theory. 

 
Exercise #3: Proportional+Integral Control 
 

∫++= )*()*( EtKiEKpCo Bpid  

 
%DriveTotal = %DriveBIAS + %DrivePROP + %DriveINT 

 
So far we’ve looked at what occurs when quick disturbances occur to our system in equilibrium. Proportional 
control may be used to drive the temperature back to the desired setpoint. But what happens when the 
disturbance affects the equilibrium of our system over a long period of time? At the end of the last 
experiment it was seen what occurs when the bias drive is not sufficient to make-up for average losses.  
Because some error must exist for proportional drive, the setpoint temperature cannot be maintained. 
 
Integral control can be used to drive-away error remaining due to long lasting disturbances in the system.  
These may be from additional losses or gains of energy that remain for a long period of time.  Consider our 
incubator.  We found a bias temperature at which a 50% bias drive was sufficient to make up for the losses in 
the system maintaining it in equilibrium.   
 
But what would happen if the fan were continuously pointed at the incubator? Continuous system losses 
would be higher.  The 50% bias drive will be insufficient to maintain the temperature and proportional drive 
will respond to the error in an attempt to drive the system back toward to the setpoint.  But as we’ve seen, 
because some error must remain, the setpoint is not maintained. The system will stabilize at a temperature 
below the desired setpoint. 
 
Over time, integral drive can be used to drive away this error, allowing the temperature to reach the setpoint.  
 
Integral drive is also used when a slow approach with long stabilization times are needed to ensure no 
overshoot.  Consider the example of cooking soup.  After cooking a bit, you taste, add an amount of salt you 
feel appropriate for what you would like the final taste to be.  Do you taste immediately and add more?  No, 
you wait a while to allow the salt to blend in, then taste, and add a bit more until you finally reach your 
desired taste.  What if too much salt is added?  Cutting back is a bit more difficult! 
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An industrial example may be that of adding pigment to paint for a desired color.  Electronic circuitry 
monitors paint color and gradually add pigment until the desired color is reached. 
 
In integral drive the amount of error is integrated over time.  The larger the error and the longer it lasts, the 
greater the integral drive will be. 
 
As seen from figure 6.12, the amount of error under the curve is added together to find the integrated error.  
The longer the error exists, the higher integrated total error (ET) will be.   

 
Figure 6.12: Integrating Error 
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The integrated error is multiplied by the integral gain to find the integral drive. 
 

ET = Σ(E1+E2+E3+…) 
%DriveINT = Ki* ET/T 

 
How often should the integral gain be updated or reset?  Integral drive should be based on stabilized readings.  
Depending on the response time of the system this may be anywhere from seconds to hours or even days.  
Just as with adding salt to the soup, if system hasn’t stabilized from the last addition, it would be easy to add 
too much. The stabilization time of our incubator was found back in Experiment #1 of this section and was 450 
seconds for our testing. Figure 6.13 is the flowchart for the integral calculations. 
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Figure 6.13:  Integral Flowchart  

 

 
 

Code to accompany chart above: 
 
'********** Integral Drive - Sign Adjusted 
IntCalc: 
 Ei = Ei + Err    'Accumulate %err each time 
 IntCount = IntCount + 1  'Add to counter for reset time 
 IF IntCount < Ti Then IntDone  'Not at reset count? -- done 
 Sign = Ei       
 Gosub SetSign 
 Ei = ABS Ei / Ti   'Find average error over time 
 Ei = Ei * Ki + 5 /10   'Int err = int. err * Ki 
 Ei = Ei * Sign 
 I = I + Ei    'Add error to total int. error 
 Sign = I 
 GOSUB SetSign 
 I = ABS I MAX 100   'Limit to 100-prevent windup 
 I = I * Sign 
 IntCount = 0    'Reset int. counter and accumulator 
 Ei = 0 
  IntDone: 
 RETURN 
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Controlling the Incubator 
 
In this exercise, the fan will be used to produce a long lasting disturbance to the system.  The fan should be 
placed approximately 6 inches from the incubator.  It will be powered from Vdd (5V – Pin 20 or from the Vdd 
terminal on top of the breadboard) to provide a ‘gentle’ cooling to the canister (you may have to ‘kick-start’ 
the fan to start it turning).  This will produce a long-term disturbance to the system instead of the strong 10 
second disturbances used in the proportional testing.   
 
For proportional gain we will use a very small value to prevent hunting and provide a large error from the 
setpoint.  The integral update time, or reset time, of the integral drive will be approximately 120 seconds (450 
seconds would be more appropriate to allow full stabilization, but that’s a long time to plot!).  Integral gain 
will be set in tenths. 
 
1) Setup Program 6.1 for a 1000% Proportional Band, Gain of 0.1 (Kp=1) and Integral gain of 0(Ki=0) and 

derivative of 0 (Kd=0). 

2) Point the fan at the incubator from a distance of about 6 inches (if you see no response after 30 seconds, 
move it closer in one-inch increments and try again). 

3) Energize the fan from Pin 20 (5V) and ground.  Push-start the fan if needed. 

4) Allow the system to stabilize with this new system loss. 

5) Change the integral gain to .1 (Ki=1), Ti = 24. 

6) Download and plot at the new settings. 

 
Figure 6.14a shows our results of this test with a bias setpoint of 97.0 F and Figure 6.14b is an Excel plot of 
captured data.  
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Figure 6.14a: Long-Term Disturbance Effects 
 

 
 

Note that with a bias setpoint of 97.0F and the disturbance of the fan, the initial stable temperature was 
94.8F.  Over time the drive, and hence the temperature, was slowly bumped up until the actual temperature 
was at the setpoint. 
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Figure 6.14b:  Data Plotted in Excel 
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Note that the initial error (%Err) was 11% at a stable temperature of 94.8F. 
 

%DriveTotal = %DriveBIAS + %DrivePROP + %DriveINT 

%DrivePROP = Kp * ET = 0.1 * (97.0F-94.8F)/2F * 100 = 11% 
%DriveINT = Ki * 0 until the first reset time. 
%DriveTotal = 50% + 11% + 0% 

 
Around 120 seconds, the first integral reset time occurs. All the error samples prior to that time are summed 
and averaged over time.  This is multiplied by the integral gain to find the integral drive. 
 

%DrivePROP = 11% still since the temperature is still 95.8F 
%DrivePROP = Kp * ET = .1 * (11%+11%+11%….[24 of them!])/24 = 11% 
%DriveTotal = 50% + 11% + %11% = 72% 

 
Note that with the higher total drive (%Drive), temperature eventually begins to increase, error decreases, 
and proportional drive decreased.  Integral remains constant until the next reset time around 240 seconds 
when it bumps up based on the average of the errors since the last reset time. 
 
Eventually, temperature returns to the setpoint, the error is driven away, proportional drive is virtually gone 
and integral drive plus the bias drive are maintaining the temperature. 



Experiment #6: Proportional – Integral – Derivative Control 

Page 178 • Industrial Control Version 1.1 

 
%DriveTotal = %DriveBIAS + %DrivePROP + %DriveINT 

%DriveTotal = 50% -1% + 21% = 70% 
 
But what happens when the long lasting disturbance leaves? 
 

1) De-energize the fan.   
 

Figure 6.15: Temperature Following the Removal of a Disturbance 
 

 
 
Figure 6.15 shows what happens when the disturbance is removed.  The additional drive from integral drive 
must be slowly integrated away again.   
 
Integral wind-up can occur if the addition of integral drive is insufficient to force the system back to the 
setpoint.  Integral drive would continually be added.  This would mean that an error would constantly persist 
and the output would ‘wind-up’ to an abnormally high values leading to an unresponsive system.  If our 
program allowed integral drive to wind-up to 20000%, how long would it take to drive it away once a 
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disturbance is removed providing an error of 10%? It is wise to make a provision in your program to limit the 
cumulative integral drive to less than 100% 
 
Challenge! 
 

1. What would the system response be if Integral gain were 1 (Ki=10) and the reset time were 60 
seconds (Ki=12)? Why? 

2. Test and confirm your theory. 

 
Exercise #3: Proportional-Derivative Control 

)*()*(
t
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%DriveTOTAL = %DriveBIAS + %DrivePROP + %DriveDERIV 

 
Derivative control responds to a CHANGE in the error.  The fundamental premise determining derivative drive 
assumes the present rate of change in the error signal will continue into the future unless action is taken.  
Derivative drive, when properly tuned, allows a system to rapidly respond to sudden changes and react 
accordingly.   
 
Figure 6.16 illustrates how we would evaluate the slope of an error signal.  Finding the difference between 
error samples taken at regular time intervals reflects the rate at which the process variable is changing.  The 
greater the difference, the greater the slope and therefore the greater the derivative drive necessary to 
counteract the change. 
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Figure 6.16: Derivative Error 
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Consider the act of balancing yourself on a fallen log.  Typically you perform slow adjustments to your body 
position to maintain balance.  You are responding proportionally to an error that exists in your equilibrium.  
Suddenly, a large gust of wind hits you causing you to rapidly loss balance.  In response you quickly shift to 
counteract the wind.  This action was based on sudden change in your equilibrium over a very short period of 
time.  In our incubator, a rapid changing temperature will be counteracted by a immediate reduction in drive. 
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Figure 6.17: Flowchart and Code for Derivative Control 
 

 
 

Code for this flowchart: 
 
'*********** DERIVATIVE DRIVE 
DerivCalc: 
 D = (Err-LastErr) * KD ' Calculate amount of derivative drive 
    ' based on the difference of last error 
  DerivDone 
 LastErr = Err  ' Store current error for next deriv calc  
  RETURN 

 
 
In this experiment, we will repeat the disturbances on a system with a proportional gain of 2 from Exercise #2.  
Only this time derivative drive will be used in conjunction with proportional.  The fan will once again be 
supplied power from Vin (pin 19) for 10 seconds at 1 inch.  Figure 6.18a is the results of our testing.  Figure 
6.18b is an Excel graph of the data. 
 

1) Settings: Proportional gain of 2 (Kp=20), Ki=0, derivative gain of 1 (Kd=2). 
2) Allow temperature to stabilize on SPL. 
3) Energize the fan for 10 seconds. 
 
(For this test, our bias temperature was 99.0F) 
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Figure 6.18a: Disturbance Response with  
Proportional Gain of 2 and Derivative Gain of 2 

 

 
 
 
Compare this with Figure 6.9a using only proportional drive.  Note that the system stabilizes much faster with 
fewer oscillations and overshoot.  In the message section, there are 2 consecutive reading of 99.0F.  First had 
a %D drive of 40% since there was a 20% error change (.4F) between the previous and current.  The second 
resulted in a %D of 0% because 2 consecutive readings of 99.0F represents no change in error and a slope of 
zero. 
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Figure 6.18b: Graph of Data 
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Note in the above graph how a change in %Err results in a derivative drive.  When error is constant, although 
high, %D is 0.  The greater the change in %Err, the greater %D. A positive going %Err (temperature 
decreasing) results in a positive derivative drive in an effort to stop the change. 
 
Let’s work a little math for a temperature change between samples of 99.4 to 99.0 with the setpoint at 99.0F: 
 

%DriveTOTAL = %DriveBIAS + %DrivePROP + %DriveDERIV 
 
At the time of the first sample, T=99.4: 
 

Error = setpoint – actual = 99.0F-99.4F = -4F 
%Error = Error/Range * 100 = -.4F/2F * 100 = -20% 

 
Temperature dropped to 99.0F at the time of the second sample: 
 

Error = setpoint – actual = 99.0F-99.0F = 0F 
%Error = Error/Range * 100 = 0F/2F * 100 = 0% 
%DrivePROP = %Error * Kp = 0% * 2 = 0% 
%DriveDERIV = (This %Error – Last %Error) * Kd= (0%-20%) * 1 = 40% 
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%DriveTOTAL = %DriveBIAS + %DrivePROP + %DriveDERIV =  
  50%+0%+40% = 90% 

 
Even though temperature returned to the setpoint providing a 0% drive from proportional, the temperature 
dropped from the last reading.  Derivative control took action based on the change in error in an effort to 
stop the dropping temperature by adding drive. 
 
If the next temperature reading was 99.2%, what would the final drive be? 
 

Error =   ________ 
%Error =  ________ 
%DrivePROP =  ________ 
%DriveDERIV =  ________ 
%DriveTOTAL =  ________ 

 
Challenge! 
 

1. What would system response be with a derivative gain of 5? Why? 

2. With a -0.3 change in temperature from the setpoint, what would total drive be? 

3. Test and confirm your theory. 

 
Proportional-Integral-Derivative Summary 
 
With PID control, 3 separate drive evaluations are performed to calculate the final drive to the control 
element.  Bias drive is used to estimate the drive needed to sustain a setpoint under nominal conditions. 
 
Proportional drive acts by adding an amount of drive in proportion to the amount of error that exists 
between the setpoint and the actual value.  The higher the proportional gain the greater the controller’s 
response, though overshoot and oscillations are more likely.  Some error must exist for proportional drive to 
act, often resulting in a stable but offset condition. 
 
Integral drive acts by integrating a long error over time and taking action based on the total error. Integral is 
used to drive away error conditions that persist over a period of time.  Integral control is also a good choice 
for a very slow approach to a setpoint when long system settling times are needed and overshoot is 
undesirable. 
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Derivative control acts by taking action based on a change of error, often from one reading to the next.  It 
evaluates the slope of the changing output and acts in opposition to the change.  Derivative control can 
prevent hunting and oscillations, but too much drive can send a system into wild oscillations. 
 
Each control mode has its own unique characteristic response to maintaining the desired output to it, such as 
response time.  Volumes have been written on the subject of PID control and tuning.  Tuning a PID system 
involves adjusting the software parameters for each factor.  The goal of tuning the system is to adjust the 
gains so the loop will have optimal performance under dynamic conditions.  As mentioned earlier, tuning is as 
much of an art as it is a science.  The basic procedures for tuning a PID controller are as follows.  This 
procedure assumes you can provide or simulate a quickstep change in the error signal: 
 

1. Turn all gains to 0 

2. Begin turning up the proportional gain until the system begins to oscillate.   

3. Reduce the proportional gain until the oscillations stop, and then drop it by about 20 % more. 

4. Increase the derivative term to improve response time and system stability.   

5. Next, increase the integral term until the system reaches the point of instability, and then back it off 
slightly.   

 
As you gain experience in embedded control, you will see that the characteristics of the process will 
determine how you should react to error.  Consider the following three real-world applications. 
What are the important characteristics of these processes that will determine the suitable control scheme?  
What mode(s) of control do you feel would work the best?  
 

1) Similar to our incubator system, the first application is a home project that uses the LM34 to 
measure the temperature of a 20-gallon aquarium.  Water temperature is maintained within  + 1 
degree of 80 oF by varying the duty cycle of a 200-watt heater.  Room temperature varies from 65 
to 75 degrees.   

 
2) The second application controls the acidity (pH) in the production of a cola soft drink.  The plant’s 

water supply has a pH of 7.2 to 7.4.  The flow stream of water into a batch of soda must be 
maintained at a pH of 6.8.   An upstream valve is opened accordingly to release phosphoric acid 
into the stream.  The pH sensor is relatively slow.  The amount of acid needed varies with incoming 
pH and water flow rate.        

 
3) In a plant science research facility at San Diego State University, the surface temperature of a 

plant’s leaf must be held constant.  The plant is contained in a small (shoebox sized) greenhouse.  A 
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very fast thermocouple sensor rests on the leaf and measures temperature.  Disturbances such as 
changes in wind, sunlight, and plant metabolism can happen quickly and in high magnitudes.   

 
We have just scratched the surface of process control theory through feedback. Our focus has been limited to 
control action based on feeding back information from the output of our process. When disturbances affect 
our process, changes in the output are detected and generate an error signal.  PID is tuned to drive the error 
away as quickly as possible. Tight control of the process variable is possible with PID, but the fundamental 
premise of feedback control is to respond to error. Error is expected and, to a certain degree, tolerated. As 
we leave this chapter, consider an alternative to feedback control. That is feed-forward control.  In feed-
forward control you measure those factors that disturb a process. Understanding how they affect the 
variable we are holding constant will allow for output action to be taken before an error signal results.  If you 
could measure changes in ambient temperature and wind speed from the fan, could you use this information 
to better control our incubator?  Interesting concept isn’t it?                         
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1. Would on/off control of the system be suitable for PID control?  Explain. 
 
 
2. Which type of control (proportional, integral, or derivative) would be best suited for the following? 
 

a. To return a system to the setpoint based on the difference between Actual temperature and the 
setpoint due to a short-lived disturbance: ________________. 

b. To minimize the effect that a quick disturbance has on the system: ______________. 
c. To reduce the effect that a long-term disturbance has on the system: ______________. 

 
 
3. A system has a setpoint of 101.5 degrees, and an allowable band of +/- 0.5 degrees.  For a 50% 

proportional band, what would be the proportional gain? ____________. 
 
 
4. A system has a setpoint of 101.5 with a gain of 3.  If the Actual temperature were 101.2, what would be 

the drive due to proportional error? ___________ 
 
5. A system has a derivative gain of 2.  If the temperature dropped from 101.8 to 101.3 between readings, 

with a setpoint of 101.5, what would be the error due to derivative drive? __________. 
 

 

Questions and Challenge 
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Final Control Challenge 
 
From a cold condition (incubator at room temperature), find the values of PID control which will bring the 
incubator to an operating temperature of 95 degrees the quickest with minimal overshoot and hunting.  
Graph and record your results (note the graph scales): 
 
Kp=____  Ki=____  Ti=____  Kd = ____ 
 
Time first reached 95.0F: _________  
 
Maximum value reached: (Time)_________  (Value) __________ 
 
Next minimum reached:  (Time)__________ (Value) ___________ 
 
Capture a screen shot (ALT-Prt Scrn) and print using MS Paint. 
 
Find a system: 
 
Find an example of a system that either does or could employ PID control.  Discuss how PID control may be 
implemented to control it. 
 
Alternative Systems to maintain: 
 

1. Use the sample and hold circuit (Figure 2.17) from Experiment #2.  Physically connect the heater 
and sensor with an appropriate material (non-conductive and can withstand the heat).  Change 
the PWMtime 1 because of the much smaller mass and holding of output.  Find the 50% bias 
temperature and attempt to regulate using PID control. 

 
2. Use the output of Pin 8 (drive output without the sample and hold) to drive a solid-state relay 

controlling a lamp.   Place lamp and sensor in an appropriate container.  Regulate temperature in 
this larger incubator system. 
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Microcontrollers, such as the BASIC Stamp can be good at 
dealing with very short time periods, such as milliseconds 
or seconds, but there exist many processes that depend 
on keeping accurate track of real time (time of day) and 
possibly even the date or day of the week. 
 

Some examples include heating controls for buildings to set the temperature lower after working hours to 
conserve power; annealing a metal by heating at different temperatures for specific time periods to temper 
or strengthen the metal; and logging data over long periods of time for later retrieval and analysis. 
 
This experiment will explore taking action based on specific time of day, action taken based on time intervals, 
and logging and retrieving data.  For this we will need to add real-time features to the circuit built in 
Experiment #5.  Connect the DS-1302 Real Time Clock (RTC) as illustrated in Figure 7.1c and the pushbutton in 
Figure 7.1d.  Figure 7.2 is a board layout sample for placing all the components. 
 
The DS1302 RTC uses an external 32.767kHz crystal oscillator for a time base.  Be sure to connect the crystal 
as close as possible to the IC to maximize time reliability (distance will create more error due to the 
capacitance effects of the breadboard). The RTC is similar to the BASIC Stamp in that data is stored in 
registers (RAM memory) that may be written and read. These registers hold the time and date as seconds, 
minutes, hours, month, etc.  The DS1302 also has RAM available for general data storage by the user.  For our 
purposes we will use only the time of day features of the chip. Please see the DS1302 data sheets and Parallax 
application notes concerning additional features. 
 
Just as with the ADC0831 A/D converter, data is serially shifted into the BASIC Stamp 2 from the IC. This will 
allow us to access the current time as maintained by the DS1302.  In order to set the current time, we can 
place the IC in a 'write-mode' and serially shift data from the BASIC Stamp 2 into the IC. 
 
Data for the time (and date) is maintained in the DS1302 as Binary Coded Decimals (BCD).  This is a subset of 
the Hexadecimal number base.  In Hexadecimal (base 16) a byte is broken up into a high and low nibble, and 
each is read as a digit.   
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Figure 7.1: Complete Circuit with Real Time Clock 
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Figure 7.2: Sample Component Layout for Experiment #7 
 

 
   
Take for example the binary number: 01000110.  In binary, each place is a higher power of 2, and the decimal 
equivalent would be:  64+4+2 = 70.  With an 8-bit binary number we have a possible decimal range of 0-255. 
 
In Hexadecimal, the byte is broken down into nibbles and converted individually: 

0100 0110 
              4      6 
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This hexadecimal number is typically written as 86H (Intel format), $86 (Motorola format) or 8616 (Scientific 
format).  Since a single unique number represents each nibble, we have a range in binary from 0000 to 1111, 
or decimal 0-15.  In Hexadecimal the values of 10 to 15 are represented using the letters A to F.  The 
hexadecimal full range of  a byte of data is $00 to $FF.  The binary number 10101110 is be represented in 
Hexadecimal as $AE. 
 

Decimal Binary Hexadecimal Decimal Binary Hexadecimal 
0 0000 0 8 1000 8 
1 0001 1 9 1001 9 
2 0010 2 10 1010 A 
3 0011 3 11 1011 B 
4 0100 4 12 1100 C 
5 0101 5 13 1101 D 
6 0110 6 14 1110 E 
7 0111 7 15 1111 F 

 
In Binary Coded Decimal, each nibble is again used to represent a single digit, but since it is a coded DECIMAL 
number, the valid ranges can only be from 0-9 for each nibble.  Our first example of 01000110 is 46BCD (a valid 
BCD number) and $46 (a valid hexadecimal number).  Our second example of 10101110 would be $AE (valid 
hexadecimal), but an INVALID BCD value since A and E are not valid decimal numbers. 
 
Our programs will use the hexadecimal notation in setting, or checking the times of the RTC.  Additionally, the 
RTC is set to use a 24-hour clock, so a time of 1:00 PM will be 13:00. 
 
Exercise #1: Real Time Control 
 
In this first exercise we will simulate a night-setback thermostat of a building.  During normal working hours, 
temperature will be kept at a higher temperature than during the night when energy conservation is needed.  
To simplify our code, we will use On/Off control instead of the more appropriate control of differential-gap. 
 
Since we will be using our incubator, and to ensure the temperature is above your room temperature, we will 
use values 100F for working hours and 90 F for nighttime hours.  The times for adjusting the temperature up 
for the day is at 6:00 AM, or 06:00 hours.  The time to turn the thermostat down will be 6:00 PM or 18:00 
hours. 
 
Program 7.1 is the code for experiment. 
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'Program 7.1 - Real Time On/Off-Control. 
'This program will adjust temperture to 100F between the hours 
'of 06:00 - 18:00 and 90F between 18:00 and 06:00. 
 
'***** Initialize Settings ******* 
Time   =  $0553  ' Define initial time 
Seconds  = $00 
CTimeLow  CON  $1800  ' Define time to go low temp. 
CTimeHigh  CON  $0600  ' Define time to go high temp. 
 
LowTempSP  CON  900  ' Define low temp in tenths of degrees. 
HighTempSP  CON  1000  ' Define high temp in tenths of degrees. 
'********************************* 
 
GOSUB SetTime    ' Set RTC (Remark out if time ok) 
Setpoint = LowTempSP   ' Set initial temperature 
CTime = CTimeHigh   ' Set initial change time 
Seconds = $00 
 
 
' Define A/D constants & variables 
      
CS   CON  3  ' 0831 chip select active low from BS2 (P3)  
CLK   CON  4  ' Clock pulse from BS2 (P4) to 0831  
Dout   CON  5  ' Serial data output from 0831 to BS2 (P5) 
Datain   VAR  BYTE  ' Variable to hold incoming number (0 to 255)  
Temp   VAR  WORD  ' Hold the converted value representing temp 
 
TempSpan CON  5000  ' Full Scale input span in tenths of degrees.   
Offset   CON  700  ' Minimum temp. Offset, ADC = 0 
Setpoint  VAR  WORD  ' Target Temperature 
 
' Define RTC Constants 
' Register values in the RTC 
SecReg  CON %00000 
MinReg   CON %00001 
HrsReg  CON %00010 
CtrlReg  CON %00111 
BrstReg  CON %11111 
 
'Constant for BS2 Pin connections to RTC 
RTC_CLK  CON 12  ' Clock pin 
RTC_IO      CON    13  ' I/O pin 
RTCReset CON 14  ' Reset pin 
 
'Real Time variables 
RTCCmd   VAR  BYTE 
RTemp  VAR BYTE 
 
Time  VAR  WORD  ' Word to hold full time 
Hours  VAR TIME.HIGHBYTE ' High byte is hours 
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Minutes  VAR TIME.LOWBYTE  ' Low byte is hours 
Seconds  VAR BYTE 
 
'Time to change variables 
CTime  VAR WORD   ' Word to hold full time 
CHours  VAR  CTime.HIGHBYTE  ' High byte is hours 
CMinutes VAR  CTime.LOWBYTE  ' Low byte is minutes 
CSeconds VAR Byte 
 
'Configure Plot 
PAUSE 500     ' Allow buffer to clear 
DEBUG "!RSET",CR    ' Reset plot to clear data 
DEBUG "!TITL Timer On/Off Control",CR 
DEBUG "!PNTS 4000",CR    ' 4000 sample data points 
DEBUG "!TMAX 900",CR    ' Max 900 seconds 
DEBUG "!SPAN 70,120",CR   ' 70-120 Degrees 
DEBUG "!AMUL 0.1",cr    ' Multiply data by 0.1 
DEBUG "!CLMM",CR    ' Clear Min/Max 
DEBUG "!CLRM",CR    ' Clear messages 
DEBUG "!TSMP ON",CR    ' Time Stamp on 
DEBUG "!SHFT ON",CR    ' Enable plot shift 
DEBUG "!PLOT ON",CR    ' Start plotting 
DEBUG "!RSET",CR    ' Reset plot to time 0 
 
Main:  
 PAUSE 500 
 GOSUB ReadRTCBurst 
 GOSUB TimeControl 
 GOSUB Getdata 
 GOSUB Calc_Temp 
 GOSUB Control 
 GOSUB Display 
 GOTO Main 
 
Getdata:     ' Acquire conversion from 0831 
 LOW CS     ' Select the chip  
 LOW CLK     ' Ready the clock line.  
 SHIFTIN Dout, CLK, MSBPOST,[Datain\9] ' Shift in data  
 HIGH CS     ' Stop conversion   
 RETURN     
 
Calc_Temp:     ' Convert digital value to  
 Temp = TempSpan/255 * Datain/10 + Offset' temp based on Span & Offset variables. 
 RETURN       
  
Control:     ' Maintain temperature around setpoint 
 IF Temp > SetPoint THEN OFF 
 HIGH 8 
 RETURN 
 
Off: 
 LOW 8 
 RETURN 
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Display:    'Display real time and time for next change and send data for plotting 
 DEBUG "!USRS Current Time:", HEX2 hours,":",HEX2 Minutes,":",HEX2 seconds 
 DEBUG "     Next Change at:",HEX2 Chours,":",HEX2 CMinutes,CR  
 DEBUG DEC Temp,CR 
 DEBUG IBIN OUT8,CR 
 RETURN 
 
SetTime: 
' ****** Initialize the real time clock to start time 
  RTemp = $10 : RTCCmd = CtrlReg : GOSUB WriteRTC   

' Clear Write Protect bit in control register 
  RTemp = Hours : RTCCmd = HrsReg : GOSUB WriteRTC ' Set initial hours 
  RTemp = Minutes : RTCCmd = MinReg : GOSUB WriteRTC ' Set initial minutes 
  RTemp = Seconds : RTCCmd = SecReg : GOSUB WriteRTC ' Set initial seconds 
  RTemp = $80 : RTCCmd = CtrlReg : GOSUB WriteRTC  

'Set write-protect bit in control register 
Return 
 
WriteRTC:     'Write to DS1202 RTC 
  HIGH RTCReset 
  SHIFTOUT RTC_IO, RTC_CLK, LSBFIRST, [%0\1,RTCCmd\5,%10\2,RTemp] 
  LOW RTCReset 
RETURN 
 
ReadRTCBurst:     'Read all data from RTC 
  HIGH RTCReset 
  SHIFTOUT RTC_IO, RTC_CLK, LSBFIRST, [%1\1,BrstReg\5,%10\2] 
  SHIFTIN RTC_IO, RTC_CLK, LSBPRE, [Seconds,Minutes,Hours] 
  LOW RTCReset 
RETURN 
 
TimeControl:     'See if time for a change 
 IF (Time = CTimeLow) AND (Setpoint = HighTempSP) THEN LowTemp 
 IF (Time = CTimeHigh) AND (Setpoint = LowTempSP) THEN HighTemp 
 Return 
 
LowTemp:     'Change to evening temperatures 
 Setpoint = LowTempSP 
 DEBUG "Time: ", HEX2 Hours,":",HEX2 Minutes,":",HEX2 Seconds 
 DEBUG "-- Setpoint = ", DEC SetPoint/10,".0",CR 
 CTime = CTimeHigh 
 RETURN 
 
HighTemp:     'Change to daytime temperatures 
 Setpoint = HighTempSP 
 DEBUG "Time: ", HEX2 hours,":",HEX2 minutes,":",HEX2 seconds 
 DEBUG "-- Setpoint = ",DEC SetPoint/10,".0",CR 
 CTime = CTimeLow 
 RETURN 
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Figure 7.3: Night Setback Flowchart 
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Note that the program will reset the time to 05:53 every time the BASIC Stamp is reset.  This can occur from 
program loading, manual Stamp reset, power supply cycling, and sometimes the COM port or computer 
cycling.  The start time is appropriate for what we are discussing in this section, but in later sections you may 
want to set the values of the start-time to actual values.  
 
'***** Initialize Settings ******* 
Time   =  $0553   ' Define initial time 
Seconds  = $00 
CTimeLow  CON  $1800   ' Define time to go low temp. 
CTimeHigh  CON  $0600   ' Define time to go high temp. 
 
LowTempSP  CON  900   ' Define low temp. 
HighTempSP  CON  1000   ' Define high temp. 
'********************************* 
GOSUB SetTime     ' Set RTC (Remark out if time ok) 
 
Note: If power is removed from the DS1302 Real Time Clock it will power-up with unpredictable values in the 
time registers with Gosub SetTime remarked out. 
 
The times for changing temperature and their new values are also set here.  GOSUB SetTime sets the real 
time clock to the specified time.  Once the proper time is set, this line may be remarked out and downloaded 
again to prevent the time from being reset to 05:53 if the BASIC Stamp is reset. 
 
The program uses two sets of variables for time, one to set/hold the current time, and another to hold the 
time we wish to change the thermostat.  Note that the word variable of Time and CTime are further broken 
down into Hours and Minutes: 
 
Time  VAR    WORD   ' Word to hold full time 
Hours  VAR TIME.HIGHBYTE  ' High byte is hours 
Minutes  VAR TIME.LOWBYTE  ' Low byte is hours 
 
The variable Hours is assigned to be the high byte of the word variable Time, or those two BCD positions 
representing the hour.  The same is true for minutes and the lower 2 positions.  This is a very powerful tool 
when parts of a single variable need to be addressed individually. 
 
Program 7.1 starts time 7 minutes before switching to the working-hours temperature.  This should provide 
time for temperature to stabilize at the lower temperature.  Figure 7.4 is a plot of the run. 
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Figure 7.4: Time-Controlled 'Building Heating’ 
 

 
 
The StampPlot Lite user status box displays the current time and the time that the next change is set to occur. 
The time in the status box may appear to be changing at irregular intervals, but that is a result of timing of the 
BS2 in displaying the data and not the time kept by the RTC. The message area displays both the time a change 
occurred and the new setpoint.   
 
The plot illustrates On/Off control at the 90 F setpoint, and the switch to the 100 F setpoint at 06:00. Using 
the RTC, adding more output devices, and expanding the control section of the code, we could add numerous 
time-based events to occur over the course of a day. 
 
Download and run program 7.1.  Monitor with StampPlot Lite through at least the 06:00 change. You will need 
to wait another 12 hours to see if it switches back to the low setpoint at 18:00... Have time to wait? 
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Questions and Challenges: 
 
1) The time data stored in the DS1302 uses the ______ number system. 

 
 
2) Add a temperature setting of 95 F to be enabled between 4:00PM (16:00) and 6:00 PM (18:00). Modify the 

starting time and initial temperature to test both times. 
 
 
3) Use the LED on P8 to simulate a house lamp.  Add code to energize it at 8:00 PM (20:00) and de-energize 

it at 11:00 PM (23:00).  Modify the starting time of RTC to test both times. 
 
 
Exercise #2: Interval Timing 
 
Instead of having events occur at defined times of the day, often a process may need to perform actions at 
certain intervals of time. The annealing process is one such process.  In this example a metal is heated at a 
given temperature for a set amount of time, raised to another temperature for a set amount of time, and 
then cooled to yet another temperature. This tempers the metal and gives it certain desirable characteristics, 
such as hardness and tensile strength.  
 
Since we are dealing with intervals of time instead of absolute times, we will need to perform calculations to 
find the target time that marks the end of an interval.  The time interval must be added to the start time of 
the temperature phase.  This sounds simple, but it isn’t. 
 
If you remember, our time keeping is performed in BCD, a subset of hexadecimal. When adding values 
together for time, the BASIC Stamp 2 is working in hexadecimal. Take the example of 38 seconds + 5 seconds.  
We know this should yield a result of 43 seconds, but since we are really adding $38 + $05 (hexadecimal), our 
result is $3D (counting 5: $39, $3A, $3B, $3C, $3D). If we compare that value to a time from the RTC, it will 
never occur! 
 
We need to decimal adjust the result.  This is done by checking whether the digit exceeds the legal BCD range ( 
>9) and adding 6 if it does.  Test this with the above result: 
 
$3D + $06 = $43 (counting 6: $3E, $3F, $40, $41, $42, $43).  Success!  We now have the result we needed for 
BCD values. 
 
Some other issues we need to contend with is that either the one's or ten's place may need to be adjusted.  
Depending on the result we may need to carry over into our minutes or hours.  Seconds and minutes need to 
roll over at 60, while hours needs to roll over at 24. 
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This is the general sequence, or algorithm, our program will use: 
• Check whether the one's place in seconds is legal BCD (<$A). 
¾ No: Add 6 to seconds. 

• Check whether the seconds exceeded <60. 
¾ No: Subtract 60 from seconds.  Add one to minutes. 

• Check whether the one's place in minutes is legal BCD (<$A). 
¾ No: Add 6 to minutes 

 
Here’s the code: 
 
AdjustTime:   'BCD Time adjust routine 
  IF Cseconds.lownib < $A THEN HighSec 
  Cseconds = Cseconds + 6 
 HighSec: 
  If Cseconds < $60 Then LowMin 
  Cseconds = Cseconds - $60 
  Cminutes = Cminutes + 1 
 LowMin: 
  IF Cminutes.lownib < $A THEN HighMin 
  Cminutes = Cminutes + 6 
 HighMin: 
  IF Cminutes < $60 THEN LowHours 
  CMinutes = Cminutes - $60 
  Chours = Chours + 1 
 LowHours: 
  IF CHours.lownib < $A THEN HighHours 
  Chours = Chours + 6 
 HighHours: 
  IF Chours < $24 THEN AdjustDone 
  Chours = Chours - $24 
 AdjustDone: 
  RETURN 
 
There is one case where this algorithm won't provide the correct results:  When we add a value greater than 6 
in any position when the place exceeds 7.  Take the example of $58 + $08.  Adding in hex we get $60.  This 
returns a valid BCD number, just not one that is computationally correct for BCD.  An easy fix for adding 8, is 
to add 4, adjust, then add 4 more and adjust again.  Easier yet would be to not choose timing intervals 
containing the digits 7, 8, or 9! 
 
In this section we will simulate this process with our incubator, but keep in mind annealing typically heats in 
thousands of degrees.  This is the sequence our annealing process will follow: 
 
• Phase 1: Heat at 95.0 F for 5 minutes. 
• Phase 2: Heat to 100 F for 15 minutes. 
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• Phase 3: Cool to 85.0 F for 10 minutes. 
• Process complete, start over for next material sample. 
 
Make the following changes/additions to program 7.1 for Program 7.2. 
 
' Program 7.2:  Interval Timing 
' Controls temperature at 3 levels for set amount of time 
 
'****** Initialize Settings ***** 
Time  =  $1200     ' Time to set clock 
Seconds = $00 
 
PTemp1 CON  950     ' 1st phase temperature 
PTemp2  CON  1000     ' 2nd phase temperature 
PTemp3  CON  850     ' 3rd phase temperature 
 
       ' Do not use digits 7 or above 
PTime1  CON  $05     ' Length of phase 1 
PTime2  CON  $15     ' Length of phase 2 
PTime3  CON  $10     ' Length of phase 3 
'******************************* 
 
Gosub SetTime      ' Set clock (Remark out once set) 
Setpoint = PTemp1     ' Initial setpoint to 1st phase temp 
Gosub ReadRTCBurst     ' Get clock reading 
CTime = Time      ' Set Change time to current 
CMinutes = Minutes + PTime1    ' Add Phase 1 time 
Gosub AdjustTime     ' BCD adjust time 
 
 
' Define A/D constants & variables 
 
(Middle section of code remains unchanged) 
 
TimeControl:      ' Check if ready for change 
 IF (Time = CTime) AND (Setpoint = PTemp3) THEN Phase1 
 IF (Time = CTime) AND (Setpoint = PTemp1) THEN Phase2 
 IF (Time = CTime) AND (Setpoint = PTemp2) THEN Phase3 
 Return 
 
Phase1:       ' Phase 1 - Set for phase 1 
 Debug "Phase 3 Complete - Next Sample",CR 
 Debug "!BELL",CR 
 Setpoint = PTemp1 
 Cminutes = Cminutes + PTime1 
 GOTO SetNext 
 
Phase2:       ' Phase 2 - Set for phase 2 
 DEBUG "Phase 1 Complete",CR 
 Setpoint = PTemp2 
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 Cminutes = Cminutes + PTime2 
 GOTO SetNext 
  
Phase3:       ' Phase 3 - Set for phase 3 
 DEBUG "Phase 2 Complete",CR 
 Setpoint = PTemp3 
 Cminutes = Cminutes + PTime3 
 
SetNext: 
 GOSUB AdjustTIme    ' BCD adjust time 
 DEBUG "Time: ", hex2 hours,":",hex2 minutes,":",hex2 seconds 
 DEBUG "-- Setpoint: ", dec setpoint,cr 
 RETURN 
 
AdjustTime:      'BCD Time adjust routine 
  IF Cseconds.lownib < $A THEN HighSec 
  Cseconds = Cseconds + 6 
 HighSec: 
  If Cseconds < $60 Then LowMin 
  Cseconds = Cseconds - $60 
  Cminutes = Cminutes + 1 
 LowMin: 
  IF Cminutes.lownib < $A THEN HighMin 
  Cminutes = Cminutes + 6 
 HighMin: 
  IF Cminutes < $60 THEN LowHours 
  CMinutes = Cminutes - $60 
  Chours = Chours + 1 
 LowHours: 
  IF CHours.lownib < $A THEN HighHours 
  Chours = Chours + 6 
 HighHours: 
  IF Chours < $24 THEN AdjustDone 
  Chours = Chours - $24 
 AdjustDone: 
  RETURN 
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Figure 7.5: Interval Timer Plot 
 

 
 
Figure 7.5 is a screen shot of a sample run.  Notice there is 3 distinct temperature phases, and then it repeats. 
 
Download and run program 7.2.  Use StampPlot Lite to monitor your system. 
 
Questions and Challenges: 
 
1) Why is using the RTC preferable for long-interval timing instead of PBASIC Pause commands? 
 
 
 
2) Add the following hexadecimal values and decimal adjust the results (show work): 

$15 + $15 
 
 
 
3) Modify the program to add a 5-minute phase 4 at 80.0 F. 
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Exercise #3: Data Logging 
 
Data logging does not fall into the area of process-control, but it is an important subject, and since the RTC is 
connected, this is an appropriate time to discuss it.  The majority of our experiments have used StampPlot 
Lite to graphically display current conditions in our system.  Of course, one of the biggest benefits of 
microcontrollers are that they are self-contained and do not require a PC.  All the experiments in this text 
would operate properly whether the data was being plotted on a PC or not.  We simply wouldn't have any 
direct feedback of the status. 
 
Data logging is used to collect data and store it locally by the microcontroller.  This data may then be 
downloaded later for analysis.  Some examples of this include remote weather stations and Space-Shuttle 
experiments.  Due to location or other factors, it may not be practical to be collecting data on a PC in real 
time. 
 
When data is logged to memory, it is important to make sure the hardware, programming, and time keeping is 
as stable as possible.  The data-logger may not be accessed for very long periods of time.  Unintentionally 
resetting the Stamp will usually lose your data and start the programming over.  The Stamp is easily reset by 
pressing the reset button, by connecting it to a computer sometimes, or possibly even a temporary loss 
power. 
 
Just as BASIC Stamp programs are stored in non-volatile memory (remains with loss of power) in EEPROM, we 
may also write data directly into the EEPROM.  The BASIC Stamp 2 has 2048 bytes of available EEPROM 
memory for program and data storage.  Figure 7.6 shows the BASIC Stamp 2 memory map. Programs are 
stored at the end of memory, allowing us to use the top of memory for data. 
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Figure 7.6: BASIC Stamp 2 Memory Map 
 

 
 

When data is logged, we will need to retrieve from the unit both the value and time that a reading was 
recorded.  In recording the data, the time of the data may be recorded into memory along with the value.  
This would require 3 bytes to be used for each measurement: Hour, Minute and Value (optionally, the second 
may be recorded depending on the need).  Or, we can record the time that the data recording commenced or 
started; storing only the data at a known interval the program can then extrapolate the time of each 
measurement. This only requires 1 byte per measurement for the value with a one-time recording of the start 
time.   
 
But what happens if the controller is inadvertently reset, such as when connecting it to the computer for the 
data dump?  What would happen if the start time or the current log sample location were lost?  What if the 
RTC was reset at some point so the time clock was reset?  We can also use the EEPROM to keep track of 
important data, such as the start time and next memory location in the event the controller is reset 
preventing important data from being lost.  The program we have developed helps to ensure data is not lost 
on inadvertent resets. 
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A power outage is one eventuality our program will not deal with.  Upon power loss, the BS2 will be able to 
recover current data, but the RTC will probably contain non-valid times.  Some possible fixes for this are 
running the project off a battery, or adding a high-capacity capacitor to the RTC as per the data sheets.  A 
‘super-cap’, a gold-plated capacitor can maintain the RTC time for many hours or even days. One other 
option may be to continually write the current time to EEPROM so that in the event power is lost, the most 
recent time may be written back to the RTC.  But EEPROMs have limited write-cycles.  After several thousand 
writes the EEPROM will eventually fail, so we may not want to repeatedly write to the same location. 
 
How much data can we hold?  After the program is downloaded, there is approximately 700 bytes left of the 
original 2K of EEPROM in the BASIC Stamp 2.  This will allow us to store 700 logged pieces of data.  At 5-
minute intervals, how long could we store data before memory is full?  Some other options for storing data 
may be on the RTC in general user registers, or on a separate device, such as a serial EEPROM. 
 
Note: Do not log more data than the EEPROM has room for – overwriting code space will cause the BASIC 
Stamp program to fail! 
 
The WRITE command is used to write data into memory: 
 

WRITE Memory Address, byte value 
 
The READ command is used to read data from memory into a variable: 
 

READ Memory Address, byte variable 
 
We will use the DS1302 as an interval timer that will control when samples are taken.  For this experiment we 
will collect outside temperature over a long period of time and then download the results to StampPlot Lite. 
 
Program 7.3 is the code for our data logger.  It is sufficiently different from our other programs to require a 
full listing though much of the code can be re-used. 
 
'Program 7.3 - Real Time Data Logging 
'This program will record in EEPROM memory the temperature 
'at the specified intervals using the real time clock. 
 
'*** Set Init. Time and Logging Interval ************** 
Time  = $2246    ' Initialization Time 
 
' Do not use digits > 6 
Interval CON  $05   ' Sample interval (in BCD minutes) for logging 
 
Samples CON    500    ' Number of samples to acquire 
Stop_Reset   CON 0   ' When full, 0=reset, 1 = stop logging 
'****************************************************** 
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'Define RTC Constants 
'Register values in the RTC 
SecReg  CON %00000 
MinReg   CON %00001 
HrsReg  CON %00010 
CtrlReg  CON %00111 
BrstReg  CON %11111 
 
'Constant for BS2 Pin connections to RTC 
RTC_CLK  CON 12 
RTC_IO      CON  13 
RTCReset CON 14 
 
'Real Time variables 
RTCCmd   VAR  BYTE 
RTemp  VAR BYTE 
 
' Current Time Variables 
Time  VAR WORD 
Hours  VAR Time.HIGHBYTE 
Minutes  VAR Time.LOWBYTE 
Seconds  VAR BYTE 
 
' Log-Time variables 
LTime  VAR WORD 
LHours  VAR  LTime.HIGHBYTE 
LMinutes VAR LTime.LOWBYTE 
LSeconds VAR BYTE 
 
' Start time variables 
STime  VAR WORD 
SHours  VAR  STime.HIGHBYTE 
SMinutes VAR  STime.LOWBYTE 
 
MemAddr VAR   WORD    ' Current memory location for storage 
 
' Define A/D constants & variables 
CS   CON  3   ' 0831 chip select active low from BS2 (P3)  
CLK   CON  4   ' Clock pulse from BS2 (P4) to 0831  
Dout   CON  5   ' Serial data output from 0831 to BS2 (P5) 
Datain   VAR  BYTE   ' Variable to hold incoming number (0 to 255)  
Temp   VAR  WORD   ' Hold the converted value representing temp 
TempSpan CON  5000   ' Full Scale input span (5000 = 50 degrees span) 
Offset   CON  700   ' Minimum temp. Offset. (700 = 70 degrees) 
 
DIR15 = 0 
DIR8 = 1 
PB  VAR IN15   ' Pushbutton 
LED  CON    8   ' LED 
LOW LED      ' LED off 
 
'***** Initialize ******* 
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INIT: 
 ' To set the new time, hold down PB until LED goes off 
 DEBUG "Hold button now to initialize clock and logging",cr 
 HIGH 8     ' LED On 
 PAUSE 2000 
 IF PB = 1 THEN SkipSet   ' If PB not pressed, don’t store time or restart 
 Seconds = $00 
 GOSUB SetTime 
 GOSUB RecoveryData 
 DEBUG "Release button",CR 
 
  SkipSet: 
 LOW LED     ' LED OFF 
 IF PB = 0 THEN SkipSet   ' Wait for PB release 
 READ 0,MemAddr.HIGHBYTE  ' Read recovery data of memory address and time 
 READ 1,MemAddr.LOWBYTE 
 READ 2,SHours 
 Read 3,SMinutes 
 
 ' Initialize time keeping variables 
 GOSUB ReadRTCBurst   ' Read current time 
 LHours = Hours    ' Set change hours to current 
 LMinutes = Minutes   ' Set change minutes to current 
 LSeconds = $00    ' Set change seconds to 00 
 
 LMinutes = LMinutes + Interval  ' Add interval to get first log time 
 GOSUB AdjustTime   ' Decimal adjust new time 
 
'***** Main Loop ******* 
Main:  
 PAUSE 500 
 GOSUB Control 
 GOSUB Getdata 
 GOSUB Calc_Temp 
 GOSUB ReadRTCBurst 
 GOSUB Display 
 GOSUB TimeControl 
 GOTO Main 
 
Getdata:     ' Acquire conversion from 0831 
 LOW CS     ' Select the chip  
 LOW CLK     ' Ready the clock line.  
 SHIFTIN Dout, CLK, MSBPOST,[Datain\9] ' Shift in data  
 HIGH CS     ' conversion   
 RETURN     
 
Calc_Temp:     ' Convert digital value to  
 Temp = TempSpan/255 * Datain/10 + Offset ' temp based on Span &  
 RETURN     ' Offset variables. 
 
  
Control:     ' If PB pressed, plot recorded data 
 IF PB = 0 THEN DumpData 
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 RETURN 
 
TimeControl:     ' Check if time for reading 
 IF (Time = LTime) AND (MemAddr-4 < Samples) THEN SaveData 
 RETURN 
 
SaveData:     ' Write ADC reading to memory 
 WRITE MemAddr, DataIn   ' Store data into EEPROM 
 HIGH 8:PAUSE 250:LOW 8   ' Blink LED 
 MemAddr = MemAddr + 1   ' Increment memory location for next reading 
 WRITE 0,MemAddr.HIGHBYTE  ' Update recovery data 
 WRITE 1,MemAddr.LOWBYTE 
 
 LMinutes = LMinutes + Interval ' Update for next interval 
 IF MemAddr-4 < Samples THEN AdjustTime' If samples not full, continue 
 IF Stop_Reset = 1 THEN Dont_Reset ' If samples full, restart or end logging 
 GOSUB RecoveryData 
Dont_Reset: 
 
AdjustTime:     'Decimal adjust Time 
 IF LSeconds.LOWNIB < $A THEN HighSec 
 LSeconds = LSeconds + 6 
  HighSec: 
 If LSeconds < $60 THEN LowMin 
 LSeconds = LSeconds - $60 
 LMinutes = LMinutes + 1 
  LowMin: 
 IF LMinutes.LOWNIB < $A THEN HighMin 
 LMinutes = LMinutes + 6 
  HighMin: 
 IF LMinutes < $60 THEN LowHours 
 LMinutes = LMinutes - $60 
 LHours = LHours + 1 
  LowHours: 
 IF LHours.LOWNIB < $A THEN HighHours 
 LHours = LHours + 6 
  HighHours: 
 IF LHours < $24 THEN AdjustDone 
 LHours = LHours - $24 
  AdjustDone: 
 RETURN 
 
Display:     'Display real time and time for next log reading 
 DEBUG "!USRS Time:", HEX2 hours,":",HEX2 minutes,":",HEX2 seconds 
 DEBUG "  Sample Due:",HEX2 LHours,":",HEX2 LMinutes,":",HEX2 LSeconds 
 DEBUG "  # ",DEC MemAddr-4, " Temp now = ", DEC Temp,CR 
 DEBUG DEC Temp,CR 
 Return 
 
SetTime: 
' ****** Initialize the real time clock to start time 
  RTemp = $10 : RTCCmd = CtrlReg : GOSUB WriteRTC  

' Clear Write Protect bit in control register 
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  RTemp = Hours : RTCCmd = HrsReg : GOSUB WriteRTC ' Set initial hours 
  RTemp = Minutes : RTCCmd = MinReg : GOSUB WriteRTC ' Set initial minutes 
  RTemp = Seconds : RTCCmd = SecReg : GOSUB WriteRTC ' Set initial seconds 
  RTemp = $80 : RTCCmd = CtrlReg : GOSUB WriteRTC   

' Set write-protect bit in control register 
Return 
 
WriteRTC:      ' Write to DS1302 RTC 
  HIGH RTCReset 
  SHIFTOUT RTC_IO, RTC_CLK, LSBFIRST, [%0\1,RTCCmd\5,%10\2,RTemp] 
  LOW RTCReset 
RETURN 
 
ReadRTCBurst:      ' Read all data from RTC 
  HIGH RTCReset 
  SHIFTOUT RTC_IO, RTC_CLK, LSBFIRST, [%1\1,BrstReg\5,%10\2] 
  SHIFTIN RTC_IO, RTC_CLK, LSBPRE, [Seconds,Minutes,Hours] 
  LOW RTCReset 
RETURN 
 
RecoveryData:      ' Stores data for recovery from restart 
 MemAddr = 4     ' Set starting location 
 WRITE 0,MemAddr.HIGHBYTE   ' Write to EEPROM 
 WRITE 1,MemAddr.LOWBYTE 
 WRITE 2,Hours     ' Save start time in EEPROM 
 WRITE 3,Minutes 
Return 
 
'*** Download and siplay logged data *** 
DumpData:     
 'Configure Plot 
 PAUSE 500     ' Allow buffer to clear 
 DEBUG "!RSET",CR    ' Reset plot to clear data 
 DEBUG "!TITL Interval Data Logging",CR ' Title the plot 
 DEBUG "!PNTS 2000",CR    ' 2000 sample data points 
 DEBUG "!TMAX ", DEC MemAddr/7+1,CR  ' Time based on number of samples 
    
 DEBUG "!SPAN ",DEC offset/10,",",DEC (TempSpan/10 + Offset) / 10,CR 
 DEBUG "!AMUL .1",cr    ' Multiply data by 0.1 
 DEBUG "!CLMM",CR    ' Clear Min/Max 
 DEBUG "!CLRM",CR    ' Clear messages 
 DEBUG "!TSMP OFF",CR    ' Time Stamping off 
 DEBUG "!SHFT ON",CR    ' Enable plot shift 
 DEBUG "!DELM",CR    ' Delete message file 
 DEBUG "!SAVM ON",CR    ' Save messages (logged data) to file 
 DEBUG "!PLOT ON",CR    ' Start plotting 
 
 PAUSE 500 
 DEBUG "!RSET",CR    ' Reset plot to time 0 
   
 X  VAR Word    
 LTime = STime     ' Set log time = start time 
 DEBUG "Point,Time,Temperature",CR  ' message header 
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 FOR x = 4 to MemAddr-1   ' Loop through memory locations 
   READ x,DataIn   ' Read data stored in memory 
   GOSUB Calc_Temp   ' Calculate temp based on data 
   LMinutes = LMinutes + Interval ' Add interval to get stored time 
   GOSUB AdjustTime   ' Decimal adjust time 
      ' Display message data 
   DEBUG DEC X-4,",",HEX2 LHours,":",HEX2 LMinutes,",",DEC Temp,CR 
   DEBUG DEC Temp,CR   ' Plot temperature 
   HIGH LED 
   PAUSE 100    ' Pause 0.1 second for spacing between data 
   LOW LED 
 NEXT 
  
 DEBUG "!PLOT OFF",CR   ' Disable plotting 
 LTime = Time    ' Set Log time to current time 
 LMinutes = LMinutes + Interval ' Add interval to set for next data logging 
 GOSUB AdjustTime 
      ' After dump, hold button to reset logging 
      ' Or logging will continue from current point 
 HIGH 8     ' LED ON 
 DEBUG "Hold button now to reset log",CR 
 PAUSE 2000 
 IF PB = 1 THEN SkipReset  ' If button not pressed, skip restart 
 GOSUB RecoveryData   ' Restart - save new recovery data 
 DEBUG "Release button now",CR 
  SkipReset: 
 LOW 8     ' LED Off 
 If PB = 0 THEN SkipReset  ' Wait for button release 
Return 
 
 
We'll discuss operation and major blocks in our code. At the top of the code is the initialization information: 
 
'*** Set Init. Time and Logging Interval ************** 
Time  = $2246    ' Initialization Time 
 
       ' Do not use digits > 6 
Interval CON  $05   ' Sample interval (in BCD minutes) for logging 
 
Samples  CON    500   ' Number of samples to acquire 
Stop_Reset   CON 0   ' When full, 0=reset, 1 = stop logging 
'****************************************************** 
 
This data defines the time to set the RTC, how long the interval between logging should be, and how many 
samples should be logged.  Stop_Reset is defines whether to stop logging (1) or reset (0) and start over 
destroying the old data when the maximum samples are collected. 
 
The pushbutton has several purposes: 
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1. On-Power up or Reset of the BS2, a message will appear informing you to hold down the pushbutton 

to initialize the clock and logging (the LED will light for this also).  If the button is held down, the value 
of time in the initialization section will be used to set the RTC and logging will be reset to the start.  
Recovery data will be written to EEPROM for the next reset. 

 
RecoveryData:    ' Stores data for recovery from restart 
 MemAddr = 4   ' Set starting location 
 WRITE 0,MemAddr.HIGHBYTE ' Write to EEPROM 
 WRITE 1,MemAddr.LOWBYTE 
 WRITE 2,Hours   ' Save start time in EEPROM 
 WRITE 3,Minutes 
Return 
 
Note that a memory address is a word-sized value and must be saved as high and  
low byte. 
 

2. During logging, if the pushbutton is pressed, the data will be ‘dumped’ or downloaded.  We will be 
using StampPlot Lite to capture and plot the data as it is dumped.  The data is NOT destroyed and the 
logger will continue to log new data. 

3. At the end of a data dump, if the pushbutton is held down, the data logger will reset the log to the 
start destroying old data and resetting the start time of logging. 

 
If the BASIC Stamp 2 is reset and the button is NOT held down, the program will read recovery data of current 
memory location and start time from the EEPROM. The RTC time will NOT be reset. It should be maintaining 
proper time through the reset UNLESS power was lost. Figure 7.7 is the flowchart of the initialization of the 
program. 
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Figure 7.7: Logging Initialization Routine 
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Figure 7.8: Control and Saving Routines 

 

 
 
 

Time Control routine (Figure 7.8)  is used to determine if it is time to save new data to memory.  This is 
contingent on the memory location for samples being less than the number of samples specified. 
 
TimeControl:      ' Check if time for reading 
 IF (Time = LTime) AND (MemAddr-4 < Samples) THEN SaveData 
 RETURN 
 
The Save Data routine is called from Time Control when it is time to write a new sample to memory.  The 
current DataIn (value read from the ADC) is stored in the current memory address, and the memory address 
is incremented for the next cycle.  The next interval time is calculated (and later BCD adjusted).  If the 
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maximum number of samples is reached, depending on the Stop_Reset value, data logging will either ceased 
(see Time Control) or logging will start over.   
 
Note that the raw DataIn value from the ADC is stored and not the temperature-calculated value. This allows 
the data to be stored in one byte instead of two as a word. The stored value will be converted into 
temperature when it is ‘dumped’ to the PC. 
 
SaveData:      ' Write ADC reading to memory 
 WRITE MemAddr, DataIn    ' Store data into EEPROM 
 HIGH 8:PAUSE 250:LOW 8    ' Blink LED 
 MemAddr = MemAddr + 1    ' Increment memory location for reading
  
 WRITE 0,MemAddr.HIGHBYTE   ' Update recovery data 
 WRITE 1,MemAddr.LOWBYTE 
 
 LMinutes = LMinutes + Interval  ' Update for next interval 
 IF MemAddr-4 < Samples THEN AdjustTime ' If samples not full, continue 
 IF Stop_Reset = 1 THEN Dont_Reset  ' If samples full, restart or end logging 
 GOSUB RecoveryData 
Dont_Reset: 
 
AdjustTime:   
 
Figure 7.9 illustrates the flow of the DumpData routine. When the pushbutton is pressed, Dump Data 
configures StampPlot for plotting, and creates a loop reading through the logged values, converting them to 
temperatures, and sending the values for plotting and the message window. Note that the log time is set to 
the start time, and the timing interval is added to the log time each loop iteration to determine the original 
time the data was logged. 
 
Once the loop is complete, the log time is set back to the current time and the user is requested to hold down 
the pushbutton to reset the logging to start (the LED will light for indication also). 
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Figure 7.9:  Data Dump Routine Flowchart 
 

 
 
Once DumpData is complete, the control time will be updated to the time of the next sample, and logging will 
continue from the point it left off, allowing downloading without affecting the stored data.  Figure 7.10a is a 
screenshot of our collected data dumped to StampPlot Lite. 
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Figure 7.10a: Sample Data Dump of Logged Data 

 

 
 
The format of the message data is suitable for importing into a spreadsheet for graphing, as seen in Figure 
7.10b.  A portion of the saved message file is as follows: 
 
Point,Time,Temperature 
0,22:51,787 
1,22:56,787 
2,23:01,787 
3,23:06,787 
4,23:11,783 
5,23:16,783 
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Figure 7.10b: Imported Message Data to Excel 
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We set the incubator outside of a window and recorded outdoor temperatures.. Outdoor temperature can be 
tricky due to effects of wind cooling, sunlight heating, and thermal layers in the canister trapping heat.  We 
had quite a few spikes in readings.  Can you do better? 
 
Our plot shows temperatures from 22:51 to 22:51 the next night.  Note the rise and falls in temperature 
during the day.  The expected high for the day was 88F, and we came pretty close! 
 
Of course, we are not restricted s temperature range 70F-120F.  Refer back to Experiment #4.  Software 
range values are determined by the span and offset voltage settings to the ADC0831. 
 
TempSpan CON  5000  ' Full Scale input span (5000 = 50 degrees span) 
Offset   CON  700  ' Minimum temp. Offset. (700 = 70 degrees) 
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Questions and Challenges: 
 

1. Perform Logging of a System: Determine a temperature that you want to log over a long period of 
time.  This may be outdoors, the room temperature (does the heating/cooling change during evening 
hours?), or maybe some other slow changing system (a water tank in the sun?). 

 
1) Determine the range of expected values for temperature.  Set the span and offset variables and 

potentiometers appropriately. 
 
2) Determine the length of time you need to collect the data (one day? the weekend?). Based on a 

maximum of 50 samples, calculate the interval time needed for logging. 
 
3) Ready to program? If you are going to move your BOE, make sure it is running on a battery that will 

last throughout the logging! 
 
4) We also want to check the accuracy of the RTC in this experiment, so when the program is ready to 

download: 
 

a) Open the Windows clock and pick an upcoming time. 
b) Set the start time to this upcoming time (remember to use 24-hour time) 

Time = $1530 
c) 5 seconds before the initializing time, download the file to the BS2 and hold the circuit push-

button down until the LED goes off or debug window instructs you to release it.   
d) Use the Debug Window or StampPlot to note the BS2 and the PC Times. 

BS2:  _________ PC: __________ Difference: ________ 
 

e) Let your data record!  After the 1st sample is done, you may test the data dump by pressing the 
push-button. 

f) After you are finished recording data, run and connect StampPlot Lite, press the push-button to 
dump the data. 

g) Use the Debug Window or StampPlot to note the BS2 and the PC Time. 
 
BS2:_________  PC: __________ Difference: ________ 
 

h) Extrapolate the time-error for 24 hours: _________ 
 

Did the data conform to your expectations? 
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2.  Discuss the 'system' you monitored and conclusions of your results. 

 
 
 
 
 

3. How much time error was calculated over a 24-hour period?  How could this error be compensated 
for in software? 

 
 
 
 

4. Why is it important to limit the amount of data that can be stored in the BS2? 
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Appendix A:  
StampPlot Lite    

 
StampPlot Lite is an application developed by SelmaWare Solutions for the 
Industrial Control series. The application allows plotting and capture of analog, 
digital and general data.  
 
 

Downloading and Installing StampPlot Lite 
 
StampPlot Lite may be downloaded from the Stamps in Class web site at http://www.stampsinclass.com. The 
program is installed by double-clicking on the setup.exe icon and accepting the default directories. 
 
 
 
 
 
 
To download StampPlot Lite, click on 
the “Downloads” button on our web site 
and scroll down to the “Industrial 
Control” section. 
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Data from the BASIC Stamp is processed in one of four ways by the application: 
 
Analog Values 
 
Any string sent beginning with a numeric value will be processed as an analog value and graphed. 
 
Debug DEC 100, 13    'Plot the number 100 
 
Digital Values 
 
Any string sent beginning with '%' will be processed as digital values.  A separate digital plot will be started for 
each binary value in the string. For example, "%1001" will plot four digital values.  Up to a 9-bit value may be 
sent. Once digital plots are started, caution should be used to always send the same number of bits since the 
plots are position-order dependent. 
 
Debug IBIN4 INC,13   'Plots 4 digital values 
 
Control Settings 
 
Any string beginning with '!' will be processed as a control setting.  The various settings of the application may 
be controlled from the BASIC Stamp using specified control words and values, if required. 
 
Debug "!AMAX 200",13    'Sets analog maximum for plot to 200 
Debug "!RSET",13  'Resets the plot 
 
Other Strings 
 
All other strings simply will be added to the running message list box. 
 
Debug "Hello world!",13 
 
Note that each instance of data MUST end with a carriage return (13 or CR). 
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The steps for using BASIC Stamp programs with StampPlot Lite are as follows: 
 

1. Start StampPlot Lite through your Start/Programs/StampPlot/StampPlot Lite icon. 
2. Enter and run your BASIC Stamp program from the BASIC Stamp editor. 
3. Close the blue BASIC Stamp debug window by clicking on the “close” box. 
4. Select the COM port and click 'Connect' checkbox. 
5. Click the 'Plot Data' checkbox. 
6. Some programs may require you to reset the Board of Education (BASIC Stamp) to catch initial 

configuration and control settings. Do this by pressing the Reset button on the board.  
7. Prior to downloading (running) another program to the BASIC Stamp, be sure to uncheck the 

StampPlot 'Connect' checkbox or your COM port will be locked by StampPlot Lite.   
 
The plot will acquire analog and digital data and store it temporarily so that it may be resized or shifted on 
the screen.  The number of data points collected is adjustable.  Once the data points reach maximum, the plot 
must either be stopped or reset. 
  
The following program will perform some configuration settings, continually plot and display the value of X on 
StampPlot, and plot the four digital bits of the value of X.  Enter the program and use the steps above to test 
it with StampPlot Lite. 
 
'Appendix A Program, StampPlot Example 
'Configure StampPlot   ' Variable for counting 
Pause 500: Debug "!RSET",CR  ' Short pause and reset 
Debug "!SPAN 0, 50",CR   ' Span the analog range 
Debug "!TSMP ON",CR   ' Time Stamp the messages 
Debug "!TMAX 60",CR   ' Set plot to 60 seconds max 
Debug "!RSET",CR   ' Reset the plot 
 
X var Byte 
Loop: 
Debug "Starting loop", CR  ' Message that loop is resetting. 
For X = 0 to 15   ' For-Next loop to count to 15 
Debug DEC X, CR   ' Plot Analog value of X 
Debug IBIN4 X, CR   ' Plot digital bits of X 
     ' Change the User Status message. 
Debug "!USRS The value of X is ", DEC X, CR 
Pause 200    ' Short pause 
Next 
Goto Loop    ' Restart 



Appendix A: StampPlot Lite 

Page 224 • Industrial Control Version 1.1 

 
Below is a screen shot of StampPlot Lite showing the above program plotted. 
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Tool Text Help 
 
If a copy of StampPlot Lite is running on your computer, you may place the cursor over each control for 'Tool 
Text Help.’  The following is a brief summary of each control. The BASIC Stamp programmable command, 
where applicable, is in brackets: 

 
Top Section: General Controls 
 

 
 
• Com 1: Drop down to select the applicable COM port. 
• Connect: Connects the application to the selected COM port. 
• Plot Data: Allows plotting of incoming data.  Deselecting this control will stop the plotting of data but will 

allow messages and other actions to continue. [ !PLOT ON/OFF] 
• Reset: Clears the plot, resets to time 0, clears minimum and maximum value (optional). [ !RSET ] 
• Stop Plot: When maximum data points are reached, the plot stops (Plot Data becomes unchecked). 

[!MAXS ] 
• Reset Plot: When maximum data points are reached, the plot resets. [ !MAXR ] 
• User Status: (showing "The value of X is 9") Optional status messages from the BASIC Stamp may place 

data here. [ !USRS message ] 
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Left Section: Primarily for Setting the Analog Plot 
 

• Span Drop-Down box: Allows a selection of pre-defined plot ranges.  Use of the 
BASIC Stamp command !SPAN will add a range to this drop-down. 
[ !SPAN minvalue, maxvalue ] 

• + and - buttons:  Respectively double or halve the span.  The minimum value 
does not change. 

• Multiplier:  Defines the amount incoming BASIC Stamp analog data will be 
multiplied by prior to plotting or saving to file. [ !AMUL value ] 

• Save Data to File: Saves the incoming data to a text file in the application 
directory called "stampdat.txt.”  If time stamping is enabled, each record will be 
marked with the current system time and the number of seconds since the last 
reset.  The value of the data point for analog and digital values will also be 
recorded. Each record will have the following form: 

- Time of day, seconds since reset, analog data point, analog value, digital 
data point, digital data value. Note that each record is comma 
delineated for importing into a spreadsheet, if desired.  

- Note: Data is saved ONLY when ANALOG data arrives.  To force saving 
when no analog data is recorded, debug a value such as zero ( DEBUG 
DEC 0, CR).[ !SAVD ON/OFF ]  

 

• Delete Data File: Deletes "stampdat.txt.”  If data saving is enabled, the file will be re-created after 
deleting it. [ !DELD ] 

• Analog Minimum and Maximum values: These may be manually changed.  Tab off, or click another 
control, to set the new value. [ !AMIN value   !AMAX  value    <or>   !SPAN minvalue, maxvalue ] 

• Time Stamp: Enables time stamping of messages and data to the file.  It includes both the current 
time and seconds since the last reset. [ !TSMP ON/OFF ] 

• Clear Messages: Clears the messages in the listbox. [ !CLRM ] 
• Save messages to file: Saves messages to the file "stampmsg.txt" in the application directory.  

Messages will be saved the same way they appear in the message box. [ !SAVM ON/OFF ] 
• Delete Msg file: Deletes "stampmsg.txt" in the application directory.  If the "Save Messages…" is 

enabled, the file will be re-created. [ !DELM ] 
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Bottom Section: Plot Shift and Time Span 
 

 
 

• The minimum and maximum times of the plot may be set manually. Tab-off or click another control 
to apply the value. [ !TMIN value  and !TMAX value ] 

• Scroll Bar: If the plot extends beyond the current limits, the scroll bar may be used to reposition the 
plot (if collecting data, Enable Shift must be on). 

• Enable Shift: Allows the plot to shift automatically when maximum plotted time is exceeded.  Also 
enables operation of the scroll bar when collecting data.  Note:  Shifting of the plot during data 
collection may cause time errors in the data as the plot refreshes. [ !SHFT ON/OFF ] 

• +/-:  Respectively doubles or halves the time span of the plot.  The minimum value of the plot will not 
change. 

 
Right Section: Plot Data 
 

 
 

• Data Points: To allow the plot to be manipulated, data is stored in memory.  
The maximum number of points (either analog or digital) that may be 
recorded is the Max.  ‘Current’ displays the current data point being stored.  
Once the maximum is reached, the plot will either reset or stop, depending 
on the configuration. [ !PNTS 1000 ] 

• Last Analog Data: Displays the time since reset and the last analog value 
plotted. 

• Plot Pointer: Moving the plot pointer on the display shows the current 
analog value and time for that point on the plot. 

• Maximum:  Records the maximum analog value and the time it was reached. 
• Minimum: Records the minimum analog value and the time it was reached. 
• Clear Min/Max: Clears the recorded minimum and maximum values. [ !CLMM 

] 
• Clear min/max on reset: Allows a reset to clear the minimum and maximum 

values. [!CMMR]  
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Display Control and Zoom 
 

• Moving the cursor on the plot will set the plot pointer time and value to the current position.  
• Double-clicking the plot will shift display modes from yellow to white background and thin lines to 

thick lines for better printing (ALT-Print Screen to capture form to the clipboard) and projected 
display.  

• Shift-Click (hold) and Drag allows you to specify an area of the plot to zoom. 
 
BASIC Stamp Control and Configuration Commands 
 
The majority of the plot configuration and controls may be set from within the BASIC Stamp program. To use 
these commands, simply debug from the BASIC Stamp.  All commands must end with a CR (ASCII 13):   DEBUG 
"!PLOT ON", CR. 
 

Command Description 
!TITL message Sets the title of the form to the message 
!USRS message Sets the User Status box to display the message 
!BELL  Sounds the bell on the PC 
!AMAX value      Sets the plot maximum analog value 
!AMIN value Sets the plot minimum analog value 
!SPAN minValue, 
maxValue 

Sets the plots analog maximum and minimum as above (also adds the range to 
the Range Drop-Down box). 

!AMUL value Sets the value to multiply incoming data by 
!TMAX value      Sets the plot maximum time (seconds) 
!TMIN value Sets the plot minimum time (seconds) 
!PNTS value Sets the number of data points to collect 
!PLOT ON/OFF Enables/disables the plotting of data 
!RSET Resets the plot and all data 
!CLRM Clears the message list 
!CLMM Clears the min/max recorded values 
!CMMR ON/OFF Enables/Disables clearing of Min/Max recorded values on reset 
!MAXS  Sets the plot to STOP when data points are full 
!MAXR  Sets the plot to RESET when data points are full 
!SHFT ON/OFF Enables/disables the plot from shifting when recording data (may cause a loss 

of data accuracy if enabled) 
!TSMP ON/OFF Enables time stamping of list messages; messages and data saved to files 
!SAVD ON/OFF Enables saving of analog and digital data to files 
!SAVM ON/OFF Enables saving of messages to a file 
!DELD Deletes the saved data file 
!DELM Deletes the saved message file 
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Additional Application Notes 
 
The amount of the plot that is used is dependent on the number of data points and the rate at which they are 
transmitted. For example, if you wish 60 seconds of data to fill the screen and are transmitting from the 
BASIC Stamp at a maximum rate of 100 msec (Pause 100 + processing time):  60/.1 = 600 data points. 
 
The application needs a minimum regular pause in the reception of data for complete processing. A pause of 
10 msec is typically sufficient for a fairly fast computer. If the application senses it cannot keep up with 
incoming data, a message box will appear and the application will disconnect. Some indications that the 
computer cannot keep up are: garbled data, no plotting, and the inability to affect any controls (locks up). 
 
The greater the number of data points and the higher the current data point, the longer the plot will take to 
respond to plot shifts as it redraws. For faster, reliable configuration from the BASIC Stamp on initial power 
up or resetting, the following is recommended: 
 

• Pause for 500msec at the start to allow StampPlot's buffer to clear. 
• Perform a StampPlot RESET (!RSET) prior to making configuration changes to allow the data points to 

be cleared so redrawing is not performed. 
• Reset (!RSET) at the end of the configuration resets the plot to time 0. 

 
As with any application, the best way to learn it is to play.  Have fun! 
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Upgrade to StampPlot Pro for your Industrial Control experiments! 
  
A few of the features include: 

• Plotting of multiple analog channels. 
• Saving of plots and images. 
• Advanced logging features. 
• Ability to draw graphics. 
• PC based macros of instructions, including data manipulation. 
• Interactive capabilities for adjustments on the fly. 

 
This screen shot of StampPlot Pro shows the PID exercise in Experiment #7 plotting actual and setpoint 
temperature along with the %Drive (bottom bars).   
 

The gain values may be 
entered in the data 
window to be read by your 
BS2! 
 
A PC based macro shows 
the temperature in the 
thermometer. 
 
Examples based on the 
Industrial Control text are 
posted in the on-line 
tutorials.  Download and 
evaluate free! 
 

 
 
 
 
 
 
 

http://www.selmaware.ccom/ 
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Appendix B:  
Fan Encoder Printouts  

 

 
These printouts are full size, and should be an 
ideal fit for your fan used as a digital switch in 
Experiment #2. 
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Appendix C: 
Potter Brumfield SSR 
Datasheet    

 
 
 
 
 
 

 
 

Appendix C consists of the Potter Brumfield “Hockey Puck” Solid State Relay. Their datasheets may be 
downloaded from http://www.pandbrelays.com/. 
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Appendix D: 
National Semiconductor 
LM34 Datasheet    

 
 
 
 
 
 

 
Appendix D consists of the National Semiconductor LM34 datasheet. This appendix includes the first five (5) 
pages of the 12-page datasheet. Should you wish to see more applications of the LM34 than are shown in this 
datasheet, the entire document may be downloaded from http://www.national.com/ds/LM/LM34.pdf.  
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Appendix E: 
National Semiconductor 
LM358 Datasheet    

 
 
 
 
 
 

 
Appendix E consists of the National Semiconductor LM358 datasheet. This appendix includes the first five (5) 
pages of the 23-page datasheet. Should you wish to see more applications of the LM358 than are shown in 
this datasheet, the entire document may be downloaded from http://www.national.com/ds/LM/LM158.pdf.  
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Appendix F: 
Dallas Semiconductor 
1302 Datasheet    

 
 
 
 
 
 
 

Appendix F consists of the Dallas Semiconductor 1302 datasheet. This appendix includes the first five (5) pages 
of the 23-page datasheet. Should you wish to see more applications of the DS1302 than are shown in this 
datasheet, the Parallax web site includes AppKit documentation for this part. 
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Appendix G: 
Parts Listing  
and Sources 

 
 
All components (next page) used in the Industrial Control 
experiments are readily available from common electronic suppliers. 
Customers who would like to purchase a complete kit may also do so 
through Parallax.  To use this curriculum you need three items: (1) a 

BASIC Stamp II module (available alone, or in the Board of Education - Full Kit); (2) a Board of Education 
(available alone or in a Board of Education Full Kit); and 3) the Industrial Control Parts Kit.  
 
Board of Education Kits 
 
The BASIC Stamp II (BS2-IC) is available separately or in the Board of Education Full Kit. If you already have a 
BS2-IC module, then purchase the Board of Education Kit. Individual pieces may also be ordered using the 
Parallax stock codes shown below.  
 

Board of Education – Full Kit (#28102) 
Parallax Code# Description Quantity 
28150 Board of Education  1 
800-00016 Pluggable wires 10 
BS2-IC BASIC Stamp II module 1 
750-00008 300 mA 9 VDC power supply 1 
800-00003 Serial cable 1 

 
Board of Education Kit (#28150) 

Parallax Code# Description Quantity 
28102 Board of Education and pluggable wires 1 
BS2-IC Pluggable wires 6 

 
 
This printed documentation is very useful for additional background information:  
 

BASIC Stamp Documentation 
Parallax Code# Description Internet Availability? 
27919 BASIC Stamp Manual Version 2.0 http://www.stampsinclass.com 
27341 Industrial Control Text http://www.stampsinclass.com 
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The Industrial Control experiments require the Industrial Control Parts Kit (#27340) 
 
Similar to all Stamps in Class curriculum, you need a Board of Education with BASIC Stamp and the Parts Kit. 
The contents of the Industrial Control Parts Kit is listed below, broken down by experiment. Replacement 
parts in the kit may be ordered from http://www.stampsinclass.com.  
 

Industrial Control Parts Kit (#27340) 
 

Stock# Description #1 #2 #3 #4 #5 #6 #7 Total/Kit
150-01020 1K ¼ watt resistor  1 1     2 
150-01030 10K ¼ watt resistor 1 2  1   1 2 
150- 
02030 

20K ¼ watt resistor  1  1 1   1 

150-02210 220 ohm ¼ watt 
resistor 

1 2 3 1 1 1 1 4 

150-04710 470 ohm ¼ watt 
resistor 

 1  1 1 1 1 4 

152-01031 10K ¼ watt multi-turn 
pot 

1 2 2 2 2 2 2 2 

153- 
00001 

5.1 V .5 W Zener Diode  1  1 1   1 

153-00002 BS170 MOSFET   1 1    1 
200- 
06840 

.68uF capacitor  1  1 1   1 

201-01050 1uF capacitor 1       1 
201-01060 10uF 10V capacitor    1 1 1 1 1 
251-03230 32.768 kHz Clock 

Crystal 
      1 1 

350-00001 LED green 1 1 1     1 
350-00006 LED red  1 1 1 1 1 1 1 
350-00007 LED yellow   1     1 
350-00017 IR Led w/ shrink tube  1      1 
350-00018 Infrared 

Phototransistor 
 1      1 

400-00002 Pushbutton 1 2 2 1   1 2 
500-00001 2N3904 Transistor  1 1 1 1 1 1 2 
604-00005 DS 1302 Clock Chip       1 1 
602-00015 LM358 Dual Op-Amp  1  1 1   1 
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700-00039 35 mm Black Film 
Canister 

 1  1 1 1 1 1 

700-00040 12 VDC Brushless Fan  1 1 1 1 1 1 1 
800-00027 LM34 Temperature 

Probe 
   1 1 1 1 1 

800-00028 47 Ohm Resistor 
Heater 

  1 1 1 1 1 1 

ADC0831 ADC 0831 8-bit A/D 
converter 

   1 1 1 1 1 
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Hopefully this text has given you insight into the 
selection and proper interfacing of industrial field 
devices.    
 
The film-canister incubator has provided a system for 
modeling basic process control strategies. The BASIC 

Stamp is well suited for monitoring and controlling applications ranging from around-the-house hobby 
circuits to critical industrial process control. A great project for the serious hobbyist or for a school 
laboratory is to develop a real microcontroller-based poultry and game bird incubator.  Tabletop systems are 
available for as low as $20.00.  GQF Manufacturing of Savanna, Georgia (http://www.gqfmfg.com) is only one 
of many manufactures that carry a full line of incubators and equipment.  The tabletop Model 2362 pictured 
below would be an excellent choice. It contains a 25 watt 120 VAC heater and a 120 VAC – 500 mA circulating 
fan. Add to this the Model 1611 egg turner and you have three 120 VAC outputs to control. The total cost is 
around $90.00.    
 

  
Mfg #2362N       Mfg #1611 
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Experiment #3 discusses the interfacing of relays to control high voltage, high power loads. The fan and egg 
turner are turned on and off infrequently and could be controlled with a properly sized electromechanical 
relay. The heating element will be cycled quickly and should be controlled by an electronic solid-state relay.    
 
Radio shack carries a variety of suitable relays.  
 
An in-line bi-metal mechanical thermostat usually controls the incubator’s heating element. This should be 
left in place as a “failsafe” cutoff and adjusted to 2 degrees higher than the desired setpoint It would 
therefore remove power if your electronic thermostat or solid state relay failed. The LM34/ADC 0831 sensor 
circuit and current boost heater drive circuit used in Experiments #4 through #7 would work great for our 
real application. Instead of driving the 47-ohm resistor however you would be driving the solid-state relay. 
The relay, in turn, controls the high-voltage heater.   
 
Optimum hatching temperature is dependant on the type of eggs. For instance, chicken eggs should be 
incubated at 101.5 while the best temperature for goose and duck eggs is 100.5. The span of the ADC0831 
could be more focused around this temperature and Experiment #4 gave you the insight to do this. Doing so 
would give better resolution and more accurate data.   
 
Your control strategy for the heater could be based on any of the five modes that were discussed in 
Experiments #5 and #6. Experimentation and plotting with StampPlot Lite gives you the information needed to 
analyze and evaluate the pros and cons of each method. 
 
An audible alarm for out-of-range conditions would be a good feature to add to the incubator.  Radio Shack’s 
108 dB Piezo Buzzer (part # 273-057) pictured below would definitely get your attention. And, it could be 
driven form the BASIC Stamp’s power supply. The current boost BS170 MOSFET used in Figure 3.9d would be 
an effective drive circuit to deliver its 150 mA requirement.    
 

 
 
Over temperature and prolonged under-temperature should be alarmed.  You would want to add a couple of 
pushbutton switch inputs to program for alarm reset and deactivation during initial warm-up. Review 
Experiment #2 for proper interfacing and programming of digital inputs.    
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A water pan in the incubator ensures that humidity stays high enough to keep the eggs hydrated.   How could 
the BASIC Stamp add intelligence to this aspect of our incubator?  Perhaps an LED could flash to remind you 
to check the water. Or better yet, the moister sensing lab in the Stamps-in-Class Earth Measurements text 
could be modified to detect the pan being dry. This condition could flash the lamp or beep the alarm. To 
automate the process, the output of a humidity sensor could be compared to a voltage reference at the 
inputs to your LM358. The HI/LOW output of the comparator would be an electronic digital input to the 
Stamp.  When humidity drops below the desired value, turn on a humidifier and pipe in some water vapor.     
 
Adding the DS1302 timekeeping chip introduced in Experiment #7 gives you all of the features of a top-of-line 
commercial incubator. Temperature and humidity is monitored and controlled. Daily reports of temperature 
variations can be time-stamped and reported.  The eggs can be turned at programmed intervals. Cool down 
can be scheduled and a 1-degree ramp up for the 24 hours before catching can be programmed. Each 
Experiments 7’s three exercises can be modified to accomplish these tasks.  The healthy chicks pictured below 
are the successful result of maintaining the process for 21 days. 

 
 
If you dedicate a computer to the system, StampPlot Lite could continually plot and report system conditions.  
If you really want to get fancy though, StampPlot Pro software adds an enormous amount of computer 
interface possibilities.  Multiple analog channel plotting, full graphic drawing capability, two-way interaction 
on the fly, and the ability to diplay .jpg and play .wav files only limits the possibilities to the limit of your 
imagination. In addition, StampPlot Pro’s Internet capability allows you monitor and control the incubator 
remotely.  Stamp Plot Pro is available for evaluation through Parallax at the Stamps in Class web sites.   
 



Appendix H: Commercial Incubator Challenge 

Page 264 • Industrial Control Version 1.1 

As you can see, this commercial incubator application incorporates the concepts covered in every section of 
this text.  It is doubtful that many of you will be stop here and become chicken ranchers.   As you continue to 
experiment with the BASIC Stamp and apply it to your hobbies and in your real industrial application, keep 
these concepts in mind and this textbook on your shelf as a reference.   


