

Industrial Control
Student Guide

Version 1.1

Note regarding the accuracy of this text:
Many efforts were taken to ensure the accuracy of this text and the
experiments, but the potential for errors still exists. If you find
errors or any subject requiring additional clarification, please report
this to stampsinclass@parallaxinc.com so we can continue to
improve the quality of our documentation.

Warranty

Parallax warrants its products against defects in materials and workmanship for a period of 90 days. If you discover a defect, Parallax
will, at its option, repair, replace, or refund the purchase price. Simply call for a Return Merchandise Authorization (RMA) number,
write the number on the outside of the box and send it back to Parallax. Please include your name, telephone number, shipping
address, and a description of the problem. We will return your product, or its replacement, using the same shipping method used to
ship the product to Parallax.

14-Day Money Back Guarantee

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund. Parallax
will refund the purchase price of the product, excluding shipping / handling costs. This does not apply if the product has been altered
or damaged.

Copyrights and Trademarks

This documentation is copyright 1999 by Parallax, Inc. BASIC Stamp is a registered trademark of Parallax, Inc. If you decide to use the
name BASIC Stamp on your web page or in printed material, you must state: "BASIC Stamp is a registered trademark of Parallax, Inc."
Other brand and product names are trademarks or registered trademarks of their respective holders.

Disclaimer of Liability

Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under any
legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, and any costs or
recovering, reprogramming, or reproducing any data stored in or used with Parallax products. Parallax is also not responsible for any
personal damage, including that to life and health, resulting from use of any of our products. You take full responsibility for your BASIC
Stamp application, no matter how life threatening it may be.

Internet Access

We maintain Internet systems for your use. These may be used to obtain software, communicate with members of Parallax, and
communicate with other customers. Access information is shown below:

 E-mail: stampsinclass@parallaxinc.com
 Web: http://www.parallaxinc.com and http://www.stampsinclass.com

Internet BASIC Stamp Discussion List

We maintain two e-mail discussion lists for people interested in BASIC Stamps (subscribe at http://www.parallaxinc.com under the
technical support button). The BASIC Stamp list server includes engineers, hobbyists, and enthusiasts. The list works like this: lots of
people subscribe to the list, and then all questions and answers to the list are distributed to all subscribers. It’s a fun, fast, and free
way to discuss BASIC Stamp issues and get answers to technical questions. This list generates about 40 messages per day.

The Stamps in Class list is for students and educators who wish to share educational ideas. To subscribe to this list, go to
http://www.stampsinclass.com and look for the E-groups list. This list generates about five messages per day.

Contents

Page i

Table of Contents

Preface .. iii

Preface ... iii
Audience and Teacher’s Guides ..iv
Copyright and Reproduction ...v

Experiment #1: Flowcharting and Stamp Plot Lite ... 7
Adjusting the Temperature for a Shower Example.. 8
Conveyor Counting Example ...10
Exercise #1: Flowchart Design ..14
Exercise #2: LED Blinking Circuit ..14
Exercise #3: Analog Data..17
Exercise #4: Using Stamp Plot Lite ..20
Questions and Challenge ...25

Experiment #2: Digital Input Signal Conditioning ... 27
Exercise #1: Switch Basics...32
Exercise #2: Switch Boune and Debouncing Routines ...37
Exercise #3: Edge Triggering ...40
Exercise #4: An Electronic Switch..47
Exercise #5: Tachometer Input...52
Questions and Challenge ...64

Experiment #3: Digital Output Signal Conditioning .. 71
Exercise #1: Sequential Control ...74
Exercise #2: Current Boosting the BASIC Stamp..85
Questions and Challenge ...91

Experiment #4: Continuous Process Control ... 97
Exercise #1: Closed Loop On-Off Control..98
Exercise #2: Open-Loop vs. Closed-Loop Control ...113
Questions and Challenge ...125

Experiment #5: Closed-Loop Control ...127
Exercise #1: Establishing Closed-Loop Control ..130
Exercise #2: Differential-Gap Control ..136
Questions and Challenge ...142

Experiment #6: Proportional Integral Derivative Control ..145
Exercise #1: Bias Drive ...155
Exercise #2: Proportional Integral Control..172
Exercise #3: Derivative Control ..179
Questions and Challenge ...187

Contents

Page ii

Experiment #7: Real-time Control and Data Logging .. 189
Exercise #1: Real Time Control ...192
Questions and Challenge..199
Exercise #2: Interval Timing...199
Questions and Challenges..203
Exercise #3: Data Logging ..204
Questions and Challenges..219

Appendix A: Stamp Plot Lite ... 221
Appendix B: Encoder Printouts ... 233
Appendix C: Potter Brumfield SSR Datasheet.. 235
Appendix D: National Semiconductor LM34 Datasheet... 239
Appendix E: National Semiconductor LM358 Datasheet.. 245
Appendix F: Dallas Semiconductor 1302 Datasheet.. 251
Appendix G: Parts Listing and Sources .. 257
Appendix H: Commercial Incubator Challenge ... 261

Preface

Page iii

Preface

Industrial process control is a fascinating and challenging area of electronics technology and nothing
has revolutionized this area like the microcontroller. The microcontroller has added a level of intelligence to
the evaluation of data and a level of sophistication in the response to process disturbances. Microcontrollers
are embedded as the “brains” in both manufacturing equipment and consumer electronic devices.

Process control involves applying technology to an operation that alters raw materials into a desired
product. Virtually everything that you use or consume has undergone some type of automatic process control
in its production. In a manufacturing environment, automatic process control also provides higher
productivity and better product consistency while reducing production costs.

This text is intended to introduce you to the concepts and characteristics of microcontroller-based
process control with the following experiment-based themes:

a) Writing a procedural program from a flowchart for sequential process-control.
b) Using pushbuttons, counting cycles and understanding simple I/O processes that form a

system “under control”.
c) Continuous process-control beginning with on-off control to more complex differential gap

with multiple levels of control action.
d) Proportional-integral-derivative control of a small desktop heating system.
e) Time-based control of the above and introduction to data logging.

The hardware needed in the experiments to simulate the process has been kept to a bare minimum.

While the microcontroller is the “brains” of the process, it is not the “muscle.” Actual applications require the
microcontroller to read and control a wide variety of input and output (I/O) devices. Simple breadboard
mounted pushbutton switches are used to simulate the action of mechanical and electro-mechanical switches
found in industry. Visible light emitting diodes, small fans, and low-wattage resistors simulate motor starters
and HVAC equipment. Information included in the experiments will help you understand the electrical
interfacing of “real world” I/O devices to the BASIC Stamp.

The physical nature of the elements in a system determines the most appropriate mode of control
action. The dynamics of a process include a study of the relationship of input disturbances and output action
on the measured variables. It is difficult to understand the dynamics of a process without being able to “see”
this relationship. For the authors, this defined a need to develop a graphical interface for the BASIC Stamp;
hence the creation and release of StampPlot Lite. This software allows digital and analog values to be plotted
on graphs, and time-stamped data and messages to be stored. StampPlot Lite is used throughout the
experiments, and is especially helpful as you investigate the various modes of process control. Typical screen
shots from program runs are included.

Preface

Page iv

This text is the first major revision and we have strived to make it better than the first. Some

changes and additions include:

a) Addition of a 7th section on Time-Based control.
b) A total rewrite of the PID section to better demonstrate and explain the theory.
c) The additions of FET and PWM sample-and-hold circuitry and theory.
d) The reworking of numerous example programs including more flowcharts and program

explanations.

We thank our editors Ms. Cheri Barrall and Dale Kretzer, and of course Ken Gracey and Russ Miller of

the Parallax staff for their review and improvement of this text. Further, we thank Dr. Clark Radcliffe of
Michigan State University for his in-depth review. A variety of additional Parallax educational customers too
numerous to list also provided valuable feedback for this second revision.

The authors are instructors at Southern Illinois University in Carbondale in the Electronic Systems
Technologies program and also partners of a consulting and software company, SelmaWare Solutions. Visit
the website to see examples of StampPlot Pro specifically tailored to users of this text.

We invite your comments and feedback. Please contact at us through our website, and copy all error
changes to Parallax at stampsinclass@parallaxinc.com so the text may be revised.

Will Devenport and Martin Hebel
Southern Illinois University, Carbondale
Electronic Systems Technologies
http://www.siu.edu/~imsasa/est

-- and -- SelmaWare Solutions
http://www.selmaware.com

Audience and Teacher’s Guide

This text is aimed at an audience ages 17 and older. Effective during the first publication of this text
in June, 2000, there is no Teacher's Guide edition planned. If a Teacher's Guide were to be published, it would
likely be available the first part of year 2002. Solving these experiments presents no difficult technical
hurdles, and can be done with a bit of patience.

Preface

Page v

Copyright and Reproduction

Stamps in Class lessons are copyright Parallax 2001. Parallax grants every person conditional

rights to download, duplicate, and distribute this text without our permission. The condition is that this text,
or any portion thereof, should not be duplicated for commercial use resulting in expenses to the user beyond
the marginal cost of printing. That is, nobody should profit from duplication of this text. Preferably,
duplication should have no expense to the student. Any educational institution wishing to produce duplicates
for its students may do so without our permission. This text is also available in printed format from Parallax.
Because we print the text in volume, the consumer price is often less than typical xerographic duplication
charges. This text may be translated into any language with the prior permission of Parallax, Inc.

Preface

Page vi

Experiment #1: Flowcharting and StampPlot Lite

Industrial Control Version 1.1 • Page 7

A flowchart is a detailed graphic representation illustrating the
nature and sequencing of an operation on a step-by-step basis.
A flowchart may be made of an everyday task such as driving to
the store. How many steps are involved in this simple task? How
many decisions are made in getting to the store? A formalized
operation such as baking cookies can be flowcharted, whether

on a small-scale process in your kitchen or on a very large scale in a commercial bakery. And, of course, a
flowchart also may be made of the steps and decisions necessary for a computer or microcontroller to carry
out a task.

A relatively simple process is usually easy to understand and flows logically from start to finish. In the case of
baking cookies, the steps involved are fairly easy. A recipe typically requires mixing the required ingredients,
forming the cookies and properly baking them. There are several decisions to make: Are the ingredients mixed
enough? Is the oven pre-heated? Have the cookies baked for the recommended time?

As processes become more complex, however, it is equally more difficult to chart the order of events needed
to reach a successful conclusion. A BASIC Stamp program may have several dozen steps and possibly a
number of “if-then” branches. It can be difficult to grasp the flow of the program simply by reading the code.

A flowchart is made up of a series of unique graphic symbols representing actions, functions, and equipment
used to bring about a desired result. Table 1.1 summarizes the symbols and their uses.

Table 1.1: Flowchart Symbols

Start/Stop box indicates the beginning and end of a program or
process.

Process box indicates a step that needs to be accomplished.

Input/Output box indicates the process requires an input or
provides an output.

Decision box indicates the process has a choice of taking
different directions based on a condition. Typically, it is in the
form of a
yes-no question.

Experiment #1:
Flowcharting and
StampPlot Lite

Experiment #1: Flowcharting and StampPlot Lite

Page 8 • Industrial Control Version 1.1

Flowline is used to show direction of flow between symbols.

Connector box is used to show a connection between points of
a single flowchart, or different flowcharts.

Sub-routine or sub-process box indicates the use of a defined
routine or process.

Example #1: Adjusting the Temperature of a Shower

Let's take an example flowchart of an everyday task: adjusting the temperature for a shower. The process of
adjusting the water temperature has several steps involved. The water valves are initially opened, we wait a
while for the temperature to stabilize, test it, and make some decisions for adjustments accordingly. If the
water temperature is too cold, the hot valve is opened more and we go back to test it again. If the water is
too hot, the cold valve is opened more. Once we make this adjustment, we go back to the point where we wait
for a few seconds before testing again. Of course this doesn't take into account whether the valves are fully
opened. Steps may be inserted during the temperature adjustment procedure to correct for this condition.
Figure 1.2 shows a flowchart of this process.

This example demonstrates a process that may be used in adjusting the temperature, but could it also be the
steps in a microcontroller program? Sure! The valves may be adjusted by servos, and the water temperature
determined with a sensor. In most cases, a simple process we go through can be quite complex for a
microcontroller. Take the example of turning a corner in a car. Can you list all the various inputs we process in
making the turn?

Experiment #1: Flowcharting and StampPlot Lite

Industrial Control Version 1.1 • Page 9

Figure 1.1: Shower Temperature Example

Yes

Yes

No

No

Experiment #1: Flowcharting and StampPlot Lite

Page 10 • Industrial Control Version 1.1

Example #2: Conveyor Counting Example

Let's look at a real scenario and develop a flowchart for it. In a manufacturing plant, items are boxed and sent
down a conveyor belt to one of two loading bays with trucks waiting. Each truck can hold 100 boxes. As the
boxes arrive, workers place them on the first truck. After that truck is full, the boxes must be diverted to the
second truck so the loaded truck can be moved out and an empty one moved into position. Also, in the event
of an emergency or problem, there must be a means of stopping the conveyor.

The physical aspects of the scenario are illustrated in Figure 1.2. The motor for the belt is labeled MOTOR1.
The sensor to detect the boxes as they pass is labeled DETECTOR1. The lever to direct boxes to one truck
conveyor or the other is labeled DIVERTER1. The emergency stop button is labeled STOP1.

Figure 1.2: Conveyor Counting Example

Experiment #1: Flowcharting and StampPlot Lite

Industrial Control Version 1.1 • Page 11

Let's list in order a brief description of what must occur:

• Start the conveyor motor.
• Count the boxes as they pass.
• When 100 boxes have passed, switch the diverter to the opposite position.
• Whenever the emergency stop is pressed, stop the conveyor.

Now that we know the basic steps involved, let's develop a flowchart for the process. Let's begin by looking at
the simple process flow in Figure 1.3 on the following page.

Notice the placement of the Input/Output box for checking the emergency stop button, STOP1. It ensures the
button is tested during every cycle. What if we had placed it following the 100-count decision box? How long
would it have taken from when the button was pushed until the conveyor stopped?

Does the flowchart describe everything our program needs to do? Definitely not, but it is a good start at
determining the overall flow of the process. Look at the "Count Boxes with DETECTOR1" Process box. How
exactly is this carried out? We may need to develop a flowchart to describe just this routine. If a process
needs further detailing, we might replace the Process box with a Sub-Process box as shown in Figure 1.4.

Figure 1.4: Sub-Process Box

How involved is it to simply count a box passing by a detector? If DETECTOR1 is activated by “going low,” do we
count? When the detector stays low, how do we keep from recounting it again the next time our program
passes that point? What if the box bounces on the conveyor as it enters our beam? How do we keep from
performing multiple counts of the box? These answers may not be as simple as they seem. Even when
performing a task as simple as counting a passing box, many variables must be taken into account.

Experiment #1: Flowcharting and StampPlot Lite

Page 12 • Industrial Control Version 1.1

Figure 1.3: Conveyor Counting Flowchart

Experiment #1: Flowcharting and StampPlot Lite

Industrial Control Version 1.1 • Page 13

Another consideration is the output of our detector. Can we directly measure the output using one of the
BASIC Stamp inputs, or is there some circuitry needed to condition the signal first?

Let's consider an output in our conveyor counting example. How do we energize the motor? It is doubtful the
5-volt, milliamp-rated output of the BASIC Stamp will be able to drive a motor of sufficient horsepower to
move a conveyor! How do we condition an output of the BASIC Stamp to control a higher voltage and current
load?

These issues will be considered as you work through the chapters in this text. What may seem simple for us to
do as humans may require some sophisticated algorithms for a microcontroller to mimic. We will use readily
available electronic components, a BASIC Stamp module, and the Board of Education to simulate some
complex industrial control processes.

Experiment #1: Flowcharting and StampPlot Lite

Page 14 • Industrial Control Version 1.1

Exercises

Exercise #1: Flowchart Design

Develop a flowchart that will energize a heater below 100 degrees and de-energize it above 120 degrees.

Exercise #2: LED Blinking Circuit

We’ll use a simple circuit to demonstrate a flowchart process and the program to perform the task. You’ll
need to build the circuit shown in Figure 1.5. The following parts will be required for this experiment:

(1) LED, green
(2) 220-ohm resistors
(1) 10K-ohm resistor
(1) Pushbutton
(1) 10K-ohm multi-turn potentiometer
(1) 1 uF capacitor
(Miscellaneous) jumper wires

Figure 1.5: Exercise #2 Blinking Circuit Schematic

Experiment #1: Flowcharting and StampPlot Lite

Industrial Control Version 1.1 • Page 15

The circuit you are building consists of a single
input button and a single output LED. Here is
the process we want to perform: when the
button (PB1) is pressed, blink the green LED
(LED1) five times over 10 seconds. The
flowchart for our process is shown in Figure
1.6.

Notice a few things about the flowchart. Our
main loop is fairly simple. In the Initialize
process box, we will define any variables
needed and set initial outputs (LED off) and will
loop unless PB1 is pressed, which calls our
subroutine, blink_led1. Our subroutine
doesn't begin with "Start,” but the name of the
process, so that we can identify it. The
flowchart describes a process that we will
repeat five times, alternately energizing and
de-energizing our LED for one second each
time.

Now that we have a flowchart to describe the
process, how do we program it in PBASIC?
Programmatically, we can sense PB1 using the
IN statement. We have two ways we can call
our subroutine. If the condition is true (1), then
we can branch to our subroutine directly using
an IF-THEN statement. This would be treated
as a PBASIC GOTO. Once this completes, we
would need to GOTO back to our main loop. Or,
if the condition is false (0), we can branch back
to our main loop from the IF-THEN, and use a
GOSUB command to branch to our subroutine
when true. We can then use a RETURN when
our subroutine is complete.

Figure 1.6: Exercise #2 Blinking Circuit Flowchart

Experiment #1: Flowcharting and StampPlot Lite

Page 16 • Industrial Control Version 1.1

In our blink_led1 subroutine, we need a loop to repeat five times. Choices for accomplishing this task may
be to set up a variable we increment and check during each repetition, or use the FOR-NEXT statement to
accomplish it for us.

The flowchart describes the general steps involved in accomplishing a process. The code required is flexible as
long as it faithfully completes the process as described. The same flowchart may be used in multiple languages
or systems and even for humans!

Program 1.1 is one way to write the code for our blinking LED process. Enter the text in the BASIC Stamp
editor, download it to the BASIC Stamp, and press the pushbutton of the circuit you built. If it works properly,
the LED will blink five times after the pushbutton is pressed.

'Program 1.1; Blinking LED Example
Cnt VAR BYTE 'Variable for counting
PB1 VAR IN1 'Variable for PB1 input
LED1 CON 4 'Variable for LED1 output

INPUT 1 'Set PB1 as input
OUTPUT 4 'Set LED1 as output

LOW LED1 'Turn off LED

Start:
 IF PB1 = 0 then Start 'Not Pressed? Go back to loop
 GOSUB Blink_LED1 'If it was pressed then perform subroutine
GOTO Start 'After return, go back to start

Blink_LED1: 'Subroutine to blink LED 5 repetitions
 For Cnt = 1 to 5 'Setup loop for 5 counts
 HIGH LED1 'Turn ON LED
 PAUSE 1000 'Wait 1 second
 LOW LED1 'Turn off LED
 PAUSE 1000 'wait 1 second
 NEXT 'Repeat loop until done

RETURN 'return back to after gosub call

Programming Challenge

Flowchart and program a process where the LED will blink four times a second while the pushbutton is NOT
pressed!

Experiment #1: Flowcharting and StampPlot Lite

Industrial Control Version 1.1 • Page 17

Exercise #3: Analog Data

In many instances a process involves analyzing and responding to analog data. Digital data is simply on or off
(1 or 0). This is comparable to the simple light switches in our homes. The light is on or it is off. Analog data on
the other hand is a range of values. Some examples include the level of lighting if we use a dimmer switch
instead of an on/off switch, or the temperature of the water coming out of our shower nozzle.

There are several methods to bring analog data into a microcontroller, such as using an analog-to-digital
(A/D) converter that changes analog values into digital values that may be processed by the microcontroller.
Another method used by the BASIC Stamp is a resistor/capacitor network to measure the discharge or charge
time of the capacitor. By varying the amount of the resistance, we can affect and measure the time it takes
the capacitor to discharge. In this experiment, resistance is set by manually adjusting a variable resistor. But
the device may be more sophisticated, such as a photo-resistive cell that changes resistance depending on the
amount of light shining on it, or a temperature sensor. More discussion on analog data is found in later
sections, but for now let's perform a simple process-control experiment using an analog value.

Add the RC network shown in Figure 1.7 to your circuit from the previous experiment. It uses these parts:

(1) 1 uF capacitor
(1) 10K potentiometer

Figure 1.7: Schematic for Analog Data circuit added to Exercise #3

Experiment #1: Flowcharting and StampPlot Lite

Page 18 • Industrial Control Version 1.1

PBASIC Command Quick Reference: RCTime

RCTIME pin, state, resultvariable

• Pin is the I/O pin connected to the RC network.
• State is the input voltage of that pin.
• Resultvariable is normally a word-length variable containing the results of the command.

.

The PBASIC command we will use to read the analog value of the potentiometer is RCTIME. A typical block of
code to read the potentiometer is as follow:

Pot VAR WORD
HIGH 7
PAUSE 10
RCTIME 7, 1, Pot

In order for the BS2 to read the potentiometer, the routine needs to take the following steps:

• +5V (HIGH) is applied to both sides of the capacitor to discharge it.
• The BASIC Stamp pauses long enough to ensure the capacitor is fully discharged.
• When RCTIME is executed, Pin 7 becomes an input. Pin 7 will initially read a high (1) because an

uncharged capacitor acts as short.
• As the capacitor charges through the resistor, the voltage at Pin 7 will fall.
• When the voltage at Pin 7 reaches 1.4 V (falling), the input state is read as low (0), stopping the

process and storing a value in Pot proportional to the time required for the capacitor to charge.

The greater the resistance, the longer the time required for a capacitor to discharge; therefore, the higher
the value of Pot. In this manner, we can acquire an analog value from a simple input device.

Let's write a process-control program to make use of this input. Our process will be one where temperature
is monitored and a heater energizes below 100 degrees and de-energized above 120 degrees. The
potentiometer will represent a temperature sensor and the LED will represent the heater being energized.
We will use the debug window to display our temperature and the status of the heater. The maximum
potentiometer value, with this combination of resistor and capacitor, may reach 5000, so we will divide it by
30 to scale it to a more reasonable range. Figure 1.8 is the flowchart of the process.

Experiment #1: Flowcharting and StampPlot Lite

Industrial Control Version 1.1 • Page 19

Figure 1.8: Exercise 3 - Simple Heater Flowchart

Experiment #1: Flowcharting and StampPlot Lite

Page 20 • Industrial Control Version 1.1

Enter and run Program 1.2. Monitor the value in debug window while adjusting the potentiometer and note
what occurs as the value rises above 120 and below 100.

'Program 1.2, Simple Heater
LED1 VAR OUT4 'LED1 is on P4
RC CON 7 'RC network is on Pin 7
Temp VAR WORD 'Pot is a variable to hold results

OUTPUT 4 'Setup LED as output
LED1 = 1 'Energize initially

Main:
 GOSUB ReadTemp 'Read pot value as temperature
 GOSUB CheckTemp 'check temp to setpoint
 PAUSE 250
GOTO Main

ReadTemp
 HIGH RC 'Read Potentiometer
 PAUSE 10
 RCTIME RC, 1, Temp
 Temp = Temp/30 'Scale the results down,
 'store as temperature
 DEBUG "Temp = ",dec Temp, CR
RETURN

CheckTemp: 'If Temp > 100, or heat already on,
 'check if should be off
 IF (Temp > 100) OR (LED1 = 1) THEN CheckOff
 LED1 = 1 'If not, then energize and display
 DEBUG "The heater energized",CR

CheckOff: 'If Temp < 120 or heat is off already, all done
 IF (Temp < 120) OR (LED1 = 0) THEN CheckDone
 LED1 = 0 'if not, then energize and display
 DEBUG "The heater de-energized", CR
CheckDone:
RETURN

Programming Challenge

Modify the process flowchart and program so the LED indicates an air conditioner cycling between 70 and 75
degrees.

Exercise #4: Using StampPlot Lite

Experiment #1: Flowcharting and StampPlot Lite

Industrial Control Version 1.1 • Page 21

While the debug window for the BASIC Stamp is very useful for obtaining data and information from the
BASIC Stamp, it can be difficult to visualize the data without careful scrutiny. Is the temperature increasing or
decreasing? How quickly is it changing? At what point did the output change? What temperature is it cycling
around?

Enter StampPlot Lite! StampPlot Lite (SPL) was specifically developed for this text. SPL accepts data from the
BS2 in the same fashion the debug window does, only SPL interprets the data and performs on of 4 actions
based on the structure of the data:

• A value is plotted on an analog scale in real time.
• A binary value starting with % is plotted as digital traces in real time.
• Strings beginning with ! are interpreted as instructions to control and configure SPL.
• Any other string is listed as a message at the bottom of SPL and optionally time-stamped.

A main rule of SPL is that each line must end in a carriage return (13 or CR).

Please review Appendix A for a more in-depth discussion of StampPlot Lite.

If you have not yet installed StampPlot Lite, install it on your computer by downloading it from
http://www.stampsinclass.com. Double-click the setup button and install it in your designated directory.

Let's take another look at Program 1.2, our simple heater, but this time using StampPlot Lite to help visualize
the process. Program 1.2 has been rewritten as Program 1.3 to utilize StampPlot Lite (bold lines are
added/modified from program 1.2).

'Program 1.3; Simple Heater using StampPlot Lite
'Configure StampPlot Lite
PAUSE 500
DEBUG "!SPAN 50,150",CR 'Set span for 50-150
DEBUG "!TMAX 60",CR 'Set for 60 seconds
DEBUG "!PNTS 500",CR '500 data points per plot
DEBUG "!TITL Simple Heater Control",CR 'Title the form
DEBUG "!SHFT ON",CR 'Allow plot to shift at max
DEBUG "!TSMP ON",CR
DEBUG "!PLOT ON",CR 'Enable plotting
DEBUG "!RSET",CR 'Reset Plot

LED1 VAR OUT4 'LED1 is on P4
RC CON 7 'RC network is on Pin 7
Temp VAR WORD 'Pot is a variable to hold results

OUTPUT 4 'Setup LED as output
LED1 = 1 'Energize initially

Experiment #1: Flowcharting and StampPlot Lite

Page 22 • Industrial Control Version 1.1

Main:
 GOSUB ReadTemp 'Read pot value as temperature
 GOSUB CheckTemp 'check temp. to setpoint
 PAUSE 250
GOTO Main

ReadTemp
 HIGH RC 'Read Potentiometer
 PAUSE 10
 RCTIME RC, 1, Temp
 Temp = Temp/30 'Scale the results down,
 'store as temperature
 DEBUG DEC Temp, CR 'Send temperature value
 DEBUG IBIN LED1,CR 'Send LED Status
RETURN

CheckTemp: 'If Temp > 100, or heat already on,
 'check if should be off
 IF (Temp > 100) OR (LED1 = 1) THEN CheckOff
 LED1 = 1 'If not, then energize and display
 DEBUG "The heater energized",CR
 DEBUG "!USRS The heater is energized!",CR 'Update SPL status bar

CheckOff: 'If Temp < 120 or heat is off, all done
 IF (Temp < 120) OR (LED1 = 0) THEN CheckDone
 LED1 = 0 'if not, then energize and display
 DEBUG "The heater de-energized", CR
 DEBUG "!USRS The heater is de-energized!",CR 'Update SPL Status Bar
CheckDone:
RETURN

Download this program to your BASIC Stamp, and follow these instructions to use StampPlot Lite.

• Start StampPlot Lite by using your Windows Start button and going to
Programs/StampPlot/StampPlot Lite.

• Enter and run Program 1.3 on your BASIC Stamp.
• Close the BASIC Stamp editor’s blue debug window.
• Select the correct COM port in StampPlot Lite and click 'Connect.'

•
• Reset the BASIC Stamp by pushing the button on the Board of Education. Now you’re ready to use

this unique software utility.

Experiment #1: Flowcharting and StampPlot Lite

Industrial Control Version 1.1 • Page 23

At this point you should see data being plotted. Adjust the 10K-ohm potentiometer with your fingers or a
small screwdriver. The analog line displays the value of the potentiometer. The digital trace at the top displays
the status of the LED indicator. Figure 1.9 is a sample capture of the plot from our circuit.

Figure 1.9: StampPlot Lite Graph of Exercise #4

Note the correlation between the analog value and the switching of the digital output. Use the various
controls on StampPlot Lite to become familiar with the functions and features. Analyze Program 1.3 and note
the various configuration settings and data sent to the application. Refer to Appendix A for additional
information on StampPlot Lite if you are having problems understanding the basics of the software utility.

Programming Challenge

Modify your air conditioner challenge from Exercise #2 to use StampPlot Lite. Configure your program to
transmit data approximately every 0.5 seconds. Calculate the number of data points needed to fill the screen
within a maximum of 60 seconds, and test.

Just for fun!

Enter and run the following program. The potentiometer simulates a single-handle shower (mixer) valve with
adjustment delay. Adjust the shower temperature for a constant 110 degrees. See how fast you can stabilize
the temperature at the set point! Press the reset button on the Board of Education and try again. We'll leave
it up to you to figure out the program.

Experiment #1: Flowcharting and StampPlot Lite

Page 24 • Industrial Control Version 1.1

'PROGRAM 1.4: ADJUST THE SHOWER!
SetPoint VAR BYTE
CurTemp VAR BYTE
Diff VAR BYTE
TempSet VAR WORD

RC CON 7
LED1 CON 4
SetPoint = 110

PAUSE 500
DEBUG "!RSET",CR,"!SPAN 0,200",CR,"!TMAX 30",CR,"!PLOT ON",CR
DEBUG "!TSMP ON",CR,"!MAXS",CR,"!PNTS 100",13

DEBUG "!USRS ADJUST THE TEMP FOR ",DEC SetPoint,CR

Main:
 HIGH RC
 PAUSE 10
 RCTIME RC,1,TempSet
 TempSet = TempSet/ 30

 IF TempSet > CurTemp THEN Higher
 IF TempSet < CurTemp THEN Lower

GOTO Display

Higher:
 DIFF = TempSet - CurTemp/5
 CurTemp = CurTemp + Diff
GOTO Display

Lower:
 Diff = CurTemp - TempSet/5
 CurTemp = CurTemp - Diff

Display:
 LOW LED1
 DEBUG DEC CurTemp,CR
 IF CurTemp <> SetPoint THEN SkipBeep
 DEBUG "AT SETPOINT!",CR,"!BELL",CR
 HIGH LED1

SkipBeep:
 PAUSE 250
GOTO Main

Experiment #1: Flowcharting and StampPlot Lite

Industrial Control Version 1.1 • Page 25

Questions and Challenge

1. List one everyday human process that involves a decision. List the steps in performing the process and

the decisions needed to be made.

2. Develop a simple flowchart for the process in Question #1.

3. List an example of an electronics process in your home or school (such as that of an electric or
microwave oven control, alarm clock, etc). Develop a simple flowchart to describe the process.

4. Develop the flowchart and code for the following process: The potentiometer simulates a temperature
sensor. If the temperature exceeds 100 degrees, lock on the alarm (LED). Do not clear the alarm until the
pushbutton is pressed.

5. Modify the program from Question #4 to use StampPlot Lite to display the temperature, alarm bit and
status of the alarm.

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 27

Process control relies on gathering input information,
evaluating it, and initiating action. In industrial control, input
information most often involves monitoring field devices whose
outputs are one of two possible states. A switch is the most
common example of a “bi-state” device. It is either open or
closed.

Switches can provide control of an operation in three ways. One may be wired directly with the load and
therefore control the full current and voltage. A switch also can be wired in the input circuit of a relay. In this
case, the switch controls the relay’s relatively low power input and the output contacts control load power.
The on/off status of a switch may also provide a digital input to a programmable controller.

How many switches have you used today? And, what processes were affected by the toggling of those
switches? Table 2.1 lists a few possibilities, starting at the beginning of your day:

Table 2.1: Switch Possibilities at the Beginning of your Day

Switch Status Result
First, you may slap the “SNOOZE” button on your
alarm clock.

The buzzing stops and -- Ah! 5 more minutes of sleep!

Next, stumble to the bathroom and flip “ON” the
bathroom light.

Ouch! Turn it “OFF.” Those vanity lights hurt!

Now, into the kitchen, start your coffeemaker,
press down the toaster, and program your
microwave. Open the refrigerator and the light
comes on .

Breakfast is ready. And who knows if that light really
goes off when you close the refrigerator?

Turn on the thermostat. Heat or AC – your choice. What temperature? A
setpoint is usually just a “switching point.”

Turn on your TV, change the channel, turn up the
volume.

The pushbuttons on the front or the flashing infrared
LED in your remote– they all still just switch data.

Make a phone call. Lift the receiver and check for
dial tone. Key in the phone number.

The limit switch held down by the handset now is in
its “off the hook” position. Each switch on the keypad
allows a specific tone to be generated.

Boot your PC. Switch on the monitor. Left click
the mouse to check your e-mail.

These are only three obvious ones. There are many
more switches behind the scenes in your PC.

You are up to 15 switches and you haven’t even left your house!

Experiment #2:
Digital Input Signal
Conditioning

Experiment #2: Digital Input Signal Conditioning

Page 28 • Industrial Control Version 1.1

Some of the switches listed in Table 2.1 probably have direct control of electrical continuity to the loads
involved. For example, the bathroom light switch controls the actual current flowing to the vanity light bulbs.
The thermostat is an example of a switch controlling a low-voltage system that controls a relay in your
furnace or air conditioner.

Most of the switches in Table 2.1, however, probably are providing a digital high or low signal being monitored
by an electronic control system. It is the status of this input signal that is evaluated and used to determine the
appropriate state of the outputs involved. The snooze button isn’t physically opening the alarm circuit of your
clock radio. When you “slapped” it, the momentary change of state was recognized by a programmable circuit.
As a result, the program instructed the output to go off and add five minutes to the programmed alarm time.
The start button on your microwave doesn’t have to carry the actual current that powers the magnatron,
inside light, and ventilation fan. However, pressing it creates an input causing the oven’s microcontroller to
close relays that do handle these loads.

Most often we think of switches as mechanical devices that make and break continuity between contact
points in a circuit. In the case of the manual pushbutton and the limit switches pictured in Figure 2.1, this is
exactly the case.

Figure 2.1: A Variety of Manual Pushbutton and Mechanical Limit Switches

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 29

Table 2.2 shows the schematic representation of various industrial switches. The symbols are drawn to
represent the switch’s “normal” state. Normal state refers to the unactuated or rest state of the switch. The
pushbutton switches in this exercise kit are Normally Open (N.O.). Pressing the pushbutton results in a plunger
shorting the contacts. The resistance goes from its open value of nearly infinite ohms to a value very near
zero. A similar mechanism produces a like action in a Normally Open limit switch.

Table 2.2: Schematic Representation of Various Industrial Switches

While the concept of the switch is simple, there seems to be no limit to the physical design of switches that
you will find in industrial control applications. Switches also may be designed as Normally Closed (N.C.); they
are closed when at rest and actuation causes their contacts to open. As a technician, programmer, or system
designer, you must be aware of the Normal (resting) position of a switch.

Experiment #2: Digital Input Signal Conditioning

Page 30 • Industrial Control Version 1.1

Digital Input (TTL, CMOS, ECL, etc.)?

Logic devices are built with a variety of processes
that operate at different voltages. The
manufacturer’s datasheet will list several critical
values for each device. Absolute Maximum Ratings
are voltages and currents which must not be
exceeded to avoid damaging or destroying the
chip. I/O pins on the BASIC Stamp II should not
exceed 0.6 V or Vdd+0.6 V (5.6V) with respect to
Vss.

The logic transition between high and low is
specified in the DC characteristics of the
datasheet. A voltage of 0.2 Vdd (1 V on the BASIC
Stamp II) is guaranteed to be low, and which 0.45
Vdd (2.25 V) or higher is guaranteed to be high.
There is a gray area between these two voltages
where the actual transition will occur. It is
dependant on temperature and supply voltages
where the actual transition will occur. It also
varies with temperature and supply voltage but
will normally occur at about 1.4 volts.

Figure 2.2: Schematic Representation of Pushbutton Switches

Figure 2.2a Figure 2.2b

The input pins of the BASIC Stamp do not detect “changes in
resistance” between the switch’s contacts. These inputs
expect appropriate voltage levels to represent a logic high
or a logic low. Ideally, these levels would be +5 volts for a
logic high (1) and 0 volts for a logic low (0).

To convert the two resistive states of the switch into
acceptable inputs, it must be placed in series with a
resistor across the +5 volt supply of the BASIC Stamp. This
forms a voltage divider circuit in which the resistive status
of the switch is compared to the resistive value of the
reference resistor. Figure 2.2 shows the two possibilities
for our simple N.O. pushbutton switch. Figure 2.2a will
result in +5 volts being fed to the input pin when it is
pressed. When the switch is open, there is no continuity;
therefore, no current flows through the 10K resistor and
the input pin is grounded.

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 31

Reference Resistor:

The 10K-ohm fixed resistor in Figures 2.2a
and 2.2b is required to get dependable logic
levels. It is wired in series with the switch.
Its value must be much greater than the
closed resistance of the switch and much
less than its open resistance. When the
switch is open in Figure 2.2a, the resistor
gets no voltage and the input point is “pulled
down” to ground. In Figure 2.2b, the open
switch causes the input to be “pulled up” to
+5 volts. You must consider the use of pull-
up and pull-down resistors when working
with all mechanical switches and some
electronic switches.

In Figure 2.2b, the switch closure results in grounding of the
input pin. Zero volts is a logic low. When the switch is opened,
there is again no voltage drop across the 10K-ohm resistor and
the voltage at the input is +5, a logic high. The circuits are
essentially the same, although the results of pressing the switch
are exactly opposite. From a programming standpoint, it is
important to know with which configuration you are dealing.

Experiment #2: Digital Input Signal Conditioning

Page 32 • Industrial Control Version 1.1

Exercise #1: Switch Basics

To begin an investigation of programming for simple switch activity, wire the two pushbutton switches shown
in Figure 2.2 onto the Board of Education breadboard. Connect the active-high configuration (Figure 2.2a) to
I/O Pin 1 and the output of the active-low configuration (Figure 2.2b) to Pin 2. Note which one is which. As
stated earlier, this is important. Figure 2.3 shows a pictorial of how the circuit is built on the Board of
Education.

Figure 2.3: Pictorial of Parts Layout for circuits of Figure 2.2

Exercises

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 33

The following program is written to use the StampPlot Lite interface for displaying the status of the switches.
The procedure will be the same as you followed in Experiment #1, Flowcharting and StampPlot Lite. First,
enter Program 2.1. You may omit from the program all comments which include the apostrophe (‘) and the
text that follows.

'Program. 2.1: Switch Level Detection with StampPlot Lite Interface

DEBUG "!TITL Pushbutton Test",CR ' Titles the StampPlot screen

INPUT 1 ' Set P1 as an input
INPUT 2 ' Set P2 as an input
PB1 VAR IN1
PB2 VAR IN2

Loop:
 PAUSE 100 ' Slow the program loop
 DEBUG IBIN PB1, BIN PB2, CR ' Plot the digital status
 DEBUG DEC 0, CR ' Output a 0 to allow for screen shift
 IF (PB1 = 1) and (PB2 = 0) THEN Both ' Test for both pressed
 IF PB1 = 1 THEN PB1_on ' Test if active-high PB1 is pressed
 IF PB2 = 0 THEN PB2_on ' Test if active-low PB2 is pressed
DEBUG "!USRS Normal states - Neither pressed", CR
 ' Report none pressed
GOTO Loop

PB1_on: ' Report PB1 pressed
 DEBUG "!USRS Input 1 is High - PB1 is pressed ", CR
GOTO Loop

PB2_on: ' Report PB2 pressed
 DEBUG "!USRS Input 2 is Low - PB2 is pressed ", CR
GOTO Loop

Both: ' Report both pressed
 DEBUG "!USRS PB1 High & PB2 Low - Both pressed", CR
 DEBUG "!BELL", CR ' Sound the bell.
GOTO Loop

Experiment #2: Digital Input Signal Conditioning

Page 34 • Industrial Control Version 1.1

Run the program. DEBUG will scroll the switch status and the input’s digital value. Close the debug screen and
open StampPlot Lite. Select the appropriate COM port and check the Connect and Plot Data boxes. Press the
reset switch on your Board of Education and the trace of In1 and In2 should start across the screen. Your
display should look similar to Figure 2.4. Press the pushbuttons and become familiar with the operation of
your system. Next, we will look at how the program works.

Figure 2.4: Typical Screen Shot of StampPlot Monitoring the Status of Pushbuttons

The purpose of this program is to run code based on the pressed or not-pressed condition of the two
pushbuttons. This simple exercise gives insight to several considerations when dealing with digital inputs,
programming multiple if-then statements, and using some of the PBASIC logical operators.

First, the statements in1 and in2 simply return the logic value of the input pins: +5 V = logic 1 and 0 V = logic
0. The active-high PB1 returns a 1 if pressed. The active-low PB2 returns a 0 when it is pressed. The program
is testing for the “logical” status of the inputs; as the programmer, you must understand how this correlates
to the “pressed” or “not pressed” condition of the pushbuttons involved. This is evident in the first line of the
program loop where the logic operator AND is being used.

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 35

When you consider our switch configurations, it makes logical sense that if In1 returns a logic high and In2
returns a logic low then both switches are pressed. Output actions of industrial controllers often are
dependent upon the status of multiple switches and contacts. A review of the PBASIC logical operators,
including AND, OR, XOR, and NOT, can provide useful tools in meeting these requirements using the BASIC
Stamp.

Another aspect of Program 2.1 is to notice the flow of the program loops. The IF-THEN structures test for a
condition and if the condition is met, THEN the program execution is passed to the label. In this case, the
label routine simply prints the conditions of the switches to the StampPlot Lite Status box. In industrial
applications, this portion of the program would cause the appropriate output action to occur. Since the last
line of each label is GOTO Loop, program execution returns to the top of the loop and any code below that
IF-THEN statement is circumvented. The flowchart in Figure 2.5 shows how the program executes.

Figure 2.5: Flowchart for Program 2.1

Experiment #2: Digital Input Signal Conditioning

Page 36 • Industrial Control Version 1.1

If both switches are pressed, “IF (PB1 = 1) and (PB2 = 0)” is true. Program execution then would go to
the Both label. The “both pressed” condition would be indicated in the User Status Bar and your computer
bell would ring. After this, program execution is instructed to go back to Loop and test the switches again. As
long as both switches remain pressed, the result of this test is continually true and looping is occuring only
within this part of the program.

If either or both switches become not pressed, the next three lines of code will do a similar test for the
condition.

Pressing PB1 results in “IF PB1 = 1” being true, execution is passed to the PB1 label action, and a return to
the top of the loop; “IF PB2 = 0” is never tested. Is this good or bad? Neither, really. But, understanding the
operation of multiple IF-THEN statements can be a powerful tool for programming applications. Forgetting
this can result in frustrating and not-so-obvious bugs in your program. For instance, what would happen in
our program if the test for both switches being pressed “IF (PB1 = 1) AND (PB2 = 0) THEN Both”
was put after the individual switch tests?

Quick Challenge

While running the program, try to reproduce the switch status shown in the screen shot of Figure 2.4.

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 37

Exercise #2 – Switch Bounce and Debouncing Routines

In the previous exercise, the steady-state level of the switch was being reported. The routine of reporting the
switch status was performed on each program loop. What if you wanted to quickly press the switch and have
something occur only once? There are two issues with which to contend. The first is: How quickly can you
press and release the switch? You have to do it within the period of one program cycle. The second problem is
contending with switch bounce. Switch bounce is the tendency of a switch to make several rapid on/off
actions at the instant it is pressed or released.

The following program will demonstrate the difficulty in accomplishing this task. Two light-emitting diodes
have been added as output indicators on Pin 4 and Pin 5. Wire the LEDs relative to Figure 2.6.

Figure 2.6: Active-High LED Circuit to be Added to the Schematic in Exercise #1

Enter and run the program according to StampPlot Lite procedures. The status of the pushbutton and the
LEDs is being indicated. When PB1 is pressed, the LEDs will toggle. Can you be quick enough to make them
toggle only once on alternate presses? Try it.

Experiment #2: Digital Input Signal Conditioning

Page 38 • Industrial Control Version 1.1

'Program 2.2 No Debouncing

PAUSE 500
DEBUG "!TITL Toggle Challenge",CR ' Titles the StampPlot screen
DEBUG "!TMAX 25", CR ' Sets the plot time (seconds)
DEBUG "!PNTS 300", CR ' Sets the number of data points

INPUT 1 ' Set P1 as an input
INPUT 2 ' Set P2 as an input
OUTPUT 4 ' Green LED
Out4 = 1 ' Initialize ON
OUTPUT 5 ' Red LED
Out5 = 0 ' Initialize OFF

Loop:
 DEBUG IBIN In1, BIN In4, BIN In5, CR ' Plot the digital status.
 DEBUG DEC 0, CR ' Output a 0 to allow for screen shift
 IF In1 = 1 THEN Action ' Test the switch
 ' Optional pause 5 if StampPlot locks up
GOTO Loop

Action: ' Toggle last state
 TOGGLE 4
 TOGGLE 5
GOTO Loop

If StampPlot Lite isn’t responding to data sent by the BASIC Stamp, you may need to insert a very short delay
in the Loop: routine. A PAUSE 2 or PAUSE 5 (even up to 10 on slower computers) will alleviate any
transmission speed problems you may encounter.

It is nearly impossible to press and release the pushbutton fast enough to perform the action only once. The
problem is twofold as Figure 2.7 indicates. The program loop executes very fast. If you are slow, the program
has a chance to run several times while the switch is closed. Add to this several milliseconds of switch bounce,
and you may end up with several toggles during one press.

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 39

Figure 2.7: Slow Response and No Debounce Can be a Problem

Further slowing the execution time of the program loop can help remedy the problem. (If the above program
didn’t work properly with StampPlot Lite, a delay in execution speed will allow for serial data transmission).
Add a delay of 250 milliseconds to the Action: routine. This allows 250 milliseconds for the switch to settle
after closing and then return to its open position.

Modify your program to include “PAUSE 250” to increase the loop time and negate switch bounce.

'Program 2.3 (modify program 2-2 to slow it down)
Action: ' Toggle last state
 TOGGLE 4
 TOGGLE 5
 PAUSE 250 ' Added to allow for settling time

GOTO Loop

Figure 2.8: Adding a Pause Makes the Toggle Challenge Much Easier

By allowing settling time and pressing the button quickly, you make it much easier to get the Action: to
occur only once. This technique helps debounce the switch and gives you enough time to release it before the
next program cycle. The PAUSE must be long enough to allow for these factors. If the PAUSE is too long,
however, a switch closure may occur and never be seen.

Experiment #2: Digital Input Signal Conditioning

Page 40 • Industrial Control Version 1.1

Exercise #3 – Edge Triggering

Counting routines pose additional problems for digital input programming. Exercise #2 used the PAUSE
command to eliminate switch bounce, which is compounded in industrial applications such as counting
products on a conveyor. Not only does the switch have inherent bounce, but the product itself may have
irregular shape, be wobbling, or stop for some time while activating the switch. There may be only one
product, but the switch may open and close several times. Also, if the one product stays in contact with the
switch for several program loop cycles, the program still should register it only once, not continually like in
Program 2.2.

Program 2.4 uses a flag variable to create a program that responds to the initial low-to-high transitions of
the switch. Once this “leading edge” of the digital input is detected, Action: will be executed. Then the flag
will be set to prevent subsequent executions until the product has cleared and the switch goes low again.
Enter Program 2.4.

' Program 2.4: Switch Edge Detection
' Count and display the number of closures of PB1.
' Reset total count with a closure of PB2.

PAUSE 500
DEBUG "!TITL Counting Challenge",CR ' Titles the StampPlot screen
DEBUG "!TMAX 50",CR ' Sets the plot time (seconds)
DEBUG "!PNTS 300",CR ' Sets the number of data points
DEBUG "!AMAX 20",CR ' Sets vertical axis (counts)
DEBUG "!MAXR",CR ' Reset after reaching max data points

INPUT 1
INPUT 2
PB1 VAR In1
PB2 VAR In2
Flag1 VAR bit ' flag for PB1
Flag2 VAR bit ' flag for PB2

COUNTS VAR word ' word variable to hold count
Flag1 = 0 ' clear the flags and Counts
Flag2 = 0
COUNTS = 0

Loop:
 PAUSE 50
 DEBUG "!USRS Total Count = ",DEC Counts,CR
 ' Display total counts in Status box
 DEBUG DEC Counts, CR ' Show counts on analog trace
 DEBUG IBIN PB1, BIN PB2,CR ' Plot the digital status.

 IF PB1 = 1 THEN Count_it ' If pressed, count and display
 Flag1 = 0 ' If not pressed, reset flag to 0

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 41

 IF In2 = 0 THEN Clear_it ' If PB2 is pressed, clear counts to 0
 Flag2 = 0
GOTO Loop

Count_it:
 IF (PB1 = 0) OR (Flag1 = 1) THEN Loop ' If no longer pressed OR the
 ' flag is set, skip
 Counts = Counts +1 ' Increment Counts
 Flag1 = 1 ' Once Action executes, set Flag to 1
GOTO Loop

Clear_it:
 IF(In2 = 1) OR (Flag2 = 1) THEN Loop ' If no longer pressed,Or the flag is
 ' set, skip

 Counts = 0 ' Clear counts to 0
 Flag2 = 1 ' Prevents from clearing it again
 DEBUG "Counter Cleared. Total Count = ", DEC Counts, CR
GOTO Loop

When PB1 is pressed, the program branches to the Count_it routine. Notice that the first line of this routine
tests to see if the switch is open or Flag1 is set. Neither is true upon the first pass through the program.
Therefore, Counts is incremented, Flag1 is set to 1 and program execution goes back to Loop. If PB1 still is
being held down, Count_it is run again. This time, however, with Flag1 set, the IF-THEN statement sends
the program back to Loop without incrementing Counts again. No matter how long the pushbutton is
pressed, it will only register one “count” upon each closure. Although you are only incrementing the Count
variable in this program, it could be part of a routine called for in an industrial application. Figure 2.9 is a
screen shot that is representative of what you may see when running the program.

Experiment #2: Digital Input Signal Conditioning

Page 42 • Industrial Control Version 1.1

Figure 2.9: Running Program 2.4 - Edge Trigger Counting

Programming Challenge 1: The Parking Lot.

Use the indicating LEDs on output Pins 4 and 5, along with the two pushbuttons, to simulate a parking lot
application. Assume your parking lot can hold 24 cars. Pushbutton PB1 will be counting cars as they enter the
lot. Pushbutton PB2 will count cars as they leave. Write a program that will keep track of the total cars in the
parking lot by counting “up” with PB1 and “down” with PB2. Have the green LED on as long as there is a
vacancy in the lot. Turn the red LED on when the lot is full. Continually display how many parking spaces are
available in the User Status window (!USRS). Plot continually the number of cars in the parking lot.

Additional StampPlot Lite Challenge

Keep a file of the number of times your parking lot went from “Vacancy“ to “Full” (see Appendix A and the
StampPlot Lite help file for information on using the Save Data to File option).

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 43

BUTTON Command: PBASIC’s Debouncing Routine

Debouncing switches is a very common programming task. Parallax built into the PBASIC2 instruction set a
command specifically designed to deal with digital input signal detection. The command is called button. The
syntax for the command is shown below.

To try it with our counting routine, load and run program Program 2.5.

' Program 2.5: Button Exercise with StampPlot Interface
' Use Button to count and display the number of closures of PB1.
' Reset total count with a closure of PB2.

PAUSE 500
DEBUG "!TITL Counting Challenge",CR ' Titles the StampPlot screen
DEBUG "!TMAX 50",CR ' Sets the plot time (seconds)
DEBUG "!PNTS 300",CR ' Sets the number of data points
DEBUG "!AMAX 20",CR ' Sets vertical axis (counts)
DEBUG "!MAXR",CR ' Reset after max data points is reached

Wkspace1 VAR byte ' Workspace for the BUTTON command for PB1
Wkspace1 = 0 ' Must clear workspace before using BUTTON
Wkspace2 VAR byte ' Workspace for the BUTTON command for PB2
Wkspace2 = 0 ' Must clear workspace before using BUTTON

Counts VAR word ' Word variable to hold count
Counts = 0

Loop:
 PAUSE 50
 BUTTON 1,1,255,0,Wkspace1,1,Count_it ' Debounced edge trigger detection of PB1
 BUTTON 2,0,255,0,Wkspace2,1,Clear_it ' Debounced edge trigger detection of PB2

PBASIC Command Quick Reference: BUTTON

BUTTON pin, downstate,delay,rate,bytevariable,targetstate, address

• Pin: (0-15) The pin number of the input.
• Downstate: (0 or 1) Specifiying which logical state occurs when the switch is activated.
• Delay: (0-255) Establishes a settling period for the switch. Note: 0 and 255 are special cases. If delay is 0, Button

performs no debounce or auto-repeat. If delay is 255, Button performs debounce but no auto-repeat.
• Rate: (0-255) Specifies the number of cycles between autorepeats.
• Bytevariable: The name of a byte variable needed as a workspace register for the BUTTON instruction.
• Targetstate: The state of the pin on which to have a branch occur.
• Address: The label to branch to when the conditions are met.

Experiment #2: Digital Input Signal Conditioning

Page 44 • Industrial Control Version 1.1

 DEBUG "!USRS Total Count = ", DEC Counts, CR
 ' Display total counts in Status box
 DEBUG DEC Counts, CR ' Show counts on analog trace
 DEBUG IBIN In1, BIN In2, CR ' Plot the digital status.
GOTO Loop

Count_it:
 Counts = Counts +1 ' Increment Counts
GOTO Loop

Clear_it:
 Counts = 0 ' Clear counts to 0
 DEBUG "Counter Cleared. Total Count = ", DEC Counts, CR
 ' Display in Text Box
GOTO Loop

Review the documentation concerning the BUTTON command in the BASIC Stamp Programming Manual
Version 1.9. This is a very handy command for industrial applications. Experiment by changing the delay time
from 50 to 100 and to 200. See if you can press the switch more than one time but only get one Action to
take place. What would be the risk of allowing for too much settling time in “high speed” counting
applications? Save this program; it will be modified only slightly for use with the next programming challenge.

Electronic Digital Input Sources

It is very common for digital inputs to come from the outputs of other electronic circuits. These inputs may be
from a variety of electronic sources, including inductive or capacitive proximity switches, optical switches,
sensor signal-conditioning circuits, logic gates, and outputs from other microcontrollers, microprocessors, or
programmable logic control systems.

There are several things to consider when interfacing these sources to the BASIC Stamp. Primarily: “Are they
electrically compatible?”

1. Is the source’s output signal voltage within the BASIC Stamp input limits?

2. Is the ground reference of the circuit the same as that of the BASIC Stamp?

3. Is protection of either circuit from possible electrical failure of the other a concern such that
isolation may be necessary?

Figure 2.10 shows a variety of electrical interfacing possibilities you may face.

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 45

Once a compatible signal is established, the next question becomes, “Is the program able to respond to the
signal?”

1. Is digital bounce an issue?

2. How fast is the data? What is its frequency? What is the minimum pulse time?

3. Is action to be taken based on the data’s steady-state level or on its leading or trailing edges?

Techniques to deal with switch bounce and edge triggering that were discussed relative to the manual
pushbuttons also apply to the electronic switch.

Experiment #2: Digital Input Signal Conditioning

Page 46 • Industrial Control Version 1.1

Figure 2.10: Input Interfacing of Electronics to the BASIC Stamp

(a) TTL and CMOS logic inputs powered from a +5-volt supply can be applied directly to the BASIC Stamp’s input
pins. If the two systems are supplied from the same 5 volts, great. If not, at least the grounds must be common
(connected together).

(b) Low-voltage (+3 V) devices can be interfaced using a 74HCT03 or similar open-drain gate with a pull-up
resistor to the BASIC Stamp’s +5-volt supply. Supply the chip with the low-voltage supply and make the
grounds common.

(c) Higher-voltage digital signals can be interfaced using a 74HC4050 buffer or 74HC4049 inverter powered at +5
volts. These devices can safely handle inputs up to 15 volts. Again, the grounds must be common.

(d) A referenced comparator op-amp configuration can establish a High/Low output based on the analog input
being above or below the setpoint voltage. The LM358 is an op-amp whose output will go from ground to nearly
Vdd on a single-ended, +5-volt supply. It will be used in the upcoming application.

(e) An opto-coupler may be used to interface different voltage levels to the BASIC Stamp. The LED’s resistor holds
current to a safe level while allowing enough light to saturate the phototransistor. The input circuit can be
totally isolated from the phototransistor’s BASIC Stamp power supply. This isolation provides effective
protection of each circuit in case of an electrical failure of the other.

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 47

Proximity switch?

Proximity switches detect the presence of an
object without contacting it. The switches below
represent the three main categories:

Inductive, Capacitive, and Optical

Exercise #4: An Electronic Switch

Electronic switches that provide “non-contact” detection are very popular in industrial applications. No
physical contact for actuation means no moving parts and no electrical contacts to wear out. The pushbutton
switch used earlier should be good for several thousand presses. However, its return spring eventually will
fatigue, or its contacts will arc, oxidize, or wear to the point of being unreliable.

Industrial electronic switches operate on one of three principles.

• Inductive proximity switches sense a change in an oscillator’s performance when metal objects are
brought near it. Most often the metal objects absorb energy via eddy currents from the oscillator
causing it to stop.

• Capacitive proximity switches sense an increase in capacitance when any type of material is brought
near them. When the increase becomes enough, it causes the switch’s internal oscillator to start
oscillating. Circuitry is then triggered and the output state is switched.

• Optical switches detect the presence or absence of a narrow light beam, often in the infrared range.
In retroreflective optical switches, the light beam may be reflected by a moving object into the
switch’s optical sensor. Through-beam optical switches are set up such that the object blocks the
light beam by going between the light source and the receiver.

The output of an electronic switch is a bi-state signal. It’s final
stage may be any one of the types seen in Figure 2.10. As a
technician and application developer, you must consider the
nature of this signal circuit and condition it for the digital
input of the microcontroller. The manufacturer’s datasheet
will give you information on the operating voltage for the
switch and typical load connections.

Although you can think of the BASIC Stamp’s digital input pin
as the load, the electronic switch may require a reference
resistor as used earlier in Figure 2.2. Most likely, the output of
the proximity switch will be very near 0 volts in one state and
near its supply voltage in the other state. It is always a good
idea to test the switch’s output states with a voltmeter before
applying it to the unprotected input of the microcontroller. If
the output voltages are not within the compatible limits of the

Experiment #2: Digital Input Signal Conditioning

Page 48 • Industrial Control Version 1.1

BASIC Stamp, you will need to use one of the circuits in Figure 2.10 as an appropriate interface.

The following exercise focuses on the design and application of an optical switch. We will use this switch to
detect and count objects. Then the switch will be used as a tachometer to determine RPM.

In Figure 2.11, the infrared light-emitting diode (LED) and the infrared phototransistor form a matched
emitter/detector pair. Light emitted by the LED will result in phototransistor collector current. An increase in
collector current drives the phototransistor toward saturation (ground). If the light is prevented from striking
the phototransistor, it goes toward cutoff and the collector voltage increases positively. These conditions of
light and no-light will most likely not provide a legal TTL signal at the collector of the transistor. Applying this
signal to the input of a referenced comparator will allow us to establish a setpoint somewhere between the
two conditions. The output of the comparator will be a compatible TTL logic signal. It’s level is dependant on
which side of the setpoint the phototransistor’s output is on. The LM358 op-amp is a good choice for this
application. It can operate on a +5-volt single supply and its output saturation voltages are almost equal to
the supply potentials of +5 and ground.

Carefully construct the circuit in Figure 2.11 on the Board of Education breadboard. Mounting the devices
near one end as pictured in the diagram allows for additional circuits in upcoming exercises. Make a 90o bend
in the LED and phototransistor leads so the devices lie parallel to the the benchtop. The phototransistor and
infrared LED should be placed next to each other, pointing off the edge of the breadboard.

The LED in Figure 2.11 is emitting a continuous beam of infrared light. With the LED and phototransistor side-
by-side, there is little or no light coming into the phototransistor because there is nothing reflective in front
of it. If an object is brought toward the pair, some of the LED light will bounce back into the phototransistor.
When light strikes the phototransistor, the collector current will flow and the collector voltage will drop. In
this setup, the scattered reflection of light off an object as it passes in front of the pair will be sensed by the
phototransistor. The amount of reflected light into the sensor depends on the optical reflectivity of the target
object and the geometry of the light beam. We will attempt to determine the presence of a flat-white object.
With the emitter and detector mounted side-by-side, you will try for detection of the object at a distance of
one inch.

You must make a couple of voltage measurements to calibrate the presence of the object. Begin by placing a
voltmeter across the phototransistor’s collector and emitter. Measure the voltage when there is no object in
front of the sensor. Record this value in Table 2.3. Next, move a white piece of paper toward and away from
the pair and notice the variation in voltage. As the paper is brought near the IR pair, the reflected light
increases collector current and drives the transistor toward saturation –“low.” Record the voltage reading
with the white paper approximately one inch in front of the sensor in Table 2.3. The difference between these
measurements may be quite small, like 0.5 V, but that will be enough to trigger the op-amp. This signal is
applied to the inverting input of the LM358 comparator. The potentiometer provides the non-inverting input
reference voltage. This reference should be a value between the “no reflection” and “full reflection” readings.

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 49

Figure 2.11a and b: Retro-reflective Switch Pictorial and Schematic

Experiment #2: Digital Input Signal Conditioning

Page 50 • Industrial Control Version 1.1

Adjust the potentiometer to provide the proper reference voltage, which is halfway between the
measurements.

Testing the output of the LM358 should result in a signal compatible with the BASIC Stamp. The output should
be low with no object and high when the white object is placed in front of the emitter/detector pair. Measure
these two output voltages of the LM358 and record the values in Table 2.3. If the output signal is compatible,
apply it to the BASIC Stamp’s Pin 3. Detecting light reflected by an object is called retro-reflective detection.

Table 2.3: LM358 Values

Condition
Phototransitor

Voltage
LM358 Output

Voltage
No object – no reflection
Object – full reflection
Reference voltage setpoint

This ability to yield a switching action based on light received lends itself to many industrial applications such
as product counting, conveyor control, RPM sensing, and incremental encoding. The following exercise will
demonstrate a counting operation. You will have to help, though, by using your imagination.

Let’s assume that bottles of milk are being transferred on a conveyor between the filling operation and the
case packer. Cut a strip of white paper to represent a bottle of milk. Passing it in front of our switch
represents a bottle going by on the conveyor. Only a slight modification of the previous program is necessary
to test our new switch. If you have Program 2.5 loaded, simply modify the first button instruction by
changing the input identifier from Pin 1 to 3. The modified line would look like this:

' Program 2.6 (modification to Program 2.5
' for the retroreflective switch input)

BUTTON 3,1,255,0,Wkspace1,1,Count_it
' Debounced edge trigger detection of optical switch

Programming Challenge #2: Milk Bottle Case Packer

Refer back to Experiment #1 and consider the conveyor diverter scenario in Figure 1.2. We will assume that
the controller is counting white milk bottles. Our retroreflective switch detecor could replace the
“Detector1” switch in the original figure. The active high PB1 would toggle the conveyer motor ON and OFF.
The LED on P4 can indicate that the motor is ON by lighting up. The LED on P4 is controlling the diverter gate.
When high the gate is to the right and when low,the gate is to the left. Your challenge is to start the motor
with PB1 and count bottles as they pass. Each sixth bottle, TOGGLE the diverter gate’s position as indicated

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 51

by the ON and OFF status of the LED on P4. After a case (4 six-packs) have been diverted t each side, turn off
the motor. The process would start over by pressing the pushbutton again. Refer to Flowchart 2.12 to gain an
understnding of the program flow.

Figure 2.12: Flowchart of Milk Bottle Challenge

Experiment #2: Digital Input Signal Conditioning

Page 52 • Industrial Control Version 1.1

Exercise #5: Tachometer Input

Monitoring and controlling shaft speed is important in many industrial applications. A tachometer measures
the number of shaft rotations in a unit of time. The measure is usually expressed in revolutions per minute
(RPM).

A retroreflective switch can open and close fast enough to count white and black marks printed on a motor’s
shaft. Counting the number of closures in a known length of time provides enough information to calculate
RPM. Figure 2.13 represents five possible encoder wheels that could be attached to the end of a motor shaft.
If the optical switch is aimed at the rotating disk, it will pulse on-off with the alternating segments as they
pass. The number of white (or black) segments represent the number of switch cycles per revolution of the
shaft. The first encoder wheel has one white segment and one black segment. During each revolution, the
white segment would be in front of our switch half the time, resulting in a logic high for half the rotation.

During the half rotation the black segment is in front of the disk, it absorbs the infrared light and with no
reflected light, the switch will be low. One cycle of on-off occurs each revolution. The PBASIC2 instruction set
provides a very useful command called COUNT that can be used to count the number of transitions at a digital
input occuring over a duration of time. Its syntax is shown below.

The following exercise uses the count instruction, the optical switch, and the shaft encoder wheels to capture
speed data.

Lets begin by cutting out the first encoder wheel. Fold a piece of cellophane tape onto the back of the
encoder wheel to hold it on the shaft hub of the fan motor (a full-size set of encoder wheels may be pulled
from Appendix B of this text). The fan is rated at 12 V. Its speed changes with varying voltages from 12 V
down to approximately 3.5 V. This is the dropout voltage of the brushless motor control circuitry. Test your
fan by directly connecting it across the Vdd (+5 volt supply) and then test it across the +Vin (unregulated)
supply. Pin 20 of connector X1 provides access to the unregulated supply (Vin). You must observe the poalarity
on brushless motors. The red lead is positive (+V) and the black lead is connected to Vss. The fan should be
located so the encoder wheel is pointed at the emitter/detector pair.

PBASIC Command Quick Reference: COUNT

COUNT pin, period, variable

• Pin: (0-15) Input pin identifier.
• Period:(0-65535) Specifies the time in milliseconds during which to count.
• Variable: A variable in which the count will be stored.

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 53

Figure 2.13: Retro-reflective Encoder Wheels
(cutouts are available in Appendix B)

Experiment #2: Digital Input Signal Conditioning

Page 54 • Industrial Control Version 1.1

The first encoder wheel has one white and one black segment on it. As it rotates, the opto-switch should cycle
on-off once for each revolution. Enter the Tachometer Test Program 2.7 below.

' Program 2.7 Tachometer Test - with the StampPlot Interface

' Initialize plotting interface parameters.
' (Can also be set or changed on the interface)
DEBUG "!AMAX 8000",CR ' Full Scale RPM
DEBUG "!AMIN 0",CR ' Minimum scaled RPM
DEBUG "!TMAX 100",CR ' Maximum time axis
DEBUG "!TMIN 0",CR ' Minimum time axis
DEBUG "!AMUL 1",CR ' Analog scale multiplier
DEBUG "!PNTS 600",CR ' Plot 600 data points
DEBUG "!PLOT ON",CR ' Turn plotter on
DEBUG "!RSET",CR ' Reset screen

Counts VAR word ' Variable for results of count
RPM VAR word ' Variable for calculated RPM
Counts = 0 ' Clear Counts

Loop:
 COUNT 3,1000, Counts ' Count cycles on pin 3 for 1 second
 RPM = Counts * 60 ' Scale to RPM

 ' Send out RPM value to plotter and status bar
 DEBUG DEC rpm, CR
 DEBUG "!USRS Present RPM is ", DEC RPM, CR
GOTO Loop

As the fan spins, the cycling of the photo switch will be counted for 1000 milliseconds (one second). With the
duration of the Counts routine being one second and one cycle occurring with each rotation, we get the
cycles per second of fan rotation. Most often, the speed of a rotating shaft is described in terms of
revolutions per minute (RPM). Multiplying the revolutions per second times 60 converts cycles per second to
RPM.

Run your program. The debug window will first appear with the serial information for configuration and
display of the StampPlot Lite interface. Close the BASIC Stamp debug window and open StampPlot Lite. Check
“Connect and Plot Data” and click on “Restart.” Press the Board of Education reset button and your interface
should start plotting. Figure 2.14 shows a representative screen shot of the interface plotting RPM at various
motor voltages.

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 55

Figure 2.14: RPM of the Brushless DC Fan at Varying Voltages

The spinning encoder wheel may result in a slightly different phototransistor peak output for “light” and “no-
light” conditions. If your system is not reporting correctly, change the setpoint by adjusting the potentiometer
to the new average value. If you have access to an oscilloscope, measure the peak-to-peak output of the
phototransistor and your potentiometer setpoint being applied to the comparator. Placing the setpoint
midway between the peak-to-peak DC voltage levels would allow for optimal performance. Notice the
frequency and wave shape of the signal. An example of the oscilloscope reading is pictured in Figure 2.15. The
84.7 Hz equated to a debug readout of “Counts = 84 RPM = 5040.” The 84.7 Hz measured by the oscilloscope
reflects an actual RPM of 84.7 x 60 = 5,082. Only 84 complete cycles fell within the one-second capture time
of our routine.

Experiment #2: Digital Input Signal Conditioning

Page 56 • Industrial Control Version 1.1

Figure 2.15: Two-Segment Encoder Oscilloscope Trace

Record your tachometer readout when the maximum voltage is applied to the motor. You can use the Board
of Education’s Vin (unregulated 9 V) for high speed, or the Vdd (regulated 5 V) for different speeds.

Counts = ___________ RPM = _____________

When testing your tachometer, notice the effects of slowing the motor with slight pressure from your finger.
The counts will decrease by factors of one. In the Figure 2.13 example, it would decrease from 83 to 82 to 81,
etc., and the resulting RPM readings drop by a factor of 60 (4980 to 4920 to 4860, etc.).

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 57

Because we are counting for one second and we get one cycle per revolution, the program can resolve RPM
only to within an accuracy of 60. To get a more accurate assessment of RPM, you have a couple of choices:
increase the time you count cycles, or increase the cycles per revolution.

Let’s try the first choice. Increase the count time in Program 2.7 from 1000 milliseconds to 2000 milliseconds.
By doing so, you are now reading during a two-second window and RPM would equal {(Counts/2 seconds) x
60}. This simplifies to RPM = 30 * Count and the resolution is now to within 30 RPM. In program 2.7, change
the line RPM = Counts * 60 from the scaling value of 60 to 30. Test your system.

Increasing the count duration time increases the accuracy of the RPM reading. Refer to Table 2.4.

Table 2.4: Given Encoder Frequency of 84.7 Hz
From the 1 cycle/second Encoder is an RPM of 5082

Duration Counts Scaler RPM Resolution
1000 mS 84 60 5040 60 RPM
2000 mS 169 30 5070 30 RPM
3000 mS 254 20 5080 20 RPM

60000 mS 5082 1 5082 1 RPM

As you can see, to gain a resolution of one RPM, our count routine had to be one full minute (60,000) in
duration. Unless you are very patient, this is unacceptable! In terms of programming, the BASIC Stamp is tied
up with the COUNT routine for the total duration. During this time, the rest of the program is not being
serviced. For this reason, long duration also is not good.

Another method of improving resolution is to increase the number of cycles per revolution. Cut out the
second encoder wheel and tape it to your fan motor hub. This wheel has two white segments and will produce
two count cycles per revolution. During a one-second-count duration, this encoder will produce twice as
many pulses as the first encoder. The RPM calculation line of the code would be RPM = Counts x 60 / 2
for this encoder, or RPM = Counts x 30. Try it!

The third encoder wheel yields even more resolution by with four cycles per revolution. Tape this encoder to
your motor’s hub and change the program’s RPM line to RPM = Counts * 15. You may have to vary the
setpoint potentiometer as you switch from one encoder wheel to another.

Experiment #2: Digital Input Signal Conditioning

Page 58 • Industrial Control Version 1.1

If you use the six-cycle encoder, what value would you use to scale the Counts to RPM? Fill in your answer in
Table 2.5.

Figure 2.16 includes oscilloscope traces recorded from using the two-cycle, four-cycle, and six-cycle encoder
wheels on a shaft rotating at 4,980 RPM. It is the focal properties of the emitter/detector pair that will limit
the maximum number of segments on the encoder wheel. You may find it difficult to use the six-cycle encoder
wheels without devising some sort of shielding and/or focusing of the light beam.

Figure 2.16: Two-cycle, Four-cycle, and Six-cycle Encoder Wheel Oscilloscope Traces

The accuracy required of a tachometer system is dependent on the application. Commercial shaft encoders
are available with resolutions greater than 500 counts per revolution. Fill in the appropriate values in Table
2.5 for an encoder with a resolution of 360 counts per revolution.

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 59

Table 2.5: Given a Shaft Speed of 4,980 RPM

Cycles per
Revolution

Counts

Scaler

RPM

1 83 60 4,980
2 166 30 4,980
4 312 20 4,980
6 498 ______ 4,980
360 ______ ______ _______

Challenge #3: Monitor and Control Motor Speed.

Varying the voltage applied to the small brushless motor varies its speed. The BASIC Stamp does not have a
continuous analog output. The pulse-width modulation (PWM) command allows the BASIC Stamp to generate
a controllable average analog voltage.
The syntax of PWM is shown below.

The command PWM 7,190,30 will produce at output pin 7 a series of pulses whose average high time is .75
(190/255) for a duration of 30 milliseconds. For this time, the average voltage at the pin is .75 * 5 or 3.5 volts.
To deliver this average voltage throughout the duration of a program loop, a sample and hold circuit must be
developed. Figure 2.17 is a sample and hold circuit that will work well for the brushless fan. Capacitor Chold
charges during the PWM command to the average voltage. At the end of the Cycle time, PWM changes the
direction of the output pin to an input. This places the pin in a high impedance condition and the charge on
the capacitor is held due to the high impedance of pin 7, the dielectric of the capacitor, and the input to the
op amp. The op amp is set to a gain of 3 by the RF/Rin network (Av = Rf/Rin + 1). The output of this amplifier
drives transistor Q1. It provides current boost for the majority of the load current. Ideally, a charge could be
held indefinitely. Small capacitor leakage currents and op amp bias currents result in slight variations in

PBASIC Command Quick Reference: PWM
PWM Pin, Duty, Cycles.

• Pin: specifies the output pin which is driven.
• Duty: is a value between 0 and 255 that expresses the average analog output between 0

and 5 volts.
• Cycles: is a value between 0 and 255 that specifies the duration of the PWM signal in

milliseconds.

Experiment #2: Digital Input Signal Conditioning

Page 60 • Industrial Control Version 1.1

voltage between PWM commands. Usually the bias currents dominate and result in a slight rise in voltage
during this time.

Figure 2.17 is designed around the second op amp in your LM358 package. Carefully add this circuit to your
tachometer circuit on the Board of Education. Note that the supply voltage to the op amp is changed to the 9
volt unregulated supply. This allows this circuit to have a voltage output that will approach 14 volts. Your
tachometer op amp comparator will also have a higher output. Note: It is imperative that the zener diode in
Figure 2.11 is in place to clamp the input to P3 at 5 Volts. Your BASIC Stamp is at risk if voltages exceed 5V.

Figure 2.17: Brushless fan with sample and hold PWM drive.

Testing the Sample and Hold

The fan’s electronics requires 4 to 5 volts to operate. The voltage applied to the fan will be approximately
equal to: (5V * Duty/255)*3. According to this equation, voltages from 4 to 12 will be produced by Duty values
of 70 to 210. Replace “Duty” with values from this range in the following program. Use a voltmeter and Table
2.6 to record the voltage applied to the fan for the values of “Duty” listed.

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 61

'Program 2.8 Sample and Hold Test
Loop:

PWM 7, (Duty), 60

PAUSE 500

GOTO Loop

Duty Voltage Duty Voltage
60 160
80 180
100 200
120 220
140 254

Next, the tachometer Program 2.7 will be modified to include your PWM with the Sample and Hold circuit.
Recall that this program reported motor RPM by accumulating pulse counts from the encoder wheel over a
period of 1 second. Without Sample and Hold, the motor would come to a stop during this one-second off
period. Program 2.9 includes these modifications in bold print. The program will operate the motor at Duty
Cycle increments between 70 and 210. Each increment will be tested for approximately 5 seconds. StampPlot
will report the steps in the status box and plot the RPM continually. The formula for calculating the expected
voltage assumes that the circuit is following the transfer function discussed earlier. You may modify this
formula to better fit your circuit based on the tests performed in Program 2.8.

Modify program 2.7 as indicated below (additions are shown in bold). Run the program and record the speed
voltage characteristics in Table 2.6.

'Program 2.9 (Modified Program 2.7 Tachometer Test - with the StampPlot Interface)

' Initialize plotting interface parameters.
' (Can also be set or changed on the interface)
DEBUG "!AMAX 8000",CR ' Full Scale RPM
DEBUG "!AMIN 0",CR ' Minimum scaled RPM
DEBUG "!TMAX 150",CR ' Maximum time axis
DEBUG "!TMIN 0",CR ' Minimum time axis
DEBUG "!AMUL 1",CR ' Analog scale multiplier
DEBUG "!PNTS 600",CR ' Plot 600 data points
DEBUG "!PLOT ON",CR ' Turn plotter on
DEBUG "!RSET",CR ' Reset screen

Counts VAR word ' Variable for results of count

Experiment #2: Digital Input Signal Conditioning

Page 62 • Industrial Control Version 1.1

RPM VAR word ' Variable for calculated RPM
Counts = 0 ' Clear Counts

OUTPUT 7 ' Declare the PWM pin.
x VAR word ' Duty variable
y VAR byte ' Interations per Duty value
Tvolts VAR word

Loop:
 FOR x = 70 TO 210 ' Duty variable
 FOR y = 0 TO 5 ' Test a Duty value for 5 seconds

 PWM 7, x, 50 ' Deliver PWM at a Duty of x
 Tvolts = 50 * x / 255 * 3 ' Calculate voltage in tenths of a volt.

 COUNT 3,1000, Counts ' Count cycles on pin 3 for 1 second
 RPM = Counts * 60 ' Scale to RPM
 ' Send out RPM value to plotter and status bar
 DEBUG DEC rpm, CR
 DEBUG "!USRS Duty = ",DEC x, " RPM is ",DEC RPM," at " ,DEC Tvolts," Tvolts", CR
 NEXT
 x = x + 9
 NEXT
 END
GOTO Loop

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 63

 Duty Voltage RPM
1
2
3
4
5
6
7
8
9
10
11
12
13
14

StampPlot Lite will plot the speed voltage characteristics of your motor. Use the mouse cursor to read the
stable RPM at each step on the plot. Summarize the response of the motor to changes in voltage.

Experiment #2: Digital Input Signal Conditioning

Page 64 • Industrial Control Version 1.1

Questions

1. An industrial device whose output is either one of two possible states is termed ______________.

2. What is the “ideal” resistance of a mechanical switch in the open state? In the closed state?

Open-state resistance = ___________ and, Closed-state resistance = _____________

3. Explain the purpose of placing a resistance in series with a switch for conditioning a digital input signal.

4. A normally-open pushbutton switch configured in an “active low” state will be read as a logic _______
when not being pressed.

5. What is the absolute maximum input voltage to the BASIC Stamp?

6. For some CMOS devices, an input of 1.3 volts is in the ________ area of operation.

7. Low-voltage logic devices operate on ______ volts DC.

8. What type of proximity switch activates only on metal objects?

9. When light strikes the base of a phototransistor, the collector current will __________ and collector to
emitter voltage will ___________.

10. A car’s six-cylinder engine RPM can be determined by counting the pulses delivered to the ignition coil.
Six pulses are required for one revolution. If 20 pulses occur in one second, what is the RPM of the
engine?

Questions and Challenge

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 65

Design it!

1. Draw a diagram of a normally-open pushbutton switch and its “pull-up” resistor. The diagram should
be drawn so pressing the switch results in a logic “low” output.

2. Draw a diagram of a normally-closed pushbutton switch and a 10K-ohm series resistor. The diagram
should be drawn so pressing the switch results in a logic-low output.

Experiment #2: Digital Input Signal Conditioning

Page 66 • Industrial Control Version 1.1

Analyze it!

1. Consider the two phototransistor circuits below. Which one has an increasing output voltage with

increases in light level? Why? What is the output voltage of Circuit B if the light level saturates transistor
Q1?

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 67

2. The comparator circuit below is used to determine when to turn on and off a dusk-to-dawn security

lamp. What would be the output status of the comparator during “light” conditions? Would it be better to
program for detecting the voltage level or the edge triggering of this circuit? Why?

3. The retroreflective optical switch below must be interfaced to the Basic Stamp. Its data sheet specifies

that it to operates on 10 volts as a “current sink”. Refer to Figure 2.10 and fill in the appropriate values
for the +V, +Vdd, and Interface device.

Experiment #2: Digital Input Signal Conditioning

Page 68 • Industrial Control Version 1.1

Program it!

1. Pretend that your retro-reflective tachometer is providing the input to an anti-lock braking system on an

automobile. In conjunction with this input, use a pushbutton to model the brake pedal switch. An active
high LED will represent the braking action. Write a program that will detect the pressing of the brake
pedal that would slow the vehicle. Have your program turn on the LED as long as speed is above zero.
When shaft speed drops to zero, turn off the LED. Use a potentiometer to set initial motor speed.
Configure the two pushbutton switches as active-high inputs. Wire one LED as an active-high output.

2. Write programs to duplicate the operation of an OR, AND, and XOR gate.

OR Gate
PB1 PB2 LED
0 0 0
1 0 1
0 1 1
1 1 1

AND Gate

PB1 PB2 LED
0 0 0
1 0 0
0 1 0
1 1 1

XOR Gate

PB1 PB2 LED
0 0 0
1 0 1
0 1 1
1 1 0

Experiment #2: Digital Input Signal Conditioning

Industrial Control Version 1.1 • Page 69

Field Activity

How many digital (bi-state) field devices can you identify in a new car? List as many as you can. Make a note as
to whether you suspect that the field device directly controls load current , drives some sort of relay, or if you
think its status is being monitored by a microcontroller.

Experiment #3: Digital Output Signal Conditioning

Page 70 • Industrial Control Version 1.1

Experiment #3: Digital Output Signal Conditioning

Industrial Control Version 1.1 • Page 71

he outputs of a microcontroller can be used to control the
status of output field devices. Output devices are those devices
that do the work in a process-control application. They deliver
the energy to the process under control. A few common
examples include motors, heaters, solenoids, valves, and lamps.
The low- power output capability of the BASIC Stamp (or any

microcontroller) prevents it from providing the power required by these loads. With proper signal
conditioning, the BASIC Stamp can control power transistors, thyristors, and relays. These are the devices
that can deliver the load current and voltage demands of the field devices. In some applications, you may use
a BASIC Stamp output to communicate with another microcontroller or electronic circuit. There may be
compatibility issues of different logic families, separate power supplies, or uncommon grounds that require
special consideration. The focus of this experiment is to present some of the signal conditioning techniques
used to interface your BASIC Stamp to output field devices.

Appropriate signal conditioning design begins with a brief look at the characteristics and limitations of the
BASIC Stamp’s outputs. The output of the BASIC Stamp is considered “standard TTL” level. As we discussed in
Experiment #2, this means it can switch between logic high of approximately 5 volts or logic low of nearly 0
volts. According to the BASIC Stamp’s datasheet, each output can sink 25 mA and source 20 mA of current.
Relating this to the partial diagram in Figure 3.1, notice how the load can be connected. In Figure 3.1a, the
load is wired from the output pin to ground. When you set an output pin high, five volts appear across the
load resistor (RL). Load current will flow from ground through the resistor and into the output pin. This is the
current source mode, and the BASIC Stamp can deliver a maximum of 20 mA to the load.

Figure 3.1: BASIC Stamp Output Pin Current Capability

Figure 3.1a: Current Source Figure 3.1b: Current Sink

Experiment #3:
Digital Output
Signal Conditioning

Experiment #3: Digital Output Signal Conditioning

Page 72 • Industrial Control Version 1.1

Output Capability of Digital Circuits
The output capability of digital circuits is listed in the manufacturer’s datasheet. Devices usually can
“sink” more current than they can “source.” Some devices do not have the capability to source current
because the internal path from their output to +V is not present. You may see this output design
referred to as a device with an “open collector” output.

In Figure 3.1b, the load is between the output pin and the +5-volt Vdd supply. Electrons will flow through the
load now when the BASIC Stamp output pin is set Low (ground). Current will flow out of the output pin and up
through the load resistor to Vdd. This is the current sinking mode, and the BASIC Stamp can deliver a
maximum of 25 mA to the load when configured in this manner.

Outputs have been used to drive LEDs in previous exercises as pictured in Figure 3.2a. When the BASIC Stamp
output is low, the diode is forward-biased at approximately one volt, and the remaining four volts, dropped
across the 220-ohm resistor, limit current flow to approximately 22 mA. The light emitted by the diode gives
visual indication of the output action. In previous programming challenges, you have assumed that the on-off
status of an LED represents process action taking place. This is a valid assumption when you consider the
operation of a solid-state relay (SSR). Figure 3.2b is a schematic representation of the solid-state relay. The
input circuit (terminals 1-2) is equivalent to Figure 3.2a. The +3 to +24 V DC input identifies a range of control
voltages. Control voltages must be above the minimum voltage to produce enough LED current for turn-on.
Exceeding the maximum control voltage may cause damaging amounts of current to flow in the input LED. The
light generated in the SSR strikes an optically controlled output circuit. The detail of this circuit is not shown,
but is represented by the normally-open contact symbol. The current and voltage limitations of the output
are listed in the device’s datasheet and are usually printed on the device itself.

Figure 3.2: BASIC Stamp to LED and Solid-State Relay Schematics

Figure 3.2a: BASIC Stamp to LED Figure 3.2b: BASIC Stamp to Solid-State Relay

Experiment #3: Digital Output Signal Conditioning

Industrial Control Version 1.1 • Page 73

Solid-state relays are available in a wide variety of output ranges. They may be designed to drive either AC
loads or DC loads. The load you are driving defines the minimum specification of the SSR required.

An added benefit of the solid-state relay is electrical isolation. The BASIC Stamp is controlling the load by an
optically-coupled signal. There is no electrical connection between the microcontroller and the high-power
load device. Electrical failures of the load, or power line problems such as spikes, are not fed back to the
BASIC Stamp. The datasheet for the Potter-Brumfield SSR may be found in Appendix C. Refer to this
datasheet and find the following information.

 Input voltage range: ____________
 Input current requirement @ five volts: ____________
 Maximum output load current: ____________
 Maximum output load voltage: ____________
 Electrical isolation: ____________

A word of caution when selecting and implementing solid-state relays:

1. Do not push the specifications to their limits. Oversize the output capability of your selection by at
least 20%.

2. Pay close attention to any heatsink requirements. Maximum load current capability is usually
dependent upon incorporating a proper heatsink.

3. The load’s supply source and all wiring and connections must be able to conduct the load’s current. If
relays are placed on the breadboard for prototyping, be aware that the breadboard traces are rated
at only 1 amp.

4. Respect the output circuit voltage. Be sure all connections are solidly secured and correct before
applying line voltage. There is the risk of electrical shock. Take measures to prevent contact with
high-voltage potentials. Shield or encase these contacts. Clearly identify high-voltage potentials with
appropriate labeling.

5. Some electronic relays will not contain an internal current-limiting resistor on the input. In these
cases, an external current-limiting resistor must be added in series with the internal LED. The value
of the resistor is based on your control voltage and the manufacturer’s recommended input current
specification.

Solid-state relays provide an easy interface for controlling loads in an industrial application. Become familiar
with the SSR datasheet specifications in order to make the right selection for your application.

Experiment #3: Digital Output Signal Conditioning

Page 74 • Industrial Control Version 1.1

Exercise #1: Sequential Control

The BASIC Stamp is well suited to perform sequential control operations. Many processes depend on the
orderly performance of operations. Consider the machining operation pictured in Figure 3.3a.

Figure 3.3a: AutoDrill Sequence Operation

Exercises

Experiment #3: Digital Output Signal Conditioning

Industrial Control Version 1.1 • Page 75

Figure 3.3b: Sequential Control
(outputs are on the left; inputs shown to right)

A conveyor is moving parts through a machining station. When a part is detected in the staging area, the
conveyor is turned off. After a short pause, the solenoid clamp is activated to hold the part; another short
pause, and then the drill is brought down to the part. A proximity switch detects proper depth of the hole.
When the depth switch closes, the “drill down” command is stopped and the drill is retracted. After allowing a
short time for the drill to retract, the clamp is released and the conveyor is started. This moves the processed
part out of the staging area, and the conveyor continues until a new part is detected. Upon detecting another
part, the sequential process continues.

With proper signal conditioning, the BASIC Stamp can easily control this sequence. For our exercise purposes,
you are asked to use your imagination to allow LEDs to simulate the SSRs that could control the conveyor,
clamp, and drill. Two pushbuttons and your two fingers must simulate the part coming into position and the
drill coming down to proper depth. Construct Figure 3.3b on your Board of Education. For easier

Experiment #3: Digital Output Signal Conditioning

Page 76 • Industrial Control Version 1.1

identification, use your green LED for the conveyor, your yellow LED for the clamp, and the red LED for the
drill.

Sequential control lends itself well to flowcharting. The time required to develop your flowchart will be
quickly saved as you write your program. Compare the flowchart in Figure 3.4 to the description of the
machining process.

Figure 3.4: Sequential Control Flowchart

Start

Energize
Conveyor

Part ?

De-energize
conveyor

2 Second
Pause

Close
Clamp

2 Second
Pause

Energize drill
(down)

Drill at
Depth?

De-energize
drill (up)

2 Second
pause

A

A

Yes

No

No
Yes

Program 3.1 follows the flowchart very closely. Study the program; compare its structure to the flowchart.
Enter the program and try it. Again, you will have to use your imagination to simulate our process.

When the program starts, the green LED will be on. This represents the conveyor starting. To simulate a part
coming into the staging area, you must press and hold Pushbutton P1. The conveyor LED will instantly turn OFF
and the yellow LED indicating the Clamp relay will turn on after a one-second delay. After the Clamp has had

Experiment #3: Digital Output Signal Conditioning

Industrial Control Version 1.1 • Page 77

two seconds to secure the part, the drill will come down toward the part as indicated by the red LED. At this
time bring another finger down to simulate the drill. Pushbutton P2 represents a proximity switch, which will
indicate when proper drill depth has been reached. Your “drill” finger pressing P2 will be turned OFF; the red
LED indicating the drill is retracting. Your finger now coming off of the P2 pushbutton indicates the bit has
started retracting and two seconds will be allowed for the drill to clear the part. After this delay, the clamp
will be opened (yellow light OFF) and the conveyor will start again. The part is completed and leaves the
staging area. From this point the sequence starts again.

Run the program a few times. Other than the DEBUG report that a part has been completed, there is no need
for your computer. Unplug the serial cable from the Board of Education and continue to simulate the
sequential process. The BASIC Stamp could function as the “embedded controller” in this application. Wiring
the actual field devices to the BASIC Stamp would allow it to continuously repeat the process.

After understanding this sequential process, we will redefine your two inputs and three outputs to simulate
another operation. You will be challenged to develop the program necessary for this embedded control
application.
' W 1 seconds
'Program 3.1: Sequential Process Control Machining Operation - Embedded

INPUT 1 ' Part detection switch
INPUT 2 ' Drill depth switch
OUTPUT 3 ' Conveyor motor relay (green)
OUTPUT 4 ' Clamp solenoid relay (yellow)
OUTPUT 5 ' Drill press relay (red)

Off CON 1 ' Current sink loads
On CON 0 ' Negative logic

OUT3 = Off ' Initialize outputs off
OUT4 = Off
OUT5 = Off
Start:
 OUT3 = On ' Conveyor on
 IF IN1 = 1 THEN Process ' If pressed, start "Process"
GOTO Start

Process: ' The process begins
 OUT3 = Off ' Stop conveyor
 PAUSE 1000
 OUT4 = On ' Begin clamping part in place
 PAUSE 2000 ' Wait 2 seconds to turn drill on

Drill_down:
 OUT5 = On ' Turns on drill and drill begins dropping
 IF IN2 = 1 THEN Pull_drill ' If drill is deep enough, pull drill
GOTO Drill_down

Experiment #3: Digital Output Signal Conditioning

Page 78 • Industrial Control Version 1.1

Pull_drill:
 OUT5 = OFF ' Turns off drill and drill retracts
 IF IN2 = 0 THEN Drill_up ' Indicates drill is moving up
GOTO Pull_drill

Drill_up:
 PAUSE 2000 ' Continue pulling drill up for 2 seconds

Release:
 OUT4 = Off ' Open clamp to release part
 PAUSE 1000 ' Wait 1 second
 OUT3 = On ' Conveyor on
 IF IN1 = 0 THEN Next_part ' Finished part leaves process area
GOTO Release

Next_part:
 PAUSE 1000 ' Wait 1 second
 DEBUG "Part leaving clamp. Starting next cycle", CR
GOTO Start

The real beauty of microcontrollers is to have the capability of embedding all of the intelligence necessary to
perform sophisticated control within the equipment.

There are times, however, that being able to retrieve information from the microcontroller adds to its
capabilities. The StampPlot Lite interface can be effectively used to monitor the sequential machining process.
Program 3.2 uses this interface. The machine functions in Program 3.2 are the same as those in the previous
program. DEBUG commands have been embedded to send data to the StampPlot Lite interface. The program
plots the status of the digital I/O, reports process steps in the User status bar, and keeps a time-stamped list
of the total parts produced. Figure 3.5 is a representative screen shot of the sequential process being
monitored by StampPlot Lite. Load Program 3.2 and run it. Study the StampPlot Lite DEBUG commands that
have been added to the original program. Become familiar with their use. Graphical user interfaces such as
this are very useful in the maintenance and data acquisition of embedded control systems. Use StampPlot to
monitor the Sequential Control Mixing Challenge at the end of this section.

Program 3.2: Sequential Process Control Machining Operation with StampPlot Interface

Pause 500
DEBUG "!TITL Sequential Process Control Machining Operation", CR
' StampPlot title
DEBUG "!TMAX 100", CR ' Set sweep plot time (seconds)
DEBUG "!PNTS 500", CR ' Sets the number of data points
DEBUG "!AMAX 20", CR ' Sets vertical axis (counts)
DEBUG "!CLRM", CR ' Clear List Box
DEBUG "!CLMM", CR ' Clear Min/Max
DEBUG "!RSET", CR ' Reset all plots
DEBUG "!DELD", CR ' Delete old data file
DEBUG "!PLOT ON", CR ' Turn Plot on
DEBUG "!TSMP ON", CR ' Time-stamp part completion

Experiment #3: Digital Output Signal Conditioning

Industrial Control Version 1.1 • Page 79

DEBUG "!SAVD ON", CR ' Save data to file

INPUT 1 'Part Detection Switch
INPUT 2 'Drill Depth Switch
OUTPUT 3 'Conveyor motor relay (green)
OUTPUT 4 'Clamp solenoid relay (yellow)
OUTPUT 5 'Drill press relay (red)

Off CON 1 'Current sink mode
ON CON 0 'Negative logic

OUT3 = Off ' Initialize outputs off
OUT4 = Off
OUT5 = OFF

Parts VAR byte
Parts = 0

Start:
 GOSUB Plot_data ' Plot the status
 OUT3 = On ' Conveyor on
 DEBUG "!USRS Start conveyor",CR ' User status prompt
 IF IN1 = 1 THEN Process ' If pressed, start "Process"
 PAUSE 100
GOTO START

Process: ' The process begins
 GOSUB Plot_data ' Plot the status
 OUT3 = Off ' Stop conveyor
 DEBUG "!USRS Detected part. Stop conveyor",CR
 ' User status prompt
 PAUSE 1000

 GOSUB Plot_data ' Plot the status
 OUT4 = On ' Begin clamping part in place
 DEBUG "!USRS Clamp part.",CR ' User status prompt
 GOSUB Plot_data ' Plot the status
 PAUSE 2000 ' Wait 2 seconds to turn drill on

Drill_down:
 GOSUB Plot_data ' Plot the status
 OUT5 = ON ' Turns on drill and drill drops
 DEBUG "!USRS Drill coming down!",CR ' User status prompt
 IF IN2 = 1 Then Pull_drill ' If drill is deep enough, pull drill
 PAUSE 100
GOTO Drill_down

Pull_drill:
 GOSUB Plot_data ' Plot the status
 OUT5 = OFF ' Turns off drill and drill retracts
 DEBUG "!USRS Stop Drill and Retract",CR
 ' User status prompt
 IF IN2 = 0 Then Drill_up ' Indicates drill is moving up

Experiment #3: Digital Output Signal Conditioning

Page 80 • Industrial Control Version 1.1

 PAUSE 100
GOTO Pull_drill

Drill_up:
 GOSUB Plot_data ' Plot the status
 DEBUG "!USRS Drill coming up!!",CR ' User status prompt
 PAUSE 2000 ' Pull drill for 2 seconds

Release:
 GOSUB Plot_data ' Plot the status
 OUT4 = Off ' Open clamp to release part
 DEBUG "!USRS Clamp released. Conveyor moving.",CR
 'User status prompt
 PAUSE 1000 ' Wait 1 seconds
 OUT3 = On ' Conveyor on
 IF IN1 = 0 Then Next_part
 GOTO Release

Next_part:
 GOSUB Plot_data ' Plot the status
 DEBUG "!USRS Part Complete. Start next cycle",CR
 ' User status prompt
 Parts = Parts + 1 ' Parts counter
 PAUSE 1000 ' Wait 1 seconds
 DEBUG "Parts completed = ", DEC Parts,CR
 ' Post parts count in the List Box
GOTO Start

Plot_data:
 DEBUG IBIN IN1,BIN IN2,BIN OUT3,BIN OUT4, BIN OUT5,CR
 'Plot the digital status.
 DEBUG DEC Parts,CR 'Plot analog count
RETURN

Experiment #3: Digital Output Signal Conditioning

Industrial Control Version 1.1 • Page 81

Figure 3.5: Screen Shot of the Sequential Machining Process using StampPlot Lite

Note that the traces appear from top to bottom in the order which they were listed in the Debug digital plot
command. Therefore, the top two traces are of the active high pushbuttons IN1 (product in position) and
IN2 (depth switch). The next three traces are outputs OUT3 (conveyor), OUT4 (clamp), and OUT5 (drill).
Remember that the outputs are wired in the current sink mode. A High is OFF and a Low is ON.

Notice that in the initial setting for the StampPlot Lite interface, “Save data to file” (!SAVD) is ON. During the
production run, the data at each sample point is saved into a text file, stampdat.txt. The data includes the time
of day and program time that the sample was taken, the sample number, and the analog and digital values at
the time of each sample. The data are comma delimited (separated by commas), and therefore, ready to be
brought into a variety of spreadsheet or database software packages. Once the data is in the package, it is
available for analysis and manipulation. Figure 3.6 represents a portion of the production run data, as it would
appear in a Microsoft Excel spreadsheet. The complete file contains 500 samples (rows of data). Figure 3.7 is
an Excel graph constructed from the data file.

Experiment #3: Digital Output Signal Conditioning

Page 82 • Industrial Control Version 1.1

Figure 3.6: Sequential Control Production Run (samples only)

Time of Day Run Time
Sample
number

Units
Completed

Sample
number

Digital
Status

11:46:50 AM 0.21 1 1 1 111
11:46:50 AM 0.21 2 2 2 11
11:46:50 AM 0.21 3 3 3 11
11:46:50 AM 0.21 4 4 4 11
11:46:50 AM 0.27 5 5 5 11
11:46:50 AM 0.27 6 6 6 11
11:46:50 AM 0.27 7 7 7 11
11:46:50 AM 0.27 8 8 8 11
11:46:50 AM 0.27 9 9 9 11
11:46:50 AM 0.27 10 10 10 11
11:46:50 AM 0.32 11 11 11 11
11:46:50 AM 0.32 12 12 12 11
11:46:51 AM 0.43 13 13 13 11
11:46:51 AM 0.50 14 14 14 11
11:46:51 AM 0.71 15 15 15 11
11:46:51 AM 0.98 16 16 16 11
11:46:51 AM 1.26 17 17 17 11

Experiment #3: Digital Output Signal Conditioning

Industrial Control Version 1.1 • Page 83

Figure 3.7: Graph of Sequential Control Production Run

0

2

4

6

8

10

12

14

16

11
:4

6:
50

 A
M

11
:4

6:
54

 A
M

11
:4

7:
08

 A
M

11
:4

7:
21

 A
M

11
:4

7:
31

 A
M

11
:4

7:
46

 A
M

11
:4

7:
59

 A
M

11
:4

8:
13

 A
M

11
:4

8:
26

 A
M

11
:4

8:
39

 A
M

11
:4

8:
48

 A
M

11
:4

9:
03

 A
M

11
:4

9:
17

 A
M

11
:4

9:
30

 A
M

11
:4

9:
43

 A
M

11
:4

9:
57

 A
M

11
:5

0:
08

 A
M

11
:5

0:
20

 A
M

11
:5

0:
34

 A
M

11
:5

0:
48

 A
M

Time of Day

Pa
rt

s
Pr

od
uc

tio
n

Units Completed

Experiment #3: Digital Output Signal Conditioning

Page 84 • Industrial Control Version 1.1

Programming Challenge: Sequential Mixing Operation

A mixing sequence is pictured in Figure 3.8. In this process, an operator momentarily presses a switch to open
a valve and begin filling a vat. A mechanical float rises with the liquid level and closes a switch when the vat is
full. At this time, the “fill” solenoid is turned off, and a mixer blends the vat contents for 15 seconds. After the
mixing period, a solenoid at the bottom of the vat is opened to empty the tank. The mechanical float lowers,
opening its switch when the vat is empty. At this point, the “empty” solenoid is turned off and the valve closes.
The process is ready for the operator to start another batch.

Figure 3.8: Mixing Sequential Control Process

Assign the following to the BASIC Stamp inputs and outputs to simulate the operation.

Experiment #3: Digital Output Signal Conditioning

Industrial Control Version 1.1 • Page 85

 Operator pushbutton Input P1 (N.O. active high)
 Float switch Input P2 (N.O. active high)
 Fill Solenoid Output P13 (red LED)
 Mix Solenoid Output P14 (yellow LED)
 Empty Solenoid Output P15 (green LED)

Construct a flowchart and program the operation.

Exercise #2: Current Boosting the BASIC Stamp

The BASIC Stamp’s output current and/or voltage capability can be increased with the addition of an output
transistor. Either the bipolar transistor shown in Figure 3.9a or the power MOSFET transistor in Figure 3.9b
can be effective when loads need more power than the BASIC Stamp’s output can deliver. Understanding each
of these circuits will be important in future industrial applications.

For this exercise, and upcoming experiments, we have two loads that we wish to drive in this manner. They
are a brushless DC fan and a 47-ohm, half-watt resistor. The brushless fan specifications include a full line
voltage of +12 V and line current of 100 mA. The resistor will draw approximately 190 mA when powered by
the +9 V Vin power supply.

Let’s consider the design of the biplar transistor for driving the 47-ohm resistor. The circuit values should be
designed such that a high (+5V) output of the BASIC Stamp drives Q1 into saturation without drawing more
current than the BASIC Stamp can source.

Experiment #3: Digital Output Signal Conditioning

Page 86 • Industrial Control Version 1.1

Figure 3.9: Current Boost Transistor Driver Circuits

Circuit component values stem from the load current and voltage requirements. The process of determining
minimum component values is as follows: Since Q1 acts as an open collector current sink to the load, the
load’s supply voltage is not limited to the BASIC Stamp’s +5-volt supply. If separate supplies are used,
however, their common ground lines must be connected. When Q1 is driven into saturation, virtually all of the
supply voltage will be dropped across the load and the load current will be equal to Vsupply/Rload. Q1’s maximum
collector current capability must be higher than this load current. The Q1 base current required to yield the
collector current may be calculated by dividing the load current by the “beta” of Q1. IB = IC/bQ1. Given a 20 mA
maximum BASIC Stamp output current, a minimum transistor beta may be calculated by rearranging this
formula. bQ1(min) = IC/IB. Where IB is the 20 mA maximum BASIC Stamp drive current.

A transistor must be chosen that meets, and preferably exceeds, these minimum requirements. Exceeding the
minimum values by 50 to 100% or more would be best. Once the transistor is chosen, an appropriate base-

Experiment #3: Digital Output Signal Conditioning

Industrial Control Version 1.1 • Page 87

limiting resistor value can be determined. This value must allow more base current than that defined by IC/bQ1,

yet less than the 20 mA BASIC Stamp limit. The voltage drop across Rlimit is equal to the +5 V BASIC Stamp
output minus the PN junction drop of Q1 (approximately +5V-.7V, or 4.3V).

Following the procedure outlined above, the transistor must handle collector currents of at least 190 mA and
have a beta specification greater than 10. Figures 3.9c represents a 2N3904 as Q1. Specifications for the
2N3904 include a collector current capability of 300 mA and a minimum Beta of 75. Added features to the
selection of this transistor include that it is very common, it is inexpensive, and it can deliver the load current
without need of a heat sink. Rlimit values were selected based on minimum beta specifications and a desire to
keep the BASIC Stamp output current demand well below 20 mA. This 1K-ohm resistor allows approximately 5
mA of base current, which ensures saturation.

Construct the transistor-driver circuits in Figure 3.9c on your Board of Education.

Next, consider the power MOSFET drive circuit in Figure 3.9b. The MOSFET is driven into saturation by applying
gate voltage. A positive five volts from the BASIC Stamp’s output is sufficient to place the MOSFET in an “ON”
state. When the device is fully saturated, its ON-state resistance (rson) is typically less than 1 ohm. Applying a
low (0V) to the gate places the device in cutoff. In this state there is virtually no load current and the MOSFET
acts as an open switch.

The power MOSFET is very easy to drive with the BASIC Stamp. A metal oxide (MOS) layer between the source
and the gate acts as a very good insulator. The extremely high input impedance provided by this MOS layer
means that no gate current is required to control this device. Since no current is required to drive the gate, a
single output from the BASIC Stamp can control multiple MOSFETs.

With proper heatsinking, the BS170 can handle load currents up to 5 amps. These features make the power
MOSFET very easy to apply in industrial applications such as driving relays, solenoids and small DC motors. It
should be noted that these types of loads are inductive. When switching off the load, this inductance can
produce a reverse voltage transient that may be damaging to the MOSFET. The diode D1 provides protection
for the transistor when driving inductive loads such as these. This diode is not necessary for the small
brushless motor used in our experiments. Construct the circuit in Figure 3.9d.

Note: Power MOSFETs, like their CMOS cousins, are suseptable to damage from static discharge and reverse
voltage transients. Care should be taken when handling and installing the device. Hold the device by its body,
avoid touching its leads, and be sure that the work surface and soldering equipment is properly grounded.

Experiment #3: Digital Output Signal Conditioning

Page 88 • Industrial Control Version 1.1

Test the current-boost drive circuits using the following code. The Debug window will prompt you to make
voltage measurements across the transistors and their loads at the proper times.

'Program 3.3: Current-boost for the fan and heater.

Output 7 ' Output for Fan drive
Output 8 ' Output for Heater drive

Loop:

OUT7 = 0
OUT8 = 0
DEBUG "Fan and Heater OFF - Measure the unloaded Vin voltage source.",CR
PAUSE 10000
OUT7 = 1
DEBUG "Fan ON – Measure the voltage across the fan.", CR
PAUSE 10000
DEBUG "Fan ON – Measure the saturation voltage across the MOSFET.", CR
PAUSE 10000
OUT7 = 0
DEBUG "Fan OFF",CR
PAUSE 2000

OUT8 = 1
DEBUG "Heater ON – Measure the voltage across the 47-ohm resistor", CR
PAUSE 10000
DEBUG "Heater ON – Measure the saturation voltage across the Bipolar.", CR
PAUSE 10000
OUT8 = 0
DEBUG "Heater Off",CR
PAUSE 2000

GOTO Loop

Record the voltage readings in Table 3.1.

Table 3.1 Transistor Current Boost
Condition On-state load

voltage
On-state saturation

voltage
Off-state cutoff

voltage
Bipolar Fig. 3.9c
MOSFET Fig. 3.9d

The fan will be running at full speed, and the resistor will be warming up due to the current flowing through it.
Saturation voltages should less than 300 mV. The line voltage Vin is provided by the unregulated 9-volt 300
mA supply. Off-state voltage may measure as high as 14 volts. When the loads are energized, this voltage will
drop to around 9 volts.

Experiment #3: Digital Output Signal Conditioning

Industrial Control Version 1.1 • Page 89

In the next experiment, we will use the resistor to simulate a heating element. The fan will simulate a process
disturbance that cools the heater. Our objective will be to investigate various types of control to maintain a
constant temperature. Leave these circuits constructed on your Board of Education.

Before we leave this exercise, it is worth mentioning some other interfacing challenges that you may be
confronted with as a designer. Consider the circuits in Figure 3.10.

Experiment #3: Digital Output Signal Conditioning

Page 90 • Industrial Control Version 1.1

Figure 3.10: BASIC Stamp Output Interfacing

(a) The opto-coupler can be used to interface different voltages and to electrically isolate an output from the
microcontroller circuit in Figure 3.10a.

(b) Figure 3.10b can be used to interface to HCMOS or 4000-series CMOS devices. The 74HC4050 can be operated
on low voltages, allowing interfacing to +3-volt logic.

(c) There is a large variety of peripheral driver chips available. The 75452 driver depicted in Figure 3.10c can sink
up to 300 mA of load current. Its open-collector output allows for loads up to 30 volts.

(d) Figure 3.10d includes the 74LS26 NAND gate. This is one of a family of open-collector gates. With the 10K-ohm
pull-up resistor referenced to the next circuit stage, the BASIC Stamp can be interfaced to higher-voltage
CMOS circuits.

Experiment #3: Digital Output Signal Conditioning

Industrial Control Version 1.1 • Page 91

Questions

1. Output field devices are those devices that do the ________ in a process control application.

2. Field devices usually require more power than the BASIC Stamp can deliver. List three power interface

devices that can control high-power circuits and be turned on and off by the BASIC Stamp.
a. ________________
b. ________________
c. ________________

3. The BASIC Stamp output is acting as a current sink when the load it is driving is connected between the

output pin and ____________.

4. The BASIC Stamp can source __________mA per output.

5. Electronic and electromagnetic relays offer a level of protection to the microcontroller because they

provide electrical _____________ between the BASIC Stamp and the power devices.

6. The input circuit of an SSR is usually an __________ ,which provides light that optically triggers an

output device.

7. The current rating of an SSR should be oversized by at least _______ percent of the continuous load

current demand.

8. Maximum continuous current ratings of solid-state relays usually involve applying a ____________ for

proper heat dissipation.

9. ______________ control involves the orderly performance of process operations.

10. When the output current from the BASIC Stamp is not sufficient to turn on the control device, an output

______________ may be used for current boosting.

Questions and Challenges

Experiment #3: Digital Output Signal Conditioning

Page 92 • Industrial Control Version 1.1

11. If a transistor has a Beta of 150, a BS2 must deliver _______ milliamps of base current to drive a 600 mA

load.

12. When a power MOSFET is saturated, its Drain to Source resistance is given as a specification termed

_______.

13. The contacts of an electromagnetic relay are shown in schematics in the “normal” position. Normal

means the relay’s coil is ___________ energized.

14. The “contacts” of an AC solid-state relay are actually the main terminals of a TRIAC. These contacts would

be depicted in a schematic as being normally __________.

Design It!

1. Given the figure below, solve for the maximum value of the base limiting resistor (Rlimit) that would allow

the 440 mA of coil current to flow when the BASIC Stamp output Pin 12 is high.

2. To ensure deep saturation of transistor Q1, the value of Rlimit should be ____________ than this value.

Experiment #3: Digital Output Signal Conditioning

Industrial Control Version 1.1 • Page 93

3. The internal connection diagram of the SHARP S101S05V solid-state relay is given below. Notice that its

input circuit is just an LED. The datasheet specifies that the LED has a forward voltage drop of 1.2 volts
and that 15 mA through the LED will turn on the relay. Use the following components to complete the
diagram for controlling the SSR with Pin 14 of the BASIC Stamp. Configure it as a current sink. Calculate
the proper value of Rlimit. Draw the lamp and 120 VAC source as they would be connected to the SSR
outputs.

Experiment #3: Digital Output Signal Conditioning

Page 94 • Industrial Control Version 1.1

Analyze it!

1. Consider circuits A and B below. Write a line of BASIC Stamp code that will result in turning the lamp ON

for each.

 Circuit A _____________________________. Circuit B __________________________.

Experiment #3: Digital Output Signal Conditioning

Industrial Control Version 1.1 • Page 95

2. Study the three figures shown below. Would you write a logic High or a logic Low to the BASIC Stamp

output to yield a 12-volt Vout value?

 Circuit A _______________

 Circuit B _______________

 Circuit C _______________

Experiment #3: Digital Output Signal Conditioning

Page 96 • Industrial Control Version 1.1

Program it!

1. Given the input and outputs pictured back in Figure 3.3b, write a sequential program that will do the

following:

 Momentarily pressing P1 will cause P3 to turn ON for three seconds and then go OFF. Pressing P1 a

second time will cause P4 to come ON for three seconds and then go OFF. When P4 goes OFF, P5 will
come ON until P2 is pressed.

2. Try this one. Using the same I/O, write a program that will do the following:

 Press and hold P1 and P3 goes ON. Holding P1 and pressing P2 causes P3 to go OFF and P4 to come ON.

Releasing P1 while continuing to hold P2 turns OFF P4 and ON P5. And lastly, releasing P2 will turn all
three outputs ON for three seconds, then all OFF, and the process is set to repeat.

Experiment #4: Continuous Process Control

Industrial Control Version 1.1 • Page 97

Continuous process control involves maintaining desired
process conditions. Heating or cooling objects to a certain
temperature, holding a constant pressure in a steam pipe, or
setting a flow rate of material into a vat in order maintain a
constant liquid level, are examples of continuous process
control. The condition we desire to control is termed the

“process variable.” Temperature, pressure, flow rate, and liquid level are the process variables in these
examples. Industrial output devices are the control elements. Motors, valves, heaters, pumps, and solenoids
are examples of devices used to control the energy determining the outcome of the processes.

The control action taken is based on the dynamic relationship between the output device’s setting and its
effect on the process. Generally speaking, process control can be classified into two types: open loop and
closed-loop. Closed-loop control involves determining the output device’s setting based on measurement and
evaluation during the process. In open-loop control, no automatic check is made to see whether corrective
action is necessary.

A simple example of open-loop control would be cooling your bedroom on a hot summer evening. Your
choices are using a window fan or an air conditioner. The window fan is a device that you set – low, medium,
or high speed – based on your evaluation of what the situation needs for control. This evaluation involves an
understanding of what the cause-and-effect relationship is of your speed setting vs. the room conditions.
There is also an element of prediction involved. Once you make the setting decision, you are in for the night.
You are setting up an open-loop control system. If your evaluations are correct, you will have a great night’s
sleep. If they are not, you may wake up shivering and cold or sweaty and hot! On the other hand, a room air
conditioner allows you to set a certain desired temperature. A thermostat continuously compares the desired
temperature with a measurement of actual room temperature. When room temperature is over the desired
setpoint, the air conditioner is turned on. As the room cools below the setpoint, the air conditioner is turned
off. As the night goes on and the outside temperature cools down, this closed-loop system will automatically
spend less time on than off. This is an example of closed-loop feedback control, because the action is taken
based on measurement of room temperature.

Which is better? Arguably, some people prefer air conditioning to a fan, but others do not. If the objective is
to maintain a comfortable sleeping temperature, they both have their advantages. In terms of industrial
control, the lower cost and simplicity of setting the window fan in an open-loop mode is very attractive. On
the other hand, the automatic control of the closed-loop air conditioner ensures a more consistent bedroom
temperature as the outside temperature changes.

Experiment #4:
Continuous Process
Control

Experiment #4: Continuous Process Control

Page 98 • Industrial Control Version 1.1

Determining the best control action for an application and designing the system to provide this action is what
the field of process control engineering is all about.

Microcontrollers have proven to be a dependable, cost-effective means of adding a level of sophistication to
the simplest of control schemes. The next three exercises will focus on the characteristics of various methods
of continuous control. We will develop an environment in which we can model process control, get process
variable data into the BASIC Stamp, and study open-loop control principles. The first two exercises will take a
little time and effort, but will be worthwhile, because the setup and circuitry will be used again for
Experiments #5 and #6.

Temperature is by far the most common process variable that you will encounter. From controlling the
temperature of molten metal in a foundry to controlling liquid nitrogen in a cryogenics lab, the measurement,
evaluation, and control of temperature are critical to industry. The objective of this exercise is to show
principles of microcontroller-based process control and enlighten you about interfacing the controller to
real-world I/O devices. The exercises are restricted to circuits that fit on the Board of Education and to
output devices that can be driven by its 9-volt, 300-mA power supply. As you monitor and control the
temperature of a small environment, realize that, through proper signal conditioning, the applications for
which you can apply the BASIC Stamp are limitless.

Exercise #1: Closed-Loop, On-Off Control

To set up our small environment, you will need the following parts:

• 35 mm plastic film container
• 47-ohm, half-watt carbon resistor with leads
• LM34DZ integrated circuit temperature sensor with leads
• Electrical tape

Exercises

Experiment #4: Continuous Process Control

Industrial Control Version 1.1 • Page 99

You will put the 47-ohm resistor and the temperature sensor inside the 35-mm film canister. Leads from
these devices will come back to the Board of Education. Placing the cap on the canister creates a closed
environment. High current through the resistor will heat the environment, and the sensor will convert
temperature to an analog voltage. A current-boost transistor from Experiment #3 will drive the
resistor/heater, and you will add an analog-to-digital converter to get binary temperature information into
the BASIC Stamp. Figure 4.1 depicts this construction step. Follow the procedures on the next page to
construct the canister environment and signal-conditioning circuitry.

Figure 4.1: Film Canister Heated Environment

Experiment #4: Continuous Process Control

Page 100 • Industrial Control Version 1.1

Preliminary Preparation

The 35-mm film canister has two holes drilled in it. The sensor and the “heater” will be placed into these
holes.

In the last exercise, we controlled the on-off status of a 47-ohm resistor acting as a heating element. The
current-boost transistor acts as a switch, controlling the unregulated 9-volt supply to the resistor. As you
should have seen, when the transistor turned on, the 9-volt supply was placed across the resistor and it
became quite warm, since the power consumed was P = V2/R= 92/47, or 1.7 watts! This is beyond the
resistor’s half-watt rating, but we are using it as a heater. It may become discolored, but should be all right
otherwise.

Place the resistor through the lower hole in the canister. Bend the leads and tape them down to the outside
of the canister so the resistor is suspended in the middle of the canister.

The LM34 probe will be used to measure the temperature of our system. The LM34 is an excellent sensor in
terms of its linearity, cost, and simplicity. The sensor’s output voltage changes 10 mV per degree Fahrenheit
and is referenced at 0 degrees. With a DC power supply and a voltmeter, you have a ready-made Fahrenheit
temperature sensor.

Refer to Figure 4.2 and the device’s datasheet in Appendix D.

Experiment #4: Continuous Process Control

Industrial Control Version 1.1 • Page 101

Figure 4.2: LM34 Temperature Probe

Test your temperature probe by connecting your probe to the +5-volt Vdd supply and ground. Use your
voltmeter to monitor the LM34 output voltage of .01 volts per degree F. Simply move the decimal of the
meter reading two places to the right to convert to temperature. For example; .75 V = 75 oF; .825 V = 82.5 oF;
1.05 V = 105 oF, etc. Then, try this:

• Measure and record the room temperature.
• Hold the device between your fingers and watch the temperature rise.
• Hold it until the temperature becomes stable. How hot are your fingertips?
• The LM34 can measure temperatures up to 300 degrees. Briefly wave a flame under it and monitor

higher temperatures.

Now, insert the sensor through the top hole of the film canister. Bend and tape its leads to the canister so the
sensor is suspended inside. Cap your canister, and your model environment is complete. Keep in mind that
although our laboratory setup is small and low power, it could represent controlling the temperature of a
large kiln, a brewing vat, or an HVAC system. Appropriate output signal conditioning identified in Experiment
#3 can allow the BASIC Stamp to control almost any industrial device.

Experiment #4: Continuous Process Control

Page 102 • Industrial Control Version 1.1

Next, let’s turn our attention to the Board of Education and set up the circuitry necessary for the experiment.
Figure 4.3 represents the four circuits used in the exercises. All four circuits can fit on the Board of Education;
you just have to be efficient with your use of the space. Figure 4.3a is a simple active-high pushbutton switch.
It will be used to toggle the heater on and off. The output drive circuit depicted in Figure 4.3b also is very
simple. Your board will contain the current-boost transistor (from Experiment 3) to drive the heater. Notice
that an LED and current-limiting resistor have been added to indicate the status of this drive circuit. Note also
that this circuit goes to the +5 Vdd supply, not the 9-volt unregulated supply.

Since the BASIC Stamp microcontroller does not have analog input capability, we must add an analog-to-
digital converter to change the analog output of the LM34 temperature sensor to digital data. A one-step
solution to signal conditioning is to use the serial analog-to-digital converter shown in Figure 4.3c. National’s
ADC0831 is a suitable A/D converter for our application, and will prove to be a very useful device for this and
future applications. It’s worth a moment at this point to look at the device’s features and limitations.

This converter will take an input voltage and convert it to 8-bit digital data with a range of 256 possible binary

representations. Potentiometers can be used to externally set the analog voltage range spanned by the 0 to
25510 digital output capability of the ADC0831. The voltage at Vin(-) Pin 3 sets the zero value. The Vref voltage
at Pin 5 sets the voltage span above Vin(-) over which the resolution of 255 is spread. Setting Vin(-) to .7 will

reference the span of coverage at 70 degrees. Vref set to .5 volts results in a span of coverage of 50 degrees.

Experiment #4: Continuous Process Control

Industrial Control Version 1.1 • Page 103

Figure 4.3: Process Control Circuitry

Experiment #4: Continuous Process Control

Page 104 • Industrial Control Version 1.1

These voltages are used to focus the range of the A/D device to cover the analog voltage being converted. The
application will operate from room temperature (70o) up to 120 oF. This temperature range equates to an
LM34 voltage output of .70V to 1.20V. To maximize resolution, the span of interest is .5 V (1.2V-.7v); and the
zero reference, termed the offset, is .7 V. Since we focus on just this range, each binary step represents
approximately 0.2 degrees. This allows us to accurately resolve the temperature.

Construct the A/D converter circuit on the Board of Education. By using multi-turn trim potentiometers, the
reference and span voltage levels can be set very accurately. Carefully measure and adjust these potentials.
Attach the output of the LM34 to the input of the A/D converter.

Controlling the ADC0831 is relatively simple. A program control line tells the device to make a conversion.
Once a conversion has been performed, the binary value can be output one bit at a time to the BASIC Stamp.
The serial flow of data from the converter is controlled by output pins of the BASIC Stamp driving the “chip
select” and “clock” lines. The chip select line (CS) is set low, followed by a low-to-high clock pulse. This starts
the conversion. Subsequent clock pulses initiate the transfer of each binary bit starting with the most
significant bit first. Parallax provides a convenient instruction, called SHIFTIN, specifically designed for
controlling synchronous serial communication. Once the binary data is clocked into the BASIC Stamp, it is
converted to temperature, based on the zero and spanning values. (The use of the ADC0831 is detailed in the
Parallax Basic Analog and Digital text, which can be used as a further reference to this section.)

Program 4.1 has been written to test your converter and driver circuits, and exercise the StampPlot Lite
Interface. The first section of the program configures StampPlot Lite. A section that establishes variables and
constants follows this. The program is designed for the circuit of Figure 4.3. Double-check the proper
connections to I/O Pins 1,3,4,5 and 8. Accurately set the Zero and Span voltages of the ADC0831 to .7 and .5,
respectively.

Load the program. Running the program will result in the DEBUG window opening and scrolling values and
messages to the screen. Close the DEBUG window and open the StampPlot Lite Interface. At this point, select
the appropriate COM port and check “Connect.” Momentarily press the “Reset” button on the BASIC Stamp
Board of Education to load the configuration and begin plotting the data. The user-status box will report the
current temperature and the output of the A/D converter’s binary and decimal values. The temperature and
status of the heater will be plotted on the interface. Pressing PB1 will TOGGLE the heater ON and OFF. (Feel
free to omit the comments from this code, if you wish).

Experiment #4: Continuous Process Control

Industrial Control Version 1.1 • Page 105

'Program 4.1: Analog-to-Digital & ON-OFF test with StampPlot Interface

'Pushbutton P1 toggles the heater fully ON and OFF. It then establishes
'constants and variables used to acquire data from the ADC0831 serial A-to-D. 'StampPlot is
used to graphically display results. Program assumes that the 'circuitry is set according to
Figure 4.3. ADC0831: "chip select" CS = P3, "clock" 'Clk=P4, & serial 'data output"Dout=P5.
‘Zero and Span pins: Digital 0 = Vin(-) = '.70V and Span = Vref = .50V.

'Configure Plot
Pause 500 ' Allow buffer to clear
DEBUG "!RSET",CR ' Reset plot to clear data
DEBUG "!TITL HEATER CONTROL SAMPLE",CR 'Caption form
DEBUG "!PNTS 6000",CR ' 6000 sample data points
DEBUG "!TMAX 600",CR ' Max 600 seconds
DEBUG "!SPAN 70,120",CR ' 70-120 degrees
DEBUG "!AMUL .1",CR ' Multiply data by .1
DEBUG "!DELD",CR ' Delete Data File
DEBUG "!SAVD ON",CR ' Save Data
DEBUG "!TSMP ON",CR ' Time Stamp On
DEBUG "!CLMM",CR ' Clear Min/Max
DEBUG "!CLRM",CR ' Clear Messages
Debug "PLOT ON”,CR ' Start Plotting
DEBUG "!RSET",CR ' Reset plot to time 0

' Define constants & variables

CS CON 3 ' 0831 chip select active low from BS2 (P3)
CLK CON 4 ' Clock pulse from BS2 (P4) to 0831
Dout CON 5 ' Serial data output from 0831 to BS2 (P5)
Datain VAR byte ' Variable to hold incoming number (0 to 255)
Temp VAR word ' Hold the converted value representing temp

TempSpan VAR word ' Full Scale input span in tenths of degrees.
TempSpan = 5000 ' Declare span. Set Vref to .50V and
 ' 0 to 255 res. will be spread over 50
 ' (hundredths).

Offset VAR word ' Minimum temp. @Offset, ADC = 0
Offset = 700
 ' Declare zero Temp. Set Vin(-) to .7 and
 ' Offset will be 700 tenths degrees. At these
 ' settings, ADC output will be 0-255 for temps
 ' of 700 to 1200 tenths of degrees.

Wkspace1 VAR byte ' Workspace for the PB1's BUTTON command
Wkspace1 = 0 ' Clear the workspace before using BUTTON
LOW 8 ' Initialize heater OFF

Main:

Experiment #4: Continuous Process Control

Page 106 • Industrial Control Version 1.1

 GOSUB Getdata
 GOSUB Calc_Temp
 GOSUB Control
 GOSUB Display
 GOTO Main

Getdata: ' Acquire conversion from 0831
 LOW CS ' Select the chip
 LOW CLK ' Ready the clock line.
 PULSOUT CLK,10 ' Send a 10 uS clock pulse to the 0831
 SHIFTIN Dout, CLK, MSBPOST,[Datain\8] ' Shift in data
 HIGH CS ' Stop conversion
RETURN

Calc_Temp: ' Convert digital value to
 Temp = TempSpan/255 * Datain/10 + Offset ' temp based on Span &
RETURN ' Offset variables.

Control: ' Manual heater control
 BUTTON 1,1,255,0,Wkspace1,1,Toggle_it
RETURN

Toggle_it:
 TOGGLE 8
RETURN

Display: ' Plot Temp, binary ADC, & Temp status
 DEBUG DEC Temp,CR
 DEBUG IBIN OUT8,CR
 DEBUG "!USRS Temperature = ", DEC Temp," ADC Data in = %", BIN Datain, " Decimal",
DEC Datain, CR
RETURN

The StampPlot Lite interface will give you a dynamic representation of temperature changes in your canister.
Toggle the heater ON and OFF and watch the response. The screen shot in Figure 4.4 represents the closed
canister heating to 120 degrees and then cooling after the heater is turned off. Play with your system to
become more familiar with its response; then, let’s take a little closer look at the subroutines that make up
the program.

Experiment #4: Continuous Process Control

Industrial Control Version 1.1 • Page 107

Figure 4.4: Screen Shot Using Program 4.1

The main loop of this program simply executes three subroutines, Getdata, Calc_Temp, and Display. When
running, the BASIC Stamp jumps back to the Getdata subroutine first. The last line of this routine instructs
the processor to RETURN to the main loop and executes the next instruction, GOSUB Calc_Temp. The
Calc_Temp subroutine executes, and it ends with a return. The BASIC Stamp returns to GOSUB_Display.
After Display executes, its RETURN goes back to the instruction of GOTO Main and the process starts over.
This is an organized approach to structuring our program. Later, when we include evaluation and control in
our program, we simply add another subroutine, such as GOSUB_Control.

Let’s take a closer look at the two primary subroutines of program 4.1. The Getdata subroutine begins with
a high-to-low transition on the “chip select” line. This readies the A/D for operation.

Experiment #4: Continuous Process Control

Page 108 • Industrial Control Version 1.1

The LOW CLK and pulsout CLK,10 instructions tell the A/D converter to make a conversion of the Vin(+)
voltage at this time. The ADC0831 is an 8-bit successive approximation converter. It’s 256 possible digital
combinations are spread over a voltage range determined by the potentials at the V in(-) and Vref pins. Vin(-)
defines the voltage for which 0000 0000 would be the conversion. Vref defines the range of input voltages
above this point over which the other 255 digital combinations are spread. Figure 4.5 represents the Zero and
Span settings for our application.

Experiment #4: Continuous Process Control

Industrial Control Version 1.1 • Page 109

Figure 4.5: Zero and Span Settings for Our Application

Experiment #4: Continuous Process Control

Page 110 • Industrial Control Version 1.1

With these settings, the ADC0831 is focused on a temperature range of 70 to 120 degrees. There can be an
infinite number of possible temperature values within the .7 to 1.2-volt output range of the LM34. Only a few
representative values are given. Since the 8-bit A/D converter has a resolution of 255, it can resolve this
range of 50-degree temperatures to within .31 degrees. The conversion will be a binary number equal to [(Vin
- .7) /.5] *255. Let’s try a value within the range. Let’s say the temperature is 98.6, which results in an LM34
output of .986 volts.

If Vin = .986, what would be the binary equivalent?

[(.986-.7)/.5] *255 = 145.86. The answer is truncated to the whole integer of 145.
The binary word would be 1001 0010.

 The binary conversion will be held and ready for transfer.

The SHIFTIN instruction is designed for synchronous communication between the BASIC Stamp and serial
devices such as the ADC0831. The syntax of the instruction is SHIFTIN dpin, cpin, mode,
[result\bits]. The parameters indicate:

• which pin data will arrive on (dpin),
• which pin is the clock (cpin),
• (mode) identifies which bit comes first, the least significant (LS) or most significant (MS), and on

which edge of the clock it is released, rising (PRE) or falling (POST),
• and, what the word width is and where you want it stored [Datain\8].

For our system, we previously declared Pin 5 as dpin and Pin 4 as the clock (CLK) pin. The ADC0831 outputs the
most significant bit first on the trailing edge of the clock. Therefore, MSPOST is the mode. And, finally, the 8-
bit data will be held in a byte variable that we declared as Datain.

After the binary data is brought into the BASIC Stamp, it is available for our program to use. It would be most
convenient to use if it were expressed in terms of the actual measurement units. For our application, that
would be in degrees. The next subroutine, Calc_Temp, does just that. By knowing the zero and span transfer
function of the conversion process, we use the standard y = mx + b formula. Where: y =Temperature, m =
slope of the transfer function, and b is the offset. Temperature will be resolved and expressed in tenths of
degrees.

Refer to the Calc_Temp formula: Temp = Tempspan/255 * Datain/10 + 700

Experiment #4: Continuous Process Control

Industrial Control Version 1.1 • Page 111

To increase the accuracy in resolving the slope (m), the Tempspan variable is scaled up by 10, to 5000
hundredth degrees. The slope is therefore, 5000/255 ~ 19 or .19 degrees per bit. Multiplying 19 times Datain
tells you how far the measurement is into the span. This is in one one-hundredth of a degree at this point;
therefore, divide by 10 to scale it back to tenths. Adding this to the Zero value of 700 (70 degrees) results in
the actual temperature in tenths of a degree. Resolution is approximately .2 degrees over a range of inputs
from 70.0 to 120.0 degrees.

The graph in Figure 4.6 plots the transfer function of the input A/D decimal equivalent input to temperature of
the canister. Changing the span of coverage changes the slope of the transfer function. Changing the Zero
value changes the y intercept.

Figure 4.6: Transfer Function

Experiment #4: Continuous Process Control

Page 112 • Industrial Control Version 1.1

An additional word of caution about the BASIC Stamp math operation:

• A formula will be executed from left to right unless bracketing is used to set precedence.
• At no point can any subtotal exceed 32,759 or -32,760.
• Also, all remainders will be truncated, not rounded up.

Challenge #1: Change the Zero and Span voltages and edit the program to match the new range.

1. Your system should be able to raise the temperature of the closed canister beyond the 120-degree limit

set by Program 4.1. Change the Zero and Span potentiometers for coverage of a temperature range from
75 degrees to 200 degrees. This allows for a wider range of coverage, but what is the resolution of your
system now? Be patient, and let your system stabilize. Record the maximum temperature of your system.

2. Set the Zero and Span of your system to focus on the very narrow range of one degree below your room

temperature to four degrees above it. Set the Calc_Temp variables to display in hundredths of degrees.
Track these changes by leaving the cap off of the canister and simply touching the sensor with your warm
finger. As you see, the resolution is great, but the trade-off is a decreased range of operation.

Having the ability to control the span and reference of the ADC0831 allows you to focus on a range of analog
input. This helps maximize the resolution and accuracy of your system. The following exercise will require the
original range of 70 to 120 degrees. Return the Zero and Span potentiometers back to .7 and .5 volts,
respectively.

Now, after all of that, we can get back to a study of control theory!

Experiment #4: Continuous Process Control

Industrial Control Version 1.1 • Page 113

Exercise #2: Open-Loop vs. Closed-Loop Control

Open-Loop Control

The simplest form of control is open loop. The block diagram in Figure 4.7 represents a basic open-loop
system. Energy is applied to the process through an actuator. The calibrated setting on the actuator
determines how much energy is applied. The process uses this energy to change its output. Changing the
actuator’s setting changes the energy level in the process and the resulting output. If all of the variables that
may affect the outcome of the process are steady, the output of the process will be stable.

Figure 4.7: Open-Loop Control

The fundamental concept of open-loop control is that the actuator’s setting is based on an understanding of
the process. This understanding includes knowing the relationship of the effects of the energy on the process
and an initial evaluation of any variables disturbing the process. Based on this understanding, the output
“should” be correct. In contrast, closed-loop control incorporates an on-going evaluation (measurement) of
the output, and actuator settings are based on this feedback information.

Consider the temperature control process shown in Figure 4.8. The material being drawn from the tank must
be kept at a 101o temperature. Obviously, this will require adding a certain amount of heat to the material.
(The drive on the transistor determines the power delivered to the heating element.) The question becomes
“How much heat is necessary?”

Experiment #4: Continuous Process Control

Page 114 • Industrial Control Version 1.1

Figure 4.8: Open-Loop Heating Application

For a moment, consider the factors that would affect the output temperature. Obviously, ambient
temperature is one. Can you list at least three others? How about:

• The rate at which material is flowing through the tank.
• The temperature of the material coming into the tank.
• And, the magnitude of air currents around the tank.

These are all factors that represent BTUs of heat energy taken away from the process. Therefore, they also
represent BTUs that must be delivered to the process if the desired output is to be achieved. If the drive on
the heating element were adjusted to deliver the exact BTUs being lost, the output would be stable.

Experiment #4: Continuous Process Control

Industrial Control Version 1.1 • Page 115

In theory, the drive level could be set and the desired output would be maintained continuously, as long as the
disturbances remained constant.

Let’s now assume that it is your objective to keep the interior of your film canister at a constant temperature.
A good real-world example would be that of an incubator used to hatch eggs. To hatch chicken eggs, it is
important to maintain a 101oF environment.

Turning on the heater will warm up the interior of the canister. In our earlier test, you turned on the heater’s
drive transistor, and the temperature rose above 101oF. Obviously, to maintain the desired temperature, we
will not need to have full power applied to the resistor. Through a little testing, you can determine just what
drive level would be needed to yield the correct temperature.

The drive to the power transistor in Figure 4.8 is labeled as PWM. This is the acronym for pulse-width
modulation. PWM is a very efficient method of controlling the average power to loads such as heating
elements. The square wave is driving the transistor as a current-sinking switch. When the drive is high, the
transistor is saturated, and full power is applied to the heater. A logic Low applied as base drive puts the
transistor in cutoff; therefore, no current is applied to the load. Multiplying the percentage of the total time
that the load receives full power times the full power will give the average power to the load. This average on-
time is the duty cycle and is usually stated as a percentage. A 50% duty cycle would equate to half of the full
power drive, 75% duty cycle is three-quarters full power, etc. It was stated earlier that the 47-ohm “heater”
resistor in our canister would receive 1.7 watts when fully powered by the 9-volt unregulated source supply.
The pushbutton switch was used to toggle the power on and off. If you were to press the switch rapidly at a
constant rate, the resistor would receive 1.7 watts during the ON time and 0 watts during the OFF time. This
50% duty cycle would result in an average power consumption of .85 watts (Paverage = Pfull * duty cycle).
Complete the table in Figure 4.9 below for power consumed at duty cycles of 75% and 25% for your system.

Figure 4.9: Average Power

Paverage = Pfull * duty cycle
Full Power (Pfull) Duty cycle Average Power (Pavg)

1.7 W 100% 1.7 W
1.7 W 75%
1.7 W 50% 0.85 W
1.7 W 25%
1.7 W 0% 0 W

Experiment #4: Continuous Process Control

Page 116 • Industrial Control Version 1.1

PBASIC provides a useful instruction for providing pulse-width modulation.
Its syntax is: PWM pin, duty, duration

 Where: pin is the output pin you are driving.
 duty is the duty cycle relative to 255 being 100%.
 duration is the window of time in milliseconds over which the duty cycle is provided.

Challenge 2: Graphing PWM duty vs. Vout.

Use your multi-meter to measure the average voltage across the heating element at various PWM commands.
Change the duty variable in Program 4.2 to increments between 0 and 255. Plot the average voltage on the
graph in Figure 4.10.

'Program 4.2: PWM vs. Vout

' Change the Duty = 50 in increments of 10 between 0 and 100. Measure the
' average output voltage that results.

DutyCycle VAR byte
Duty VAR byte

DutyCycle = 50 ' Begin with a 50% duty cycle

Loop:
 Duty = (DutyCycle * 255/100) ' Scale DutyCycle to PWM (0-255) duty
 PWM 8, Duty, 200 ' Apply a PWM of “Duty” to the heater
 DEBUG " Testing at a Duty Cycle of ", DEC DutyCycle, "%.", CR
GOTO Loop

Experiment #4: Continuous Process Control

Industrial Control Version 1.1 • Page 117

Figure 4.10: Graph of Heater Voltage vs. PWM Duty Cycle

If you are not familiar with PBASIC’s PWM instruction, refer to the BASIC Stamp Manual Version 2.0 pp. 247-
250. One aspect of using the command should be understood. PWM applies pulses for a period of time
defined by the duration value. During the time when the rest of the program is executing, there is no output
applied to the load. As a result, the average voltage at a 100% duty cycle (duty =255) will result in a value less
than the full voltage expected. The slower your program cycle time, the greater is this disparity. To get a
better understanding of cycle time, place a PAUSE 200 in Program 4.2. Compare the resulting output voltage
with earlier readings. Change the length of the pause and notice the results.

Recall the Sample and Hold circuit introduced in Challenge #3 of Experiment #2. This circuit held the average
PWM voltage across the brushless motor during the entire program loop. This was necessary because of the
long program loop and fast response of the fan. The Sample and Hold circuit was effective in delivering the
desired average voltage regardless of the program loop-time. In terms of power control, it is more efficient

Experiment #4: Continuous Process Control

Page 118 • Industrial Control Version 1.1

to not use Sample and Hold. This can be understood if you consider driving the circuit at 50%. A 50% drive
would result in ½ of the supply voltage appearing across the load continually. This is great. Right? Well if half of
the supply voltage is across the load continually, the other half must be across the transistor. This collector-
to-emitter voltage times the collector current represents power wasted in the transistor. When system
response is fast (like the brushless fan) you have no choice but to use this type of linear power control.

The resistor heating element in our model incubator is a good example of a slow responding system. Straight
PWM control of the resistor wastes little power in the transistor because it is only operated in an ON/OFF
switching mode. As long as the PWM period is much longer (>10x) than the time required to run the rest of
the program loop there will little discrepancy in the Duty cycle and expected average voltage.

Experiment #4: Continuous Process Control

Industrial Control Version 1.1 • Page 119

Challenge #3: Analyzing your Open-Loop System

The following program is developed to study the relationship between PWM drive on your heater and the
resulting stable temperature. The program will apply PWM drive levels in 10% increments. Each increment will
last approximately four minutes. The program will end after 100% drive has been applied. StampPlot Lite will
give you a graphical representation of your system’s response, along with time stamp information in the list
box. Furthermore, if you are really interested, the StampPlot Lite data file can be imported into a
spreadsheet, applied to a graph and analyzed.

Figure 4.11: Screen Shot of PWM Drive vs. Temperature

Experiment #4: Continuous Process Control

Page 120 • Industrial Control Version 1.1

Figure 4.11 is typical of a StampPlot Lite screen shot resulting from this test. Load Program 4.3. Before
running the program, be sure your canister has cooled to room temperature. Place the cap on your canister
and start the program. When the DEBUG window appears, close it and start StampPlot Lite. Connect using
StampPlot Lite and press the restart button to reload the program and begin the test.

'Program 4.3: PWM vs. Temp Test with StampPlot Interface

'This program tests the canister's temperature rise for incremental increases of
'PWM drive. Program runtime is approximately 40 minutes. This can be adjusted
'by 'changing the "tick" and/or "Drive" increments.
'Program assumes that the circuitry is set according to Figure 4.3.
'ADC0831: '"chip select" CS = P3, "clock" 'Clk=P4, & serial data output"Dout=P5.
'Zero and Span pins: Digital 0 = Vin(-) = .70V and Span = Vref = .50V.

'Configure Plot
Pause 500 'Allow buffer to clear
DEBUG "!RSET",CR 'Reset plot to clear data
DEBUG "!TITL PWM vs. Temp Test",CR 'Caption form
DEBUG "!PNTS 24000",CR '24000 sample data points
DEBUG "!TMAX 6000",CR 'Max 6000 seconds
DEBUG "!SPAN 70,120",CR '70-120 degrees
DEBUG "!AMUL .1",CR 'Multiply data by .1
DEBUG "!DELD",CR 'Delete Data File
DEBUG "!SAVD ON",CR 'Save Data
DEBUG "!TSMP ON",CR 'Time Stamp On
DEBUG "!CLMM",CR 'Clear Min/Max
DEBUG "!CLRM",CR 'Clear Messages
DEBUG "!PLOT ON",CR 'Start Plotting
DEBUG "!RSET",CR 'Reset plot to time 0

' Define constants & variables

CS CON 3 ' 0831 chip select active low from BS2 (P3)
CLK CON 4 ' Clock pulse from BS2 (P4) to 0831
Dout CON 5 ' Serial data output from 0831 to BS2 (P5)
Datain VAR byte ' Variable to hold incoming number (0 to 255)
Temp VAR word ' Hold the converted value representing temp
TempSpan VAR word ' Full Scale input span in tenths of degrees.
TempSpan = 5000 ' Declare span. Set Vref to .50V and
 ' 0-255 res. will be spread over 50
 '(hundredths).

Offset VAR word ' Minimum temp. @Offset, ADC = 0
Offset = 700 ' Declare zero Temp. Set Vin(-) to .7 and
 ' Offset will be 700 tenths degrees. At these
 ' settings, ADC output will be 0 - 255 for temps
 ' of 700 to 1200 tenths of degrees.

LOW 8 ' Initialize heater OFF

Experiment #4: Continuous Process Control

Industrial Control Version 1.1 • Page 121

Drive VAR word ' % Drive
Duty VAR word ' variable for PWM duty cycle
Tick VAR word

Drive = 0 ' Initialize variable to 0
Tick = 0
Duty = 0

' Get and display initial starting values.

 GOSUB Getdata
 GOSUB Calc_Temp
 DEBUG "Temp = ", DEC Temp, " Duty = ", DEC Duty,CR
 DEBUG "!USRS Begining Test! -- Testing at ", DEC Drive, "% Drive.",CR

Main: ' main loop
 PAUSE 10
 GOSUB Getdata
 GOSUB Calc_Temp
 GOSUB Control
 GOSUB Display
 GOTO Main

Getdata: 'Acquire conversion from 0831
 LOW CS 'Select the chip
 LOW CLK 'Ready the clock line.
 PULSOUT CLK,10 'Send a 10 uS clock pulse to the 0831
 SHIFTIN Dout, CLK, MSBPOST,[Datain\8] 'Shift in data
 HIGH CS 'Stop conversion
RETURN

Calc_Temp: 'Convert digital value to
 Temp = TempSpan/255 * Datain/10 + Offset 'temp based on Span &
RETURN 'Offset variables.

Display: 'Plot present temperature
 DEBUG DEC Temp,CR
RETURN

Control: ' Testing system at different % duty cycles
 PWM 8,Duty,200 ' PWM
 Tick = Tick + 1 ' increment tick variable
 IF Tick = 2000 Then Increase ' Program cycles per drive level change
RETURN

Increase: 'Bump up the drive
 Drive = Drive + 10 'Drive increments = 10%
 Duty = (Drive * 255/100) 'Scale %Drive to Duty
 If Duty > 256 Then Stopit 'Stop test after 100% PWM
 DEBUG "Ending Temp = ", DEC Temp, " Now testing at ", DEC Drive, "% Drive", CR
 DEBUG "!USRS Testing at ", DEC Drive, "% Drive",CR

Experiment #4: Continuous Process Control

Page 122 • Industrial Control Version 1.1

 Tick = 0
RETURN

Stopit: ' Stop and print summary
 DEBUG "Test Over. Ending Temp = ", DEC Temp," at 100 % Drive",CR
 DEBUG "!USRS Temperature = ", DEC Temp,"Test Over",CR
END

Experiment #4: Continuous Process Control

Industrial Control Version 1.1 • Page 123

Challenge #4: Open-Loop Control--Desired Setpoint = 101o Fahrenheit

It is our objective to maintain a constant canister temperature of 101o Fahrenheit. Follow these procedures.
Record values in the table of Figure 4.12.

1. Study the StampPlot Lite analysis that resulted from running Program 4.2. From the Text Box listing,
record in the table the beginning ambient temperature, the temperature at the end of the 50% drive
test, and the ending maximum temperature after 100% drive.

2. Use your cursor to find the Drive level that resulted in a temperature of 101 degrees.

3. Next, modify the Control subroutine of Program 4.2 so that the duty cycle remains at the constant

value declared initially. Do this by removing the two lines indicated below.

Control: ' Testing system at different % duty cycles
 PWM 8,duty,200 ' PWM
 tick = tick + 1 ' increment tick variable
 IF tick = 2000 Then Increase ' Program cycles per drive level change
 RETURN

4. At the beginning of the program, declare the DutyCycle to be the value that yielded 101o in our test

StampPlot Lite. Run the program and allow the system to stabilize. How close was your estimation?
Bump it up or down accordingly to find the setting that yields the desired result. In line #5 of the table,
record the percent of drive that places the system at or near 101 degrees. Let it run for a moment and
take note of the system stability. Once a drive setting has been established, an open-loop system will
stabilize; and, as long as the disturbances that affect the process stay constant, so will the output.

5. Plug in the brushless fan across the Vdd supply and aim it directly toward the canister. The moving air

represents a change in the disturbance on your process. According to theory, heat will be removed from
the process at a greater rate and the new stable temperature will be lower than 101o. With the fan
blowing on the canister, try to find the new “correct” drive for this condition. Record your data in line #6
of the table.

Experiment #4: Continuous Process Control

Page 124 • Industrial Control Version 1.1

Figure 4.12: Open-Loop Control Table

Line# Condition % Drive Temp
#1 Desired Temperature 101o
#2 Ambient Temperature 0
#3 50 % Drive Temperature 50%
#4 Full Drive Temperature 100%
#5 Appropriate % Drive for 101o

Without fan disturbance
 101o

#6 Appropriate % Drive for 101o
With direct fan disturbance

 101o

#7 Appropriate % Drive for 101o
With partial fan disturbance

 101o

6. Finally, leaving the proper setting established in line #6, change the position of the fan so it is blowing less

directly on the canister. This represents a medium disturbance level on the system. Assess the situation
and make your best guess as to the proper drive setting required by this new condition. Program the
BASIC Stamp for this drive level. Once the system stabilizes, record your results in line #7 of the table.

Challenge #5: Determining an Open-loop Setting

1. Select a new “desired temperature” for your system. Predict and program an open-loop drive value that

will maintain this temperature.

2. Place a couple of glass marbles in your canister. See how increasing the mass of the system affects the
response and the drive setting necessary to maintain the new condition. What conclusions can you draw
from the system’s behavior?

There are many variables that can affect the relationship of drive level and temperature in your small
environment. Given some time to experiment and become familiar with the dynamic relationship between
temperature, drive level, and disturbances, you could get pretty good at assessing the conditions and setting
the right amount of drive in an open-loop manner. As we see, however, if any condition of our process
changes, so will the output. Open-loop control can be useful in some applications. When a process requires
that its output remain constant for all conditions, then closed-loop control must be employed. In closed-loop
control, action is taken based on an evaluation of the measurement and the desired setpoint. This evaluation
results in what is called an “error signal.” Experiment #5 and #6 will guide you through 5 modes of closed-
loop control.

Experiment #4: Continuous Process Control

Industrial Control Version 1.1 • Page 125

1. Give two examples of continuous process control other than those given in the text.

2. How is the drive level in open-loop control determined?

3. What is the primary advantage of open-loop control?

4. What is the primary disadvantage of open-loop control?

5. The ADC0831 will convert a range of analog input to one of 256 possible binary values. The number 256

identifies the _________ of the converter.

6. The purpose of the chip select and clock lines to the ADC0831 are to ____________ the conversion
process.

7. If the LM34 were placed in a 98.6-degree environment, the expected output would be _________volts.

8. In pulse-width modulation, the amount of drive action is based on the __________ of time ON over the
total time.

9. If a 40-watt heater were pulse-width modulated at a 75% duty cycle, the average power consumed would
be __________ watts.

10. When disturbances change in an open-loop process, so does the ____________.

Challenge: Open-loop Control of the Fan

Recall in Experiment #2, the circuit in Figure 4.13 was introduced to control the speed of the brushless motor
fan.

Questions and
Challenge

Experiment #4: Continuous Process Control

Page 126 • Industrial Control Version 1.1

Figure 4.13: Sample and Hold PWM Drive

Because of the fan’s quick response to voltage fluctuations, the Sample and Hold circuit is necessary to
effectively control speed using the PWM instruction. Construct this circuit to be able to vary fan speed.
Directly connect the resistor across the +Vin supply. With the fan directly pointed toward the canister,
experiment with different PWM drive levels to the fan. What drive level is necessary to cool the canister to
101oF?

Experiment #5: Closed-Loop Control

Industrial Control Version 1.1 • Page 127

An open-loop control system can deliver a desired output if the
process is well understood and all conditions affecting the
process are constant. However, Experiment #4 showed us that
an open-loop control system couldn’t guarantee the desired
output from a process that was subject to even mild

disturbances. There is no mechanism in an open-loop system to react when disturbances affect the output.
Although you were able to find a drive setting that would yield the desired temperature in Experiment #4,
when the fan was moved closer or further from the heater, the fixed setting was no longer valid. Closed-loop
control provides automatic adjustment of a process by collecting and evaluating data and responding to it
accordingly. A typical block diagram of an automatic control system is depicted in Figure 5.1.

Figure 5.1: Closed-Loop Control

In this diagram, an appropriate sensor is measuring the Actual Output. The signal-conditioning block takes the
raw output of the sensor and converts it into data for the Controller block. The Setpoint is an input to the
Controller block that represents the desired output of the process. The controller evaluates the two pieces of
data. Based on this evaluation, the controller initiates action on the Power Interface. This block provides the
signal conditioning at the controller’s output. Experiment #3 discussed several methods of driving power
interface circuits. The Power Interface has the ability to control the Actuator. This may be a relay, a solenoid
valve, a motor drive, etc. The action taken by the Actuator is sufficient to drive the Actual Output toward the
desired value.

Experiment #5:
Closed-Loop
Control

Experiment #5: Closed-Loop Control

Page 128 • Industrial Control Version 1.1

As you can see, this control scenario forms a loop, a closed-loop. Furthermore, since it is the process’s output
that is being measured, and its value determines actuator settings, it is a feedback closed-loop system. The
input changes the process output Æ the output is monitored for evaluation Æ the evaluation changes the
input Æ that changes the process output, etc., etc.

The type of reaction that takes place upon evaluation of the input defines the process-control mode. There
are five common control modes. They are on-off, on-off with differential gap, proportional, integral, and
derivative. The fundamental characteristic that distinguishes each control mode is listed below in Table 5.1.

Table 5.1: Five Common Control Modes

Process
Control Mode

Evaluation

Action

On-off Is the variable above or below a
specific desired value?

Drive the output fully ON or fully OFF.

On-off with
differential gap

Is the variable above or below a range
defined by an upper and lower limit?

Output is turned fully ON and fully OFF to drive
the measured value through a range.

Proportional How far is the measured variable away
from the desired value?

Take a degree of action relative to the
magnitude of the error.

Integral Does the error still persist? Continue taking more forceful action for the
duration the error exists.

Derivative How fast is the error occurring? Take action based on the rate at which the
error is occurring.

Continue taking more forceful action for the duration the error exists.

This exercise will focus on converting the open-loop temperature control system of Experiment #4 into an
on-off closed-loop system. Our system will show advantages and disadvantages to this method of control. The
characteristics of the system being controlled determines how suitable a particular control mode will be.
Experiment #6 will use the same circuitry to overview and apply proportional, integral, and derivative control
modes. Leave the circuit constructed after completing this step.

Figure 5.2 is a schematic of the circuitry necessary for the next two exercises. As you see, this is identical to
Experiment #4. The 35-mm film canister provides the environment we wish to control. The heater drive
provides full power for developing heat in the resistor. The LED is also driven by Pin 8. Remember that the LED
is driven by the +5-Vdd supply, and the heater is driven by the +9-volt unregulated line supply. The LM34
sensor will provide temperature data. In closed-loop control, we will monitor the temperature and use it to
determine control levels. The fan’s air currents will act as a disturbance to the process.

Experiment #5: Closed-Loop Control

Industrial Control Version 1.1 • Page 129

Figure 5.2: Closed-Loop Control Circuitry

Experiment #5: Closed-Loop Control

Page 130 • Industrial Control Version 1.1

If the circuit isn’t already on your board, carefully construct it. Use space on the small Board of Education
efficiently to allow for the circuitry. Take your time, plan your layout, and be careful not to inadvertently short
any wires. Refer back to Experiment #4 for details on the film canister construction, the operation of the
LM34, and the use of the ADC0831 analog-to-digital converter.

Double-check the Zero and Span voltages of the ADC0831. Use your voltmeter to set the Zero voltage (Vin(-))
to .7 and the Span (V(ref)) to .5 volts. This will establish a full-scale temperature measurement range from 70
to 120 degrees F.

Exercise #1: Establishing Closed-Loop Control

Let’s assume it is our objective to maintain temperature within the canister at 101.50 oF + 1 degree. This
would be representative of the requirements of an incubator used for hatching eggs. Maintaining the eggs at
the setpoint temperature of 101.5 oF is perfect, but the temperature could go up to 102.50 or down to 100.50
without damage to the embryos. Although it may be hard to imagine an incubator when you look at your film
canister, the BASIC Stamp would be well suited as the controller in a large commercial hatchery incubator.

To maintain temperature at the desired value seems like a pretty “common sense” task. That is, simply
measure temperature; if it is above the setpoint, turn the heater OFF; and, if it is below, turn the heater ON.
The simplest kind of control mode is on-off control. There are drawbacks to this control mode, however.
During the following exercise, you will establish on-off control of your model incubator. Pay close attention to
the characteristics exhibited by your model. These characteristics would also apply to real control
applications.

Procedure

Programming for this application requires data acquisition, evaluation, and control action. Our display routine
will also include storing and displaying the minimum and maximum overshoot in the process.

The structure and much of the content of Program 4.1 may be used to acquire and calculate our
measurement. Instead of turning the heater on continually, a new subroutine will be added to evaluate and
control it. Evaluation will be based on a setpoint variable. Refer to Program 5.1 following.

Exercises

Experiment #5: Closed-Loop Control

Industrial Control Version 1.1 • Page 131

'Program 5.1: Simple ON/OFF Control with the StampPlot Interface

'This program establishes simple ON/OFF control of the model incubator.
'Program I/O is based on the circuitry of Figure 5.2.
'Zero and Span voltages: Digital 0 = Vin(-) =.70V and Span = Vref = .50V.

'Configure Plot
Pause 500 'Allow buffer to clear
DEBUG "!RSET",CR 'Reset plot to clear data
DEBUG "!TITL Simple ON/OFF Control",CR 'Caption form
DEBUG "!PNTS 60000",CR '60000 sample data points
DEBUG "!TMAX 300",CR 'Max 300 seconds
DEBUG "!SPAN 70,120",CR '70-120 degrees
DEBUG "!AMUL .1",CR 'Multiply data by .1
DEBUG "!DELD",CR 'Delete Data File
DEBUG "!CLMM",CR 'Clear Min/Max
DEBUG "!CLRM",CR 'Clear Messages
DEBUG "!USRS ",CR 'Clear User status bar
DEBUG "!SAVD ON",CR 'Save Data
DEBUG "!TSMP ON",CR 'Time Stamp On
DEBUG "!SHFT ON",CR 'Enable plot shift
DEBUG "!PLOT ON",CR 'Start Plotting
DEBUG "!RSET",CR 'Reset plot to time 0

' Define constants & variables

CS CON 3 ' 0831 chip select active low from BS2 (P3)
CLK CON 4 ' Clock pulse from BS2 (P4) to 0831
Dout CON 5 ' Serial data output from 0831 to BS2 (P5)
Datain VAR byte ' Variable to hold incoming number (0 to 255)
Temp VAR word ' Hold the converted value representing temp

TempSpan VAR word ' Full Scale input span in tenths of degrees
TempSpan = 5000 ' Declare span 50 (1/100ths degrees)

Offset VAR word 'Minimum temp. Offset, ADC = 0
Offset = 700 'Declare zero Temp. Set Vin(-) to .7 and
 'Offset will be 700 tenths degrees. At these
 'settings, ADC output will be 0 - 255 for
 'temps
 'of 700 to 1200 tenths of degrees.
Setpoint VAR word
Setpoint = 1015 ' Initialize setpoint to 101.5 degrees

MMFlag VAR bit
MMFlag = 0

LOW 8 ' Initialize heater OFF

Main:

Experiment #5: Closed-Loop Control

Page 132 • Industrial Control Version 1.1

 GOSUB Getdata
 GOSUB Calc_Temp
 GOSUB Control
 GOSUB Display
GOTO Main

Getdata: 'Acquire conversion from 0831
 LOW CS 'Select the chip
 LOW CLK 'Ready the clock line.
 PULSOUT CLK,10 'Send a 10 uS clock pulse to the 0831
 SHIFTIN Dout, CLK, MSBPOST,[Datain\8] 'Shift in data
 HIGH CS 'Stop conversion
RETURN

Calc_Temp: 'Convert digital value to
 Temp = TempSpan/255 * Datain/10 + Offset 'temp based on Span &
RETURN 'Offset variables.

Control: 'ON/OFF control
 IF Temp > Setpoint THEN OFF
 HIGH 8 'Heater ON
RETURN

OFF: 'Heater OFF
 LOW 8
RETURN

Display: 'Plot Temp and heater status
 IF OUT8 = 0 AND MMFlag = 0 THEN MMClear ' Clear Min/Max
 DEBUG DEC Temp,CR
 DEBUG IBIN OUT8,CR
RETURN

MMClear: 'Clear Min/Max When setpoint is first reached.
 DEBUG "!CLMM",CR
 DEBUG "!USRS Overshoot/Undershoot Test Ready",CR
 MMFlag = 1
RETURN

Experiment #5: Closed-Loop Control

Industrial Control Version 1.1 • Page 133

Run the program and observe the behavior of the system. StampPlot Lite will graphically plot the temperature
response of the system and the on-off status of Output 8. Follow the StampPlot Lite procedures of running
the program, closing the debug window, opening StampPlot Lite, and pressing the “reset” button.

When you start your system, the heater will be on as indicated by the LED. The heater/resistor becomes quite
hot when full power is applied. This heat transfers through the environment and warms the temperature
sensor. When the sensor has heated to 101.5, the BASIC Stamp will turn off the heater. For a period after the
heater is turned off, the temperature continues to rise. This is called overshoot. At this point, it is important
to understand the dynamics of your system. The heat held within the mass of the resistor will continue to
dissipate into the air, the air becomes warmer, and the LM34 reports that overshoot has occurred. Similar to
the mechanical inertia of a moving object, this phenomenon is called thermal inertia. Overshoot becomes
large when the heat energy contained in the mass of the resistor is large, relative to the heat already in the
canister. The 35-mm canister is small, but the mass of the half-watt resistor also is small. As a result, the
overshoot of your system will probably be less than one degree.

When the temperature does turn around and begin to fall, as it passes the setpoint, the heater is once again
turned on. Undershoot will occur for similar reasons as did the overshoot. During the time the heater is
coming up in temperature, the ambient temperature has continued downward. Continuous cycling above and
below the desired setpoint is typical of on-off control. The rate of this cycling and the degree of the
overshoot depend on the characteristics of the system. On-off control is suitable for processes that have
large capacity, can tolerate sluggish response, and sustain a relatively constant level of disturbance. If our
incubator were large, well insulated, and kept in a constant room environment, on-off control would be
acceptable. After the process has had a chance to cycle a few times, record the minimum and maximum
overshoot values.

Maximum overshoot _______________ Minimum Overshoot __________________

Using your cursor, investigate time between cycles. Record these times below.

Time at which the heater first turned OFF (T1off): ____________

Time at which the heater turned back ON (T1on): ____________

Time at which the heater turned OFF again (T2off): ____________

Cycle time = (T2off) – (T1off): ____________

Experiment #5: Closed-Loop Control

Page 134 • Industrial Control Version 1.1

A major problem with on-off control is that the output drive may cycle rapidly as the measurement hovers
about the setpoint. Noise riding on the analog sensor measurement would be interpreted as rapid fluctuation
above and below the setpoint. The timing diagram in Figure 5.3 represents this problem

Figure 5.3: On-Off Control When Noise Rides on the Data

The slow-moving data that is cycling through the setpoint has a high-frequency noise component riding on it.
As you can see, the coupled effects of the noise results in the data passing above and below the setpoint
several times. The microcontroller would attempt to turn the heating element on and off accordingly.

In an actual incubator application where larger amounts of power are controlled, this rapid switching could
cause unwanted RF noise. This rapid cycling could also be damaging to electromechanical output elements
such as motors, relays, and solenoids.

Do you observe the rapid cycling of the LED as the temperature approaches the setpoint? ___________

Remove the 10-uF capacitor from across the sensor output. Does this increase the cycling problem? Why?
Figure 5.4 is a typical screen shot resulting from this experiment. Overshoot and rapid cycling are a problem.
Is this similar to your system’s response?

Heat ON

Heat OFF

Setpoint

Experiment #5: Closed-Loop Control

Industrial Control Version 1.1 • Page 135

Figure 5.4: Simple ON/OFF Control

Experiment #5: Closed-Loop Control

Page 136 • Industrial Control Version 1.1

Challenge! Change the Dynamics of Your System

1. Connect your brushless fan to the Vcc supply and aim it toward the canister. Reset the program and

watch the control action. Describe any effect that the new level of disturbance has on the overshoot
and/or the cycling. Summarize how you have changed the dynamics of your system.

2. Place a single glass marble in your canister. Reset the program and watch the control action. Describe
any effect that changing the mass of your system has on the overshoot and/or the cycling. Summarize
how you have changed the dynamics of your system.

Exercise #2: Differential-Gap Control

The rapid cycling resulting from noise or the measurement hovering around a single setpoint is the biggest
disadvantage of simple on-off control. Most practical on-off control systems lend themselves to allowing a
minimum and maximum value of measurement. An incubator is a good example. Although the desired
temperature is 101.5 degrees, it allows + 1 degree of variance about the setpoint. Differential-gap control is a
mode of control that takes action based on the measurement crossing a defined upper and lower limit. When
the measured value goes beyond one limit, full appropriate action is taken to drive the temperature to the
opposite limit. Full opposite action is then taken to drive the process back again. Figure 5.5 graphically
diagrams the action taken by differential-gap control. When the system is started and its temperature is
below the Lower limit, the heater will come on and the temperature rise. When the temperature passes the
upper limit, the heater is turned OFF, heat will begin to leave the process, and the temperature will begin to
drop to below the Lower limit. The heat then is turned back on and the cycle begins again.

Experiment #5: Closed-Loop Control

Industrial Control Version 1.1 • Page 137

Figure 5.5: Differential-Gap Control Action

The result is a slower on-off cycle time and no cycling resulting from noisy data. Notice how the timing
diagram in Figure 5.6 differs from the earlier one depicting noisy data in a simple on-off control mode.

Whenever the measurement is anywhere between these limits, the heater state is not changed. The result is a
slower ON/OFF cycle time and no cycling from noisy data. The heater is switched when the data (+noise)
passes a limit. After that, the data (+noise) has to exceed the other limit before switching will occur again.
Because the differential gap is wider than the effect of the noise, rapid cycling is eliminated.

Experiment #5: Closed-Loop Control

Page 138 • Industrial Control Version 1.1

Figure 5.6: Differential-Gap Control Action when Noise is Riding on the Data

These advantages come at the compromise of allowing the measured variable to drift further from the
desired “average” value. The thermal inertia of our system will still result in some amount of overshoot and
undershoot. We are accepting a wider variance in temperature. When processes allow this variance,
differential-gap control is usually preferred over simple on-off control.

 The Control subroutine can be easily changed to accommodate differential-gap control. Make the following
modifications to Program 5.1.

Declare the new variables of Upper_limit and Lower_limit at the beginning of the program and initialize
them to 102 oF and 101 oF respectively.

Upper_limit VAR word
Lower_limit VAR word
Upper_limit = 1020 ‘102 degrees in 1/10ths
Lower_limit = 1010 '101 degrees in 1/10ths

 Heat ON

 Heat OFF

Desired Value

UTP

LTP

Experiment #5: Closed-Loop Control

Industrial Control Version 1.1 • Page 139

Next, replace the on-off Control subroutine with the following code.

Control:
 IF Temp > Upper_limit THEN OFF ' Over upper limit then Heat OFF
 IF Temp < Lower_limit THEN ON ' Under lower limit then Heat ON
RETURN ' return leaving heat in last state

OFF:
 Out8 = 0 ' Heater Off
 MMFlag = 1
RETURN

ON: ' Heater On
 Out8 = 1
RETURN

Run the program and observe the behavior of your system.

Challenge! Observe and Evaluate Differential-Gap Control

Allow the program to cycle a few times. Report on the following:

Record the minimum and maximum overshoot temperatures.

Maximum overshoot _______________ Minimum Overshoot __________________

With your cursor, investigate time between cycles. Record these times below.

Time at which the heater first turned OFF (T1off) ____________

Time at which the heater turned back ON (T1on) ____________

Time at which the heater turned OFF again (T2off) ____________

Cycle time = (T2off) – (T1off) ____________

Experiment #5: Closed-Loop Control

Page 140 • Industrial Control Version 1.1

Project the switching point of the digital output down to the plotted temperature. Can you determine the
temperature at which switching occurred? Momentarily remove the 10-uF filter capacitor. Does the increase
in noise cause rapid cycling about the limits?

Use the fan to change the disturbances to the process. Reset the program and watch the control action.
Describe any effect the new level of disturbance has on the overshoot and/or the cycling. Summarize how you
have changed the dynamics of your system.

Place a single glass marble in the canister. Restart the program and summarize how increasing the mass has
affected the process control action. Investigate the cycle time and overshoot.

Simple ON/OFF or Differential Gap?

Hopefully, the data that you have observed and recorded will reveal some important characteristics of these
two control modes. They both have advantages and disadvantages. Simple on-off control results in rapid
cycling of the heating element. Reported cycle times of less than one second could easily result if your system
has fast recovery or there is noise on the analog line. Rapid cycle time would not be acceptable if our heater
were being controlled by an electromechanical relay.

Notice, however, that the overshoot is approximately a half-degree and our average temperature is at the
desired setpoint. Compare this control response to that observed when Differential Gap has been added to
the On/OFF control.

With Differential-Gap control, you will notice fundamental differences in the control action.

1. Rapid cycling about the setpoint no longer occurs.
2. The minimum and maximum values still overshoot, but now beyond the limits.
3. Total cycle time between ON/OFF conditions is longer.

Increased cycle time and noise immunity about the setpoint are definite improvements over simple on-off
control. The tradeoff, however, is allowing the process to vary further from the desired temperature setpoint.
Obviously, an understanding of your process and its hardware will determine the appropriate control mode.

Experiment #5: Closed-Loop Control

Industrial Control Version 1.1 • Page 141

Both modes took appropriate control action to maintain temperature under changing disturbance levels and
load conditions. The drawback to either mode of ON/OFF control is that the controlled variable is constantly
on the move. The fully-ON and fully-OFF conditions of the final control element are continually forcing the
measurement past the limits.

If you recall, in the Open-Loop Control exercise of Experiment #3, a value of drive between off and fully on
was found to be appropriate to hold the temperature at the setpoint. If all disturbances to the process
remained constant, the temperature would stay at the setpoint when the right percentage of drive was
applied. We also saw that as conditions changed, so did the measurement. Experiment #6 will investigate
controls that take an appropriate amount of action based on an evaluation of the measurement. Applying
Proportional, Integral, and Derivative control theory can be employed to maximize the effectiveness of the
control system.

Programming Challenges

1. Alter your program so a +1 degree differential gap can be calculated automatically, based on the desired

setpoint.

2. Add a variable called Differential_gap so the operator needs only to enter the Setpoint and the amount

of Differential gap and the program automatically performs the desired action.

Experiment #5: Closed-Loop Control

Page 142 • Industrial Control Version 1.1

1. Write one complete sentence that clearly states the fundamental difference between Open-loop and
Closed-loop controls.

2. Simple ON/OFF control compares the measurement of the process variable to a
________________.

3. If the final control element to our model incubator were an air conditioner instead of a heater, what
would change about Program 5.1?

4. When the process variable continues to increase after the final control element is turned OFF, it is
termed _______________.

5. Rapid cycling about the setpoint of an ON/OFF control system is a result of __________ riding on
the measurement data.

6. List three devices that could not withstand rapid cycling of power.

7. Process cycle time is directly affected by the amount of ____________ in the system.

Questions and Challenge

Experiment #5: Closed-Loop Control

Industrial Control Version 1.1 • Page 143

8. Differential-gap control takes full action when the process variable crosses the ___________
points.

9. Cycle time will be ______________ if differential-gap control is used in a system rather than simple
ON/OFF control.

10. Rapid cycling is not a problem in differential-gap control if the measurement data plus the
___________ is less than the differential gap.

11. When the measurement is between the limits, the output will be in the mode determined by which
limit was exceeded __________.

12. Adding more mass to a Differential-gap control system will ___________ the amount of overshoot
and ___________ the cycle time of the process.

Control Challenge: Reverse the Scenario

Reverse the positions of the output devices in Figure 5.2. Replace the heater in figure 5.2b with the brushless
fan and place the heater across the +9V supply as shown in Figure 5.2c. Control the temperature by turning
the fan on and off while the heater is on all of the time. You will have to change the code to such that the
output turns on to drive temperature down and off as temperature falls below the setpoint. You may want to
place the heater and sensor closer together and open the end of the canister to be able to blow air directly
onto the pair. This will change the dynamics of the system. It may cycle faster, perhaps overshoot less, and be
more susceptible to chatter. Experiment with it and note your observations. Realize that every system that
you work with will have its own unique dynamic characteristics.

Experiment #5: Closed-Loop Control

Page 144 • Industrial Control Version 1.1

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 145

PID is an acronym for Proportional-Integral-Derivative
Control. In this section, we will explore each of these
methods and how they work together to efficiently control
a system.

Overview of PID Control

One objective of a process control is to hold a system constant. In the previous exercise, we used various
means of cycling the heater of our incubator to maintain a desired temperature. Using differential gap, we
created an allowable band in which the heater would cycle, causing the temperature to cycle above and below
the setpoint. In Experiment #4, we saw how we could use pulse-width modulation (PWM) to add energy to our
system in duty cycles between 0% (fully off) and 100% (fully on). While these types of control had their
advantages and disadvantages, PID control allows the greatest control of a system but can be more difficult to
implement and tune (or adjust) for optimum performance.

Holding a process constant involves continually adding energy that equals the system’s losses exactly. If the
system’s losses were constant, the process control would be as simple as applying one steady state level of
drive. However, the factors that affect a process do change. They change in unpredictable magnitudes and at
unpredictable rates. Compounding this problem is that a system has reaction delays that must be understood.
An instant change in losses due to a disturbance is not felt immediately, and the change in drive to a system is
not either. Process control can be as much an art form as it is a science.

The first step to understanding PID control is that every system has both gains and losses of energy.

Esystem = Ein–Eout

A system is said to be in equilibrium when the energy gained equals the energy lost.

Equilibrium: Ein = Eout

When in equilibrium our incubator would maintain a constant temperature. But this is seldom, if ever, the
case. Depending on the heater drive and conditions surrounding the incubator, temperature will either be
increasing or decreasing. As conditions change, such as room temperature changing, air movement changes
on the canister, sunlight falling on the canister, or the resistor aging, the amount of heat added and removed
is seldom constant.

Experiment #6:
Proportional-Integral-
Derivative Control

Experiment #6: Proportional – Integral – Derivative Control

Page 146 • Industrial Control Version 1.1

Consider other examples of systems, such as an oil-flow system. The drive element, the pump, is controlled to
maintain a desired oil flowrate. A sudden change in the system may be a valve being shut blocking one path
for oil flow. Slow change in the system may be corrosion of the piping causing friction or the changing of the
oil temperature. The pump needs to adjust in order to compensate for these losses.

One other system to consider is an automobile. Typically we want the car to maintain a constant speed on the
highway. The engine makes up for friction losses from the tires on the pavement and wind losses. When the
car is maintaining a constant speed, the system is in equilibrium and our foot keeps the accelerator in
constant position. When conditions change, such as the car climbing a hill, the cars velocity changes and it
begins to slow. The force of gravity increases on the car and these increased losses remove more energy than
the engine is supplying and the car begins to slow. Without depressing the accelerator more will the car
eventually come to a stop on the hill? No, it will slow to a lower constant speed where once again losses =
gains and a new equilibrium is reached.

Conditions, or disturbances on our system, can change very rapidly, such as when a gust of air suddenly blows
over the incubator or very slowly such as the heating element aging. PID control can measure and take action
on:

1) How far from the setpoint a system is, or the magnitude of the error.
2) The duration that an error remains.
3) How quickly an error occurs in the system, or the rate of change.

The sums of these three evaluations comprise the output drive in an attempt to maintain a system in
equilibrium. Figure 6.1 illustrates the evaluation and control of a system for PID control.

The classic PID formula for calculating the controller output is as follows:

∫ ∆
∆

++=)*()*()*(
t
EKdEtKiEKpCo pid

Where:
 Co = controller output or drive
 Kp = proportional gain
 E = error signal
 Ki = integral gain
 Kd = derivative gain

The drive equation based on the above is:

%DriveTotal = DrivePROP + DriveINT + DriveDERIV

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 147

Figure 6.1: PID Control Block Diagram

In this section, the incubator will be controlled using PID control and the PID equation will be explored and
illustrated.

Circuit Construction

We will use the same circuit from Exercise #5 (Figure…), but you will manually connect the fan to Pin 19 Vin
power or regulated 5V when needed for a disturbance.

The following is the full program for this section. We will change values in the PID Control Settings in testing
the different areas of control.

Experiment #6: Proportional – Integral – Derivative Control

Page 148 • Industrial Control Version 1.1

'Program 6.1: PID Control with the StampPlot Interface

'********* PID CONTROL SETTING ****************
SP CON 990 ' Initialize setpoint to YOUR bias Temp in TENTHS
Range CON 20 ' Allowable temperature range in TENTHS (20=2F)
B CON 50 ' Bias drive setting
Kp CON 0 ' Proportional Gain Setting in TENTHS (10=Gain of 1)
Ki CON 0 ' Integral gain constant in TENTHS (1=Gain of .001)
Ti CON 24 ' Interal Reset time (1=~5 seconds
Kd CON 0 ' Derivative gain constant
MinA CON 75 ' Minimum analog Y axis value
MaxA CON 120 ' Maximum analog X axis value
MaxT CON 600 ' Maximum time in seconds X Axis
'***

'***** Configure Plot
PAUSE 2000
DEBUG "!TITL PID Control",CR ' Title Plot
 DEBUG "!RSET",CR ' Reset Plot
DEBUG "!PNTS 1000",CR ' 1000 data points
DEBUG "!TMAX ",DEC MaxT,CR ' Set maximum time
DEBUG "!AMAX ",DEC MaxA,CR ' Set analog max
DEBUG "!AMIN ",DEC MinA,CR ' Set analog min
DEBUG "!AMUL .1",CR ' Analog multiplier of .1
DEBUG "!TSMP ON",CR ' Enable time-stamping
DEBUG "!SAVM ON",CR ' Save message to file
DEBUG "!CLMM",CR ' Clear min/max on reset
DEBUG "!SHFT ON",CR ' Enable plot shifts
DEBUG "!PLOT ON",CR ' Enable plotting
 ' Display drive settings
DEBUG "!USRS SP=",dec SP," Kp=",dec Kp," Ki=",dec Ki," Ti=",dec Ti," Kd=",dec Kd,CR
DEBUG "!RSET",CR 'Reset Plot

' ************** Define constants & variables
CS CON 3 ' 0831 chip select active low from BS2 (P3)
CLK CON 4 ' Clock pulse from BS2 (P4) to 0831
Dout CON 5 ' Serial data output from 0831 to BS2 (P5)
Heater CON 8 ' Output pin to heater
Datain VAR BYTE ' Incoming Data (0 to 255)
Temp VAR WORD ' Hold the converted value representing temp
TempSpan CON 5000 ' Full Scale input span in tenths of degrees.
Offset CON 700 ' Minimum temp. Offset, ADC = 0
Sign VAR WORD ' Used to hold sign for calculations

Drive VAR WORD ' Amount of total drive
Err VAR WORD ' Amount of error present
P VAR WORD ' Amount of Proportional drive
I VAR WORD ' Amount of Integral Drive
D VAR WORD ' Amount of Derivative Drive

PWMCount VAR BYTE ' Counter for amount of time to apply PWM

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 149

LastErr VAR WORD ' Holds last temperature for derivative drive
LastErr = 0

IntCount VAR BYTE ' Variable for counting cycles for integral drive
PWMTime CON 20 ' Variable defining how long PWM drive should last
 ' V (20=~5 seconds)
Ei VAR WORD ' Cumulative error for integral calculations
Ei = 0 ' Clear cumulative error

'*************** Main loop
Main:
 GOSUB Getdata
 GOSUB Calc_Temp
 GOSUB Calc_Drive
 GOSUB Plot_Data
 GOSUB Drive_Heater
 GOTO Main

Getdata: 'Acquire conversion from 0831
 LOW CS 'Select the chip
 LOW CLK 'Ready the clock line.
 SHIFTIN Dout, CLK, msbpost,[Datain\9] 'Shift in data
 HIGH CS 'conversion
 RETURN

Calc_Temp: 'Convert digital value to
 Temp = TempSpan/255 * Datain/10 + Offset 'temp based on Span &
 RETURN 'Offset variables.

Calc_Drive:
 GOSUB ErrorCalc 'Error Calcs
 GOSUB PropCalc 'Perform proportional error calcs
 GOSUB IntCalc 'Perform Integral Calcs
 GOSUB DerivCalc 'Perform Derivative calcs
 Drive = (B + P + I + D) 'calculate total drive
 Sign = Drive 'Sign adjust to max of 100 min 0
 GOSUB SetSign
 Drive = ABS Drive MAX 100
 IF Sign = 1 THEN DriveDone
 Drive = 0
 DriveDone:
 RETURN

'********* Drive the heater
Drive_Heater:
 FOR PWMCount = 1 TO PWMTime 'Apply pwm at 220 mSec for each PWMTime repetion
 PWM Heater,drive * 255/100,220
 NEXT
 RETURN

'********* Plot Data
Plot_Data:

Experiment #6: Proportional – Integral – Derivative Control

Page 150 • Industrial Control Version 1.1

 DEBUG DEC Temp,CR

'** Nicely formatted message output for reading (4 lines)
 DEBUG "Set:", DEC SP," Temp:", DEC Temp
 DEBUG " %Err:",SDEC Err," %B=", DEC B, " %P=", SDEC P
 DEBUG " %I=",SDEC I," %D=", SDEC D
 DEBUG " %Drive:",SDEC Drive, CR
'** Comma-seperated message output for import into spreadsheet
' DEBUG ",",DEC Temp,",",SDEC Err,",",SDEC P,",",SDEC I,",",SDEC D,",",SDEC Drive,CR
 RETURN

'********** Calculate %Error - Sign adjusted
ErrorCalc:
 Err = (SP - Temp) 'Calculate temperature error
 Sign = Err
 GOSUB SetSign
 Err = ABS Err*100/Range 'Calculate % error
 Err = Err * Sign
 Return

'*********** Proportional Drive - Sign adjusted
PropCalc:
 Sign = Err
 GOSUB SetSign
 P = ABS Err * KP + 5/10 'Prop err = %Err * Kp /10 to scale, +5 to round
 P = P * Sign
 RETURN

'********** Integral Drive - Sign Adjusted
IntCalc:
 Ei = Ei + Err 'Accumulate %err each time
 IntCount = IntCount + 1 'Add to counter for reset time
 IF IntCount < Ti Then IntDone 'Not at reset count? -- done
 Sign = Ei
 Gosub SetSign
 Ei = ABS Ei / Ti 'Find average error over time
 Ei = Ei * Ki + 5 /10 'Int err = int. err * Ki
 Ei = Ei * Sign
 I = I + Ei 'Add error to total int. error
 Sign = I
 GOSUB SetSign
 I = ABS I MAX 100 'Limit to 100-prevent windup
 I = I * Sign
 IntCount = 0 'Reset int. counter and accumulator
 Ei = 0
 IntDone:
 RETURN

'*********** DERIVATIVE DRIVE
DerivCalc:
 D = (Err-LastErr) * KD ' Calculate amount of derivative drive
 ' based on the difference of last error
 DerivDone

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 151

 LastErr = Err ' Store current error for next deriv calc

 RETURN

'********** Set sign of value
SetSign:
 IF Sign.bit15 = 0 THEN SignPos 'If signbit is 1, then negative
 Sign = -1
 Return
 SignPos:
 Sign = 1
 SignDone:
 Return

Experiment #6: Proportional – Integral – Derivative Control

Page 152 • Industrial Control Version 1.1

Figure 6.2: Main Process Flow

Figure 6.2 is a flowchart of the main loop for the PID program. Specifics of each of the processes will be
discussed as they arise.

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 153

All microcontrollers have their limitations, as do other systems, such as Programmable Logic Controllers
(PLCs). In programming complex operations such as PID, it is important to understand the limitations and
finding alternative means.

We’ve been dealing with the restriction of integer values, such as temperature being in tenths of degrees.
One other limitation we’ll deal need to deal with is that of negative numbers. While the BASIC Stamp can use
negative values, it cannot divide them or use the MIN and MAX instructions to set limits on their size. In this
section both of these will be important. The values of drive for PID will be negative or positive depending if
drive should be added to the total or subtracted. We will also need to limit the maximum values so that we do
not exceed 100% in certain circumstances, such as total drive.

To perform these tasks, a routine called SetSign is used. Several routines call it using a GOSUB. The possibly
negative value to be manipulated is saved to a word variable Sign. When SetSign is called, the sign bit
(bit15) is examined. If the sign bit is 1, it is a negative value and the variable Sign is set to -1. If the sign bit is
0, it is positive and Sign is set to positive 1. Back in our calling routine, the absolute value of our possibly
negative number is manipulated. The result is then multiplied by Sign to return the value back to positive or
negative. The range of signed values can be from –32,768 to +32767.

PropCalc:
 Sign = Err
 GOSUB SetSign
 P = ABS Err * KP + 5/10 'Prop err = %Err * Kp /10 to scale, +5
to round
 P = P * Sign
 RETURN
...

SetSign:
 IF Sign.bit15 = 0 THEN SignPos 'If signbit is 1, then negative
 Sign = -1
 Return
 SignPos:
 Sign = 1
 SignDone:
 Return

The first part of program to consider is the total drive calculations. Figure 6.3 is a flowchart for these
routines. As discussed, the total drive is the sum of 3 different evaluations based on the error. The total drive
% will then be applied to the heater using PWM for 5 seconds. This allows a long on-time compared to a
relatively short off-time when performing other operations.

Experiment #6: Proportional – Integral – Derivative Control

Page 154 • Industrial Control Version 1.1

Figure 6.3: Flowchart of Drive Routine

Drive_Heater:
 FOR PWMCount = 1 TO PWMTime 'Apply pwm at 220 mSec for each PWMTime repetion
 PWM Heater,drive * 255/100,220
 NEXT
 RETURN

Calc_Drive:
 GOSUB ErrorCalc 'Error calcs
 GOSUB PropCalc 'Perform proportional error calcs
 GOSUB IntCalc 'Perform Integral Calcs
 GOSUB DerivCalc 'Perform Derivative calcs

 Drive = (B + P + I + D) 'calculate total drive
 Sign = Drive 'Sign adjust to max of 100 min 0
 GOSUB SetSign
 Drive = ABS Drive MAX 100
 IF Sign = 1 THEN DriveDone
 Drive = 0
 DriveDone:
 RETURN

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 155

Exercise #1: Bias Drive

As discussed, a system in equilibrium is where the energy gains in a system equal the energy losses. When a
system is designed typically the engineers will have determined anticipated average losses on the system. The
Bias Drive is the drive needed to compensate for average losses. By designing the system so that a 50% drive
is sufficient for average losses, provides the ability to add or subtract up to 50% due to other losses or large
disturbances to the system. This affords the maximum amount of control.

Modifying our equation slightly:

∫ ∆
∆

+++=)*()*()*(
t
EKdEtKiEKpCo Bpid

B = Bias Drive

Or:

%DriveTOTAL = %DriveBIAS + %DrivePROP + %DriveINT + %DriveDERIV

For the eggs in our incubator to hatch healthy chicks, 50% drive on our heater would provide sufficient
energy to maintain temperature in the incubator near 101.5F with average losses. Unfortunately, our system
is not well engineered. Being a non-insulated plastic canister with a small resistor for a heater, chances are
that 50% drive will not be sufficient under most circumstances for our desired setpoint. Some limitations on
our experimental incubator are:

• A bias of 50% PWM drive is insufficient to provide a temperature of 101.5F.
• Every incubator will have a different stable temperature for 50% bias drive due to many factors.
• Our incubator is a fragile, steady state system. Factors such as room temperature and vents or fans

blowing on the canister will shift the temperature.
• Moving or bumping the incubator will cause air mixing and affect the measured temperature.

Exercises

Experiment #6: Proportional – Integral – Derivative Control

Page 156 • Industrial Control Version 1.1

We will deviate from our optimum incubator setpoint in order to operate the system around a 50% bias
temperature. Note that this bias temperature may fluctuate due to room conditions. It is recommended that
the student read through all of the Chapter 6 material first and then try to perform as many hands-on
portions consecutively as possible.

BpidCo =

%DriveTOTAL = %DriveBIAS

Determining the Bias Temperature:

1) De-energize your system and allow it to cool to room temperature.
2) Verify that the Drive Control Setting matches the following:

'********* PID CONTROL SETTING ****************
SP CON 990 ' Initialize setpoint to YOUR bias Temp in TENTHS
Range CON 20 ' Allowable temperature range in TENTHS (20=2F)
B CON 50 ' Bias drive setting
Kp CON 0 ' Proportional Gain Setting in TENTHS (10=Gain of 1)
Ki CON 0 ' Integral gain constant in TENTHS (1=Gain of .001)
Ti CON 24 ' Interal Reset time (1=~5 seconds
Kd CON 0 ' Derivative gain constant
MinA CON 75 ' Minimum analog Y axis value
MaxA CON 120 ' Maximum analog X axis value
MaxT CON 600 ' Maximum time in seconds X Axis

Note that Kp, Ki and Kd are all 0 providing 0 drive from these evaluations allowing only bias drive of 50% to
the heater.

3) Energize your system and download the program to the BASIC Stamp 2.
4) Close the debug window and connect on StampPlot Lite.
5) Reset your BASIC Stamp 2 by pressing “reset” on the Board of Education.
6) Allow the incubator temperature to stabilize to the find the 50% bias temperature.
7) Round your stabilized temperature to the nearest whole degree and set it as your SP (setpoint)

constant (98.8 = 990).

Figure 6.4 is the plot of our test incubator stabilizing.

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 157

Figure 6.4: Bias Temperature at 50% Drive

Note the amount of time it took the temperature to stabilize. In our test, approximately 450 seconds. In a
system with a first-order response, such as our incubator, the system requires 5 time-constants (5TCs) to
stabilize (or reach 99% of the new value) following a step-change in conditions, in this case going from 0% to
50% drive. 1 time-constant (1TC) for our system would be 450/5 or 90 seconds. The response time of the
system is important in tuning a system as you will see later.

Record for your system: 50% Bias Temperature: ______

 Time for 5TCs: _____
 Time for 1TC: _____

Experiment #6: Proportional – Integral – Derivative Control

Page 158 • Industrial Control Version 1.1

Expercise #2: Proportional Control

(Kp*E)BCo pid +=
%DriveTotal = %DriveBIAS +% DrivePROP

The next evaluation in the PID equation is proportional control of the system. The amount of drive from
proportional control is a direct relationship to how much error exists in the system. The greater the error
the greater the amount of proportional drive.

Let’s say our setpoint is 101.5F, and a bias of 50% PWM is sufficient to maintain this temperature. If the
temperature drops to 101.0F, giving a -0.5F error, do we want to drive at 100% PWM, or something lower, to
bring the temperature back to the setpoint?

For our incubator example, we want to maintain a temperature of 101.5F. The steadier we maintain this
temperature, the healthier our eggs will be. It is allowable, though, to go 0.5F above or below this setpoint.
So our setpoint will be 101.5 with an allowable band of +/- 0.5F, or 101.0F to 102.0F degrees.

If any error correction reaches the upper or lower limits, we want to take full action to return temperature
back to the setpoint. Any error between the setpoint and the limits will provide a proportional amount of
drive action. Figure 6.5 is a graphical representation of the incubator temperature verses the amount of
drive needed for the given band.

Figure 6.5: Temperature vs. Drive

0
10
20
30
40
50
60
70
80
90

100
110

100 100.5 101 101.5 102 102.5 103

Temperature

PW
M

 D
riv

e
%

% Drive

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 159

From Figure 6.5, if the temperature is at 101.5F, 50% drive will be used to add heat energy to our system. If
the temperature drops to 101 F, 100% drive will be used to increase the temperature, and any temperature in
between will result in a proportional amount of drive.

If the temperature rises above 101.5F, the drive will proportionally decrease to lower the temperature until,
at 102F, %drive has decreased to 0%.

From the graph, what would the drive be at 101.2 degrees? ______; at 101.7 degrees? _______.

Now let’s look at it mathematically. The error of our system is calculated by subtracting the current
temperature from the setpoint:

Error = Setpoint-Actual

The percent error is found by dividing the error value by the full temperature range and multiplying by 100%:

x100%
FullRange

Error%Error =

For our incubator the full temperature range is:

102.0-101.0 = 1.0F.

If the temperature is 101.2:

Error = 101.5 – 101.2 = .3
%Error (E) = .3/1.0*100% = 30%

The general gain formula is:

∆Input
∆OutputGain =

For our example, we are changing 100% of the drive over 100% of the allowable temperature range:

1
%100
%100

∆Input
∆OutputGain(Kp) ===

Our system would have a proportional gain (Kp) of 1.

Experiment #6: Proportional – Integral – Derivative Control

Page 160 • Industrial Control Version 1.1

The amount of proportional drive at 101.2 degrees would be:
%DrivePROP = Kp*E = 1 * 30% = 30%

The total drive of our system would then be:

%DriveTOTAL = B+(Kp*E)= 50%+30% = 80%.

Does this values match what you read from the Figure 6.3 for a temperature of 101.2F?

Calculate the total drive for a temperature of 101.7: __________
Compare your value to Figure 6.3. Do they match? ________.

One more term to consider is Proportional Band. Figure 6.3 is termed a 100% Proportional Band because
the full range of drive covers 100% of our allowable band (101.0-102.0). Does this mean the temperature will
not exceed our high and low limits? No. This simply means that at those limits our system will be taking full
action to get the temperature back to the setpoint.

What if we wanted tighter temperature control of our system? Our allowable band for healthy eggs is still
101.0 to 102.0, but we can adjust our values to take full control over half the allowable range. Figure 6.6 is a
plot of this control.

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 161

Figure 6.6: Temperature vs. Drive Over 50% of Range

Temperature vs. Drive

0
10
20
30
40
50
60
70
80
90

100
110

100 100.5 101 101.5 102 102.5 103

Temperature

PW
M

 D
riv

e
%

% Drive

In Figure 6.6 the system is driving twice as hard for any deviation from the setpoint. What would be the
proportional gain for this system?

2
%50
%100

∆Input
∆OutputGain(Kp) ===

Note from the equation the system is driving the full range of output over only 50% of the allowable
temperature range. This is also known as a 50% Proportional Band because full control action happens over
50% of the allowable range.

Use the equations to calculate the following at 101.7F:

Error = __________
%Error = _________ (Hint: The allowable band is still 1.0)
Proportional Drive = ________
Total Drive = _________.

Note the relationship between proportional gain and proportional band:

Experiment #6: Proportional – Integral – Derivative Control

Page 162 • Industrial Control Version 1.1

%50%100*
2
1%100*

Gain nalProportaio
1Band alProportion ===

What if we wanted a slower responding system? We can define that the full range of drive will be over
temperatures greater than the allowable range. If 100% drive were to cover twice as much as the allowable
range:

5.0
%200
%100

∆Input
∆OutputGain(Kp) ===

Calculate the Proportional band: ________

Graph the Drive vs. Temperature for this gain:

Temperature vs. Drive

0
10
20
30
40
50
60
70
80
90

100

100 100.5 101 101.5 102 102.5 103

Temperature

PW
M

 D
riv

e
%

% Drive

Calculate the following for a temperature of 101.7F:

Error = _________
%Error = _________ (Hint: The allowable band is still 1.0)
Proportional Drive = _________
Total Drive = _________.

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 163

Controlling the Incubator:

Theory is nice, but now we need to deal with the temperature inside our actual canister using proportional
control and some limitations we’ll need to work with.

1) The bias temperature at 50% bias drive will not be 101.5F. The 50% bias temperature for your
incubator was found in Exercise #1 of this experiment. If need be, repeat that portion to find the
current bias temperature. This should be done if you think conditions in or around the canister are
different. For instance if the room temperature is now higher than it was before, your stable
temperature at 50% bias will stabilize at a higher value.

2) The BASIC Stamp works in integer math. Our temperatures are in tenths of degree (101.5=1015), and
we will want to work with gain settings that are less than 1.

3) The resolution of the A/D is 0.19 degrees, which would not provide very fine control with an allowable
temperature band of 101.0 – 102.0. For these experiments we will increase the allowable band to +/-
1.0F or 100.5F – 102.5F for a range of 2.0F.

In performing these experiments, the general sequence will be to allow the incubator to stabilize at the bias
temperature. Once stable, the PID program with the appropriate settings will be downloaded. After 1 minute
the fan positioned approximately 1 inch from the canister will be energized manually by connecting the
positive lead to the Vin supply for 10 seconds.

Figure 6.7 is the flowchart for the error calculations and proportional drive. Notice in the code for the
proportional calculations the result is divided by 10 to scale our Kp value down from tenths.

Experiment #6: Proportional – Integral – Derivative Control

Page 164 • Industrial Control Version 1.1

Figure 6.7: Error and Proportional Calculations

'********** Calculate %Error - Sign adjusted
ErrorCalc:
 Err = (SP - Temp) 'Calculate temperature error
 Sign = Err
 GOSUB SetSign
 Err = ABS Err*100/Range 'Calculate % error
 Err = Err * Sign
 Return

'*********** Proportional Drive - Sign adjusted
PropCalc:
 Sign = Err
 GOSUB SetSign
 P = ABS Err * KP/10 'Prop err = %Err * Kp /10 to scale
 P = P * Sign
 RETURN

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 165

PID Control: 100% Proportional Band, Proportional Gain = 1

1) Find the 50% drive bias temperature if needed. Allow the temperature to stabilize at the bias
temperature.

2) Set the PID Control settings program 6.1 accordingly, setting the value of SP to your bias
temperature in tenths and the value of Kp to 10 for a gain of 1.

3) Disconnect on SPL, download the BS2 program, close the debug window, reconnect on SPL and
reset your BS2.

4) Monitor temperature on SPL. When 1 minute (60 seconds) has passed, energize the fan for 10
seconds.

5) Monitor the incubator’s response to the disturbance.

Figure 6.8a: Response with Kp = 1, 100% Band

Note how the temperature overshoots the setpoint then turns, goes down, overshoots, and goes up again.
This is termed hunting. Drive is added and removed based on the response of the system to finally settle at

Experiment #6: Proportional – Integral – Derivative Control

Page 166 • Industrial Control Version 1.1

the setpoint value. Depending on the needs of your system, PID may be tuned to prevent hunting. The cruise
control in our cars might make for an interesting drive if the speed hunting around the setpoint speed!

The user status box at the top of the plot shows the current settings for PID control. The message window
displays the setpoint and current temperatures, %Error, and the amount of drive from each evaluation along
with the total drive.

Let’s do the math to analyze some of these values. The setpoint is 970 or 97.0F, the bias temperature for our
testing. At a temperature of 962 (96.2F) the total drive was 90% with 50% from the Bias drive and 40% from
the proportional drive.

Error = Setpoint – Temperature = 97.0F-96.2F=0.8F
%Error = Error/Range * 100 = 0.8F/2F * 100 = 40%
%DrivePROP = Kd*E = 1*40% = 40%
%DriveINT and DriveDERIV will be 0 since their gains are 0.
%DriveTotal = %DriveBIAS + %DrivePROP + %DriveINT + %DriveDERIV =

= 50% + 40% + 0% + 0% = 90%

The calculations worked!

Using the alternative line for the message file logging in the Display routine, the data saved to the message file
may be imported into a spreadsheet, such as Excel, for analysis. It is a simple coma-separated version of the
message window data suitable for importation and graphing.

'** Comma-seperated message output for import into spreadsheet
' DEBUG ",",DEC Temp,",",SDEC Err,",",SDEC P,",",SDEC I,",",SDEC D,",",SDEC Drive,CR

Figure 6.8b is the message data imported into Excel will show the error, proportional drive and total drive.

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 167

Figure 6.8b: Message file plotted in Excel

Drive with Kp=1

-80
-60
-40
-20

0
20
40
60
80

100
120

0.
44

21
.1

41
.8

62
.5

83
.1

10
4

12
4

14
5

16
6

18
6

20
7

22
8

24
8

26
9

29
0

31
0

33
1

35
2

Seconds

%
D

riv
e %Err

%P
%Drive

Note that with a proportional gain of 1, the %Error line is barely seen because the %P (Proportional Error)
exactly overlaps it. %DrivePROP = %Error. The amount of proportional error is added to the bias drive of 50%
and follows the error.

PID Control: 50% Proportional Band, Proportional Gain = 2

Repeat the experiment for a proportional band of 50% at a gain setting of 2. Change Kp = 20 in the control
settings and run the program.

Experiment #6: Proportional – Integral – Derivative Control

Page 168 • Industrial Control Version 1.1

Figure 6.9a: Response with Gain = 2, 50% Band

With a gain of 2, note that the response time is slightly faster though there is greater hunting.

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 169

Figure 6.9b: Data File Plotted in Excel

Drive with Kp=2

-150

-100

-50

0

50

100

150

200

0.44

21.1

41.7

62.4

83.1

104

124

145

166

186

207

228

248

269

290

310

331

352

Seconds

%
D

riv
e %Err

%P
%Drive

From Figure 6.9b note that at this gain setting the amount of proportional drive (%P) is twice as much as the
error (%Err).

Verify the drive amounts shown in the message window of Figure 6.7a at 96.7F:

Error = __________
%Error = __________
%DrivePROP = __________
%DriveTOTAL = __________

PID Control: 20% Proportional Band, Proportional Gain = 5

Too much gain can be unsuitable for control. Repeat the experiment for a proportional band of 20% at a gain
setting of 5. Kp = 50 in the control settings. Figure 6.10 is our SPL result.

Experiment #6: Proportional – Integral – Derivative Control

Page 170 • Industrial Control Version 1.1

Figure 6.10: Response with Gain = 5, 20% Band

Note that the response time of the system is again slightly faster, but there is much more hunting and
continued instability in the system.

As a final experiment, set the setpoint (SP) temperature substantially higher than the bias temperature, but
within a controllable temperature range with a proportional gain of 1 (Kp=10). We tested at 10F above the
bias temperature (107F). Plot the results. Figure 6.11 is the result of our tests.

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 171

Figure 6.11: Setpoint 10F (107F) above Bias Temperature

While trying awfully hard, the temperature is not stabilizing at 107 degrees. If 107F is an achievable
temperature for the system, why doesn’t it stabilize there? Remember that for our system 50% drive
stabilized around 97F. Additional drive is added because an error exists. If the incubator were able to
stabilize at the setpoint, the error would be 0, providing 0% drive from proportional and only bias drive that
is insufficient to maintain the temperature creating an error.

%DriveTOTAL = %DriveBIAS + %DrivePROP
%DrivePROP = Kp*E. If E = 0 then %DrivePROP = 0%.
%DriveTOTAL = 50% + 0%

If the setpoint temperature is not the bias temperature, some error MUST exist to provide additional drive
from the proportional control. The higher the proportional gain, the smaller the remaining error. In the next
section, we will see how Integral Error may be used to drive away this remaining error.

Experiment #6: Proportional – Integral – Derivative Control

Page 172 • Industrial Control Version 1.1

Challenge!

1. If the proportional gain were set to .5 (Kp=50), what type of response would you expect from the
system? Why?

2. If the temperature is 0.6F below your setpoint, what would the total drive be?
3. Confirm your theory.

Exercise #3: Proportional+Integral Control

∫++=)*()*(EtKiEKpCo Bpid

%DriveTotal = %DriveBIAS + %DrivePROP + %DriveINT

So far we’ve looked at what occurs when quick disturbances occur to our system in equilibrium. Proportional
control may be used to drive the temperature back to the desired setpoint. But what happens when the
disturbance affects the equilibrium of our system over a long period of time? At the end of the last
experiment it was seen what occurs when the bias drive is not sufficient to make-up for average losses.
Because some error must exist for proportional drive, the setpoint temperature cannot be maintained.

Integral control can be used to drive-away error remaining due to long lasting disturbances in the system.
These may be from additional losses or gains of energy that remain for a long period of time. Consider our
incubator. We found a bias temperature at which a 50% bias drive was sufficient to make up for the losses in
the system maintaining it in equilibrium.

But what would happen if the fan were continuously pointed at the incubator? Continuous system losses
would be higher. The 50% bias drive will be insufficient to maintain the temperature and proportional drive
will respond to the error in an attempt to drive the system back toward to the setpoint. But as we’ve seen,
because some error must remain, the setpoint is not maintained. The system will stabilize at a temperature
below the desired setpoint.

Over time, integral drive can be used to drive away this error, allowing the temperature to reach the setpoint.

Integral drive is also used when a slow approach with long stabilization times are needed to ensure no
overshoot. Consider the example of cooking soup. After cooking a bit, you taste, add an amount of salt you
feel appropriate for what you would like the final taste to be. Do you taste immediately and add more? No,
you wait a while to allow the salt to blend in, then taste, and add a bit more until you finally reach your
desired taste. What if too much salt is added? Cutting back is a bit more difficult!

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 173

An industrial example may be that of adding pigment to paint for a desired color. Electronic circuitry
monitors paint color and gradually add pigment until the desired color is reached.

In integral drive the amount of error is integrated over time. The larger the error and the longer it lasts, the
greater the integral drive will be.

As seen from figure 6.12, the amount of error under the curve is added together to find the integrated error.
The longer the error exists, the higher integrated total error (ET) will be.

Figure 6.12: Integrating Error

4

E3

Time
T

5E = E + E + E + E + E

1 2T 3T 4T 5T

E2E1

E4 E5

31 2T

0

+

-

The integrated error is multiplied by the integral gain to find the integral drive.

ET = Σ(E1+E2+E3+…)
%DriveINT = Ki* ET/T

How often should the integral gain be updated or reset? Integral drive should be based on stabilized readings.
Depending on the response time of the system this may be anywhere from seconds to hours or even days.
Just as with adding salt to the soup, if system hasn’t stabilized from the last addition, it would be easy to add
too much. The stabilization time of our incubator was found back in Experiment #1 of this section and was 450
seconds for our testing. Figure 6.13 is the flowchart for the integral calculations.

Experiment #6: Proportional – Integral – Derivative Control

Page 174 • Industrial Control Version 1.1

Figure 6.13: Integral Flowchart

Code to accompany chart above:

'********** Integral Drive - Sign Adjusted
IntCalc:
 Ei = Ei + Err 'Accumulate %err each time
 IntCount = IntCount + 1 'Add to counter for reset time
 IF IntCount < Ti Then IntDone 'Not at reset count? -- done
 Sign = Ei
 Gosub SetSign
 Ei = ABS Ei / Ti 'Find average error over time
 Ei = Ei * Ki + 5 /10 'Int err = int. err * Ki
 Ei = Ei * Sign
 I = I + Ei 'Add error to total int. error
 Sign = I
 GOSUB SetSign
 I = ABS I MAX 100 'Limit to 100-prevent windup
 I = I * Sign
 IntCount = 0 'Reset int. counter and accumulator
 Ei = 0
 IntDone:
 RETURN

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 175

Controlling the Incubator

In this exercise, the fan will be used to produce a long lasting disturbance to the system. The fan should be
placed approximately 6 inches from the incubator. It will be powered from Vdd (5V – Pin 20 or from the Vdd
terminal on top of the breadboard) to provide a ‘gentle’ cooling to the canister (you may have to ‘kick-start’
the fan to start it turning). This will produce a long-term disturbance to the system instead of the strong 10
second disturbances used in the proportional testing.

For proportional gain we will use a very small value to prevent hunting and provide a large error from the
setpoint. The integral update time, or reset time, of the integral drive will be approximately 120 seconds (450
seconds would be more appropriate to allow full stabilization, but that’s a long time to plot!). Integral gain
will be set in tenths.

1) Setup Program 6.1 for a 1000% Proportional Band, Gain of 0.1 (Kp=1) and Integral gain of 0(Ki=0) and

derivative of 0 (Kd=0).

2) Point the fan at the incubator from a distance of about 6 inches (if you see no response after 30 seconds,
move it closer in one-inch increments and try again).

3) Energize the fan from Pin 20 (5V) and ground. Push-start the fan if needed.

4) Allow the system to stabilize with this new system loss.

5) Change the integral gain to .1 (Ki=1), Ti = 24.

6) Download and plot at the new settings.

Figure 6.14a shows our results of this test with a bias setpoint of 97.0 F and Figure 6.14b is an Excel plot of
captured data.

Experiment #6: Proportional – Integral – Derivative Control

Page 176 • Industrial Control Version 1.1

Figure 6.14a: Long-Term Disturbance Effects

Note that with a bias setpoint of 97.0F and the disturbance of the fan, the initial stable temperature was
94.8F. Over time the drive, and hence the temperature, was slowly bumped up until the actual temperature
was at the setpoint.

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 177

Figure 6.14b: Data Plotted in Excel

Kp=.1 Ki=1

-20
0

20
40
60
80

100
120
140

0.4
4

26
.31

52
.13

77
.94

10
3.8

12
9.6

15
5.5

18
1.3

20
7.2 23

3
25

8.8
28

4.6
31

0.4
33

6.3
36

2.1
38

7.9

Seconds

%
D

riv
e

%Err
%P
%I
%Drive

Note that the initial error (%Err) was 11% at a stable temperature of 94.8F.

%DriveTotal = %DriveBIAS + %DrivePROP + %DriveINT

%DrivePROP = Kp * ET = 0.1 * (97.0F-94.8F)/2F * 100 = 11%
%DriveINT = Ki * 0 until the first reset time.
%DriveTotal = 50% + 11% + 0%

Around 120 seconds, the first integral reset time occurs. All the error samples prior to that time are summed
and averaged over time. This is multiplied by the integral gain to find the integral drive.

%DrivePROP = 11% still since the temperature is still 95.8F
%DrivePROP = Kp * ET = .1 * (11%+11%+11%….[24 of them!])/24 = 11%
%DriveTotal = 50% + 11% + %11% = 72%

Note that with the higher total drive (%Drive), temperature eventually begins to increase, error decreases,
and proportional drive decreased. Integral remains constant until the next reset time around 240 seconds
when it bumps up based on the average of the errors since the last reset time.

Eventually, temperature returns to the setpoint, the error is driven away, proportional drive is virtually gone
and integral drive plus the bias drive are maintaining the temperature.

Experiment #6: Proportional – Integral – Derivative Control

Page 178 • Industrial Control Version 1.1

%DriveTotal = %DriveBIAS + %DrivePROP + %DriveINT

%DriveTotal = 50% -1% + 21% = 70%

But what happens when the long lasting disturbance leaves?

1) De-energize the fan.

Figure 6.15: Temperature Following the Removal of a Disturbance

Figure 6.15 shows what happens when the disturbance is removed. The additional drive from integral drive
must be slowly integrated away again.

Integral wind-up can occur if the addition of integral drive is insufficient to force the system back to the
setpoint. Integral drive would continually be added. This would mean that an error would constantly persist
and the output would ‘wind-up’ to an abnormally high values leading to an unresponsive system. If our
program allowed integral drive to wind-up to 20000%, how long would it take to drive it away once a

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 179

disturbance is removed providing an error of 10%? It is wise to make a provision in your program to limit the
cumulative integral drive to less than 100%

Challenge!

1. What would the system response be if Integral gain were 1 (Ki=10) and the reset time were 60
seconds (Ki=12)? Why?

2. Test and confirm your theory.

Exercise #3: Proportional-Derivative Control

)*()*(
t
EKdEKpCo Bpid ∆

∆
++=

%DriveTOTAL = %DriveBIAS + %DrivePROP + %DriveDERIV

Derivative control responds to a CHANGE in the error. The fundamental premise determining derivative drive
assumes the present rate of change in the error signal will continue into the future unless action is taken.
Derivative drive, when properly tuned, allows a system to rapidly respond to sudden changes and react
accordingly.

Figure 6.16 illustrates how we would evaluate the slope of an error signal. Finding the difference between
error samples taken at regular time intervals reflects the rate at which the process variable is changing. The
greater the difference, the greater the slope and therefore the greater the derivative drive necessary to
counteract the change.

Experiment #6: Proportional – Integral – Derivative Control

Page 180 • Industrial Control Version 1.1

Figure 6.16: Derivative Error

3
E2

E3

Time
T 2T 3T 4T

y
x

2}

Dt = T

DE = E - E

Slope = x
y

Consider the act of balancing yourself on a fallen log. Typically you perform slow adjustments to your body
position to maintain balance. You are responding proportionally to an error that exists in your equilibrium.
Suddenly, a large gust of wind hits you causing you to rapidly loss balance. In response you quickly shift to
counteract the wind. This action was based on sudden change in your equilibrium over a very short period of
time. In our incubator, a rapid changing temperature will be counteracted by a immediate reduction in drive.

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 181

Figure 6.17: Flowchart and Code for Derivative Control

Code for this flowchart:

'*********** DERIVATIVE DRIVE
DerivCalc:
 D = (Err-LastErr) * KD ' Calculate amount of derivative drive
 ' based on the difference of last error
 DerivDone
 LastErr = Err ' Store current error for next deriv calc
 RETURN

In this experiment, we will repeat the disturbances on a system with a proportional gain of 2 from Exercise #2.
Only this time derivative drive will be used in conjunction with proportional. The fan will once again be
supplied power from Vin (pin 19) for 10 seconds at 1 inch. Figure 6.18a is the results of our testing. Figure
6.18b is an Excel graph of the data.

1) Settings: Proportional gain of 2 (Kp=20), Ki=0, derivative gain of 1 (Kd=2).
2) Allow temperature to stabilize on SPL.
3) Energize the fan for 10 seconds.

(For this test, our bias temperature was 99.0F)

Experiment #6: Proportional – Integral – Derivative Control

Page 182 • Industrial Control Version 1.1

Figure 6.18a: Disturbance Response with
Proportional Gain of 2 and Derivative Gain of 2

Compare this with Figure 6.9a using only proportional drive. Note that the system stabilizes much faster with
fewer oscillations and overshoot. In the message section, there are 2 consecutive reading of 99.0F. First had
a %D drive of 40% since there was a 20% error change (.4F) between the previous and current. The second
resulted in a %D of 0% because 2 consecutive readings of 99.0F represents no change in error and a slope of
zero.

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 183

Figure 6.18b: Graph of Data

Kp=2 Kd=2

-60
-40
-20

0
20
40
60
80

100
120

0.4
5
21

.14 41
.8

62
.45 83

.1

10
3.7

5

12
4.4

6

14
5.1

1

16
5.7

7

18
6.4

1

20
7.0

7

22
7.7

3

24
8.3

8

26
9.0

9

28
9.7

3

31
0.3

8

33
1.0

3

Seconds

Pe
rc

en
t %Err

%D
%Drive

Note in the above graph how a change in %Err results in a derivative drive. When error is constant, although
high, %D is 0. The greater the change in %Err, the greater %D. A positive going %Err (temperature
decreasing) results in a positive derivative drive in an effort to stop the change.

Let’s work a little math for a temperature change between samples of 99.4 to 99.0 with the setpoint at 99.0F:

%DriveTOTAL = %DriveBIAS + %DrivePROP + %DriveDERIV

At the time of the first sample, T=99.4:

Error = setpoint – actual = 99.0F-99.4F = -4F
%Error = Error/Range * 100 = -.4F/2F * 100 = -20%

Temperature dropped to 99.0F at the time of the second sample:

Error = setpoint – actual = 99.0F-99.0F = 0F
%Error = Error/Range * 100 = 0F/2F * 100 = 0%
%DrivePROP = %Error * Kp = 0% * 2 = 0%
%DriveDERIV = (This %Error – Last %Error) * Kd= (0%-20%) * 1 = 40%

Experiment #6: Proportional – Integral – Derivative Control

Page 184 • Industrial Control Version 1.1

%DriveTOTAL = %DriveBIAS + %DrivePROP + %DriveDERIV =
 50%+0%+40% = 90%

Even though temperature returned to the setpoint providing a 0% drive from proportional, the temperature
dropped from the last reading. Derivative control took action based on the change in error in an effort to
stop the dropping temperature by adding drive.

If the next temperature reading was 99.2%, what would the final drive be?

Error = ________
%Error = ________
%DrivePROP = ________
%DriveDERIV = ________
%DriveTOTAL = ________

Challenge!

1. What would system response be with a derivative gain of 5? Why?

2. With a -0.3 change in temperature from the setpoint, what would total drive be?

3. Test and confirm your theory.

Proportional-Integral-Derivative Summary

With PID control, 3 separate drive evaluations are performed to calculate the final drive to the control
element. Bias drive is used to estimate the drive needed to sustain a setpoint under nominal conditions.

Proportional drive acts by adding an amount of drive in proportion to the amount of error that exists
between the setpoint and the actual value. The higher the proportional gain the greater the controller’s
response, though overshoot and oscillations are more likely. Some error must exist for proportional drive to
act, often resulting in a stable but offset condition.

Integral drive acts by integrating a long error over time and taking action based on the total error. Integral is
used to drive away error conditions that persist over a period of time. Integral control is also a good choice
for a very slow approach to a setpoint when long system settling times are needed and overshoot is
undesirable.

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 185

Derivative control acts by taking action based on a change of error, often from one reading to the next. It
evaluates the slope of the changing output and acts in opposition to the change. Derivative control can
prevent hunting and oscillations, but too much drive can send a system into wild oscillations.

Each control mode has its own unique characteristic response to maintaining the desired output to it, such as
response time. Volumes have been written on the subject of PID control and tuning. Tuning a PID system
involves adjusting the software parameters for each factor. The goal of tuning the system is to adjust the
gains so the loop will have optimal performance under dynamic conditions. As mentioned earlier, tuning is as
much of an art as it is a science. The basic procedures for tuning a PID controller are as follows. This
procedure assumes you can provide or simulate a quickstep change in the error signal:

1. Turn all gains to 0

2. Begin turning up the proportional gain until the system begins to oscillate.

3. Reduce the proportional gain until the oscillations stop, and then drop it by about 20 % more.

4. Increase the derivative term to improve response time and system stability.

5. Next, increase the integral term until the system reaches the point of instability, and then back it off
slightly.

As you gain experience in embedded control, you will see that the characteristics of the process will
determine how you should react to error. Consider the following three real-world applications.
What are the important characteristics of these processes that will determine the suitable control scheme?
What mode(s) of control do you feel would work the best?

1) Similar to our incubator system, the first application is a home project that uses the LM34 to
measure the temperature of a 20-gallon aquarium. Water temperature is maintained within + 1
degree of 80 oF by varying the duty cycle of a 200-watt heater. Room temperature varies from 65
to 75 degrees.

2) The second application controls the acidity (pH) in the production of a cola soft drink. The plant’s

water supply has a pH of 7.2 to 7.4. The flow stream of water into a batch of soda must be
maintained at a pH of 6.8. An upstream valve is opened accordingly to release phosphoric acid
into the stream. The pH sensor is relatively slow. The amount of acid needed varies with incoming
pH and water flow rate.

3) In a plant science research facility at San Diego State University, the surface temperature of a

plant’s leaf must be held constant. The plant is contained in a small (shoebox sized) greenhouse. A

Experiment #6: Proportional – Integral – Derivative Control

Page 186 • Industrial Control Version 1.1

very fast thermocouple sensor rests on the leaf and measures temperature. Disturbances such as
changes in wind, sunlight, and plant metabolism can happen quickly and in high magnitudes.

We have just scratched the surface of process control theory through feedback. Our focus has been limited to
control action based on feeding back information from the output of our process. When disturbances affect
our process, changes in the output are detected and generate an error signal. PID is tuned to drive the error
away as quickly as possible. Tight control of the process variable is possible with PID, but the fundamental
premise of feedback control is to respond to error. Error is expected and, to a certain degree, tolerated. As
we leave this chapter, consider an alternative to feedback control. That is feed-forward control. In feed-
forward control you measure those factors that disturb a process. Understanding how they affect the
variable we are holding constant will allow for output action to be taken before an error signal results. If you
could measure changes in ambient temperature and wind speed from the fan, could you use this information
to better control our incubator? Interesting concept isn’t it?

Experiment #6: Proportional – Integral – Derivative Control

Industrial Control Version 1.1 • Page 187

1. Would on/off control of the system be suitable for PID control? Explain.

2. Which type of control (proportional, integral, or derivative) would be best suited for the following?

a. To return a system to the setpoint based on the difference between Actual temperature and the
setpoint due to a short-lived disturbance: ________________.

b. To minimize the effect that a quick disturbance has on the system: ______________.
c. To reduce the effect that a long-term disturbance has on the system: ______________.

3. A system has a setpoint of 101.5 degrees, and an allowable band of +/- 0.5 degrees. For a 50%

proportional band, what would be the proportional gain? ____________.

4. A system has a setpoint of 101.5 with a gain of 3. If the Actual temperature were 101.2, what would be

the drive due to proportional error? ___________

5. A system has a derivative gain of 2. If the temperature dropped from 101.8 to 101.3 between readings,

with a setpoint of 101.5, what would be the error due to derivative drive? __________.

Questions and Challenge

Experiment #6: Proportional – Integral – Derivative Control

Page 188 • Industrial Control Version 1.1

Final Control Challenge

From a cold condition (incubator at room temperature), find the values of PID control which will bring the
incubator to an operating temperature of 95 degrees the quickest with minimal overshoot and hunting.
Graph and record your results (note the graph scales):

Kp=____ Ki=____ Ti=____ Kd = ____

Time first reached 95.0F: _________

Maximum value reached: (Time)_________ (Value) __________

Next minimum reached: (Time)__________ (Value) ___________

Capture a screen shot (ALT-Prt Scrn) and print using MS Paint.

Find a system:

Find an example of a system that either does or could employ PID control. Discuss how PID control may be
implemented to control it.

Alternative Systems to maintain:

1. Use the sample and hold circuit (Figure 2.17) from Experiment #2. Physically connect the heater
and sensor with an appropriate material (non-conductive and can withstand the heat). Change
the PWMtime 1 because of the much smaller mass and holding of output. Find the 50% bias
temperature and attempt to regulate using PID control.

2. Use the output of Pin 8 (drive output without the sample and hold) to drive a solid-state relay

controlling a lamp. Place lamp and sensor in an appropriate container. Regulate temperature in
this larger incubator system.

Experiment #7: Real-time Control and Data Logging

Industrial Control Version 1.1 • Page 189

Microcontrollers, such as the BASIC Stamp can be good at
dealing with very short time periods, such as milliseconds
or seconds, but there exist many processes that depend
on keeping accurate track of real time (time of day) and
possibly even the date or day of the week.

Some examples include heating controls for buildings to set the temperature lower after working hours to
conserve power; annealing a metal by heating at different temperatures for specific time periods to temper
or strengthen the metal; and logging data over long periods of time for later retrieval and analysis.

This experiment will explore taking action based on specific time of day, action taken based on time intervals,
and logging and retrieving data. For this we will need to add real-time features to the circuit built in
Experiment #5. Connect the DS-1302 Real Time Clock (RTC) as illustrated in Figure 7.1c and the pushbutton in
Figure 7.1d. Figure 7.2 is a board layout sample for placing all the components.

The DS1302 RTC uses an external 32.767kHz crystal oscillator for a time base. Be sure to connect the crystal
as close as possible to the IC to maximize time reliability (distance will create more error due to the
capacitance effects of the breadboard). The RTC is similar to the BASIC Stamp in that data is stored in
registers (RAM memory) that may be written and read. These registers hold the time and date as seconds,
minutes, hours, month, etc. The DS1302 also has RAM available for general data storage by the user. For our
purposes we will use only the time of day features of the chip. Please see the DS1302 data sheets and Parallax
application notes concerning additional features.

Just as with the ADC0831 A/D converter, data is serially shifted into the BASIC Stamp 2 from the IC. This will
allow us to access the current time as maintained by the DS1302. In order to set the current time, we can
place the IC in a 'write-mode' and serially shift data from the BASIC Stamp 2 into the IC.

Data for the time (and date) is maintained in the DS1302 as Binary Coded Decimals (BCD). This is a subset of
the Hexadecimal number base. In Hexadecimal (base 16) a byte is broken up into a high and low nibble, and
each is read as a digit.

Experiment #7: Real
Time Control and Data
Logging

Experiment #7: Real-time Control and Data Logging

Page 190 • Industrial Control Version 1.1

Figure 7.1: Complete Circuit with Real Time Clock

Experiment #7: Real-time Control and Data Logging

Industrial Control Version 1.1 • Page 191

Figure 7.2: Sample Component Layout for Experiment #7

Take for example the binary number: 01000110. In binary, each place is a higher power of 2, and the decimal
equivalent would be: 64+4+2 = 70. With an 8-bit binary number we have a possible decimal range of 0-255.

In Hexadecimal, the byte is broken down into nibbles and converted individually:

0100 0110
 4 6

Experiment #7: Real-time Control and Data Logging

Page 192 • Industrial Control Version 1.1

This hexadecimal number is typically written as 86H (Intel format), $86 (Motorola format) or 8616 (Scientific
format). Since a single unique number represents each nibble, we have a range in binary from 0000 to 1111,
or decimal 0-15. In Hexadecimal the values of 10 to 15 are represented using the letters A to F. The
hexadecimal full range of a byte of data is $00 to $FF. The binary number 10101110 is be represented in
Hexadecimal as $AE.

Decimal Binary Hexadecimal Decimal Binary Hexadecimal
0 0000 0 8 1000 8
1 0001 1 9 1001 9
2 0010 2 10 1010 A
3 0011 3 11 1011 B
4 0100 4 12 1100 C
5 0101 5 13 1101 D
6 0110 6 14 1110 E
7 0111 7 15 1111 F

In Binary Coded Decimal, each nibble is again used to represent a single digit, but since it is a coded DECIMAL
number, the valid ranges can only be from 0-9 for each nibble. Our first example of 01000110 is 46BCD (a valid
BCD number) and $46 (a valid hexadecimal number). Our second example of 10101110 would be $AE (valid
hexadecimal), but an INVALID BCD value since A and E are not valid decimal numbers.

Our programs will use the hexadecimal notation in setting, or checking the times of the RTC. Additionally, the
RTC is set to use a 24-hour clock, so a time of 1:00 PM will be 13:00.

Exercise #1: Real Time Control

In this first exercise we will simulate a night-setback thermostat of a building. During normal working hours,
temperature will be kept at a higher temperature than during the night when energy conservation is needed.
To simplify our code, we will use On/Off control instead of the more appropriate control of differential-gap.

Since we will be using our incubator, and to ensure the temperature is above your room temperature, we will
use values 100F for working hours and 90 F for nighttime hours. The times for adjusting the temperature up
for the day is at 6:00 AM, or 06:00 hours. The time to turn the thermostat down will be 6:00 PM or 18:00
hours.

Program 7.1 is the code for experiment.

Experiment #7: Real-time Control and Data Logging

Industrial Control Version 1.1 • Page 193

'Program 7.1 - Real Time On/Off-Control.
'This program will adjust temperture to 100F between the hours
'of 06:00 - 18:00 and 90F between 18:00 and 06:00.

'***** Initialize Settings *******
Time = $0553 ' Define initial time
Seconds = $00
CTimeLow CON $1800 ' Define time to go low temp.
CTimeHigh CON $0600 ' Define time to go high temp.

LowTempSP CON 900 ' Define low temp in tenths of degrees.
HighTempSP CON 1000 ' Define high temp in tenths of degrees.
'*********************************

GOSUB SetTime ' Set RTC (Remark out if time ok)
Setpoint = LowTempSP ' Set initial temperature
CTime = CTimeHigh ' Set initial change time
Seconds = $00

' Define A/D constants & variables

CS CON 3 ' 0831 chip select active low from BS2 (P3)
CLK CON 4 ' Clock pulse from BS2 (P4) to 0831
Dout CON 5 ' Serial data output from 0831 to BS2 (P5)
Datain VAR BYTE ' Variable to hold incoming number (0 to 255)
Temp VAR WORD ' Hold the converted value representing temp

TempSpan CON 5000 ' Full Scale input span in tenths of degrees.
Offset CON 700 ' Minimum temp. Offset, ADC = 0
Setpoint VAR WORD ' Target Temperature

' Define RTC Constants
' Register values in the RTC
SecReg CON %00000
MinReg CON %00001
HrsReg CON %00010
CtrlReg CON %00111
BrstReg CON %11111

'Constant for BS2 Pin connections to RTC
RTC_CLK CON 12 ' Clock pin
RTC_IO CON 13 ' I/O pin
RTCReset CON 14 ' Reset pin

'Real Time variables
RTCCmd VAR BYTE
RTemp VAR BYTE

Time VAR WORD ' Word to hold full time
Hours VAR TIME.HIGHBYTE ' High byte is hours

Experiment #7: Real-time Control and Data Logging

Page 194 • Industrial Control Version 1.1

Minutes VAR TIME.LOWBYTE ' Low byte is hours
Seconds VAR BYTE

'Time to change variables
CTime VAR WORD ' Word to hold full time
CHours VAR CTime.HIGHBYTE ' High byte is hours
CMinutes VAR CTime.LOWBYTE ' Low byte is minutes
CSeconds VAR Byte

'Configure Plot
PAUSE 500 ' Allow buffer to clear
DEBUG "!RSET",CR ' Reset plot to clear data
DEBUG "!TITL Timer On/Off Control",CR
DEBUG "!PNTS 4000",CR ' 4000 sample data points
DEBUG "!TMAX 900",CR ' Max 900 seconds
DEBUG "!SPAN 70,120",CR ' 70-120 Degrees
DEBUG "!AMUL 0.1",cr ' Multiply data by 0.1
DEBUG "!CLMM",CR ' Clear Min/Max
DEBUG "!CLRM",CR ' Clear messages
DEBUG "!TSMP ON",CR ' Time Stamp on
DEBUG "!SHFT ON",CR ' Enable plot shift
DEBUG "!PLOT ON",CR ' Start plotting
DEBUG "!RSET",CR ' Reset plot to time 0

Main:
 PAUSE 500
 GOSUB ReadRTCBurst
 GOSUB TimeControl
 GOSUB Getdata
 GOSUB Calc_Temp
 GOSUB Control
 GOSUB Display
 GOTO Main

Getdata: ' Acquire conversion from 0831
 LOW CS ' Select the chip
 LOW CLK ' Ready the clock line.
 SHIFTIN Dout, CLK, MSBPOST,[Datain\9] ' Shift in data
 HIGH CS ' Stop conversion
 RETURN

Calc_Temp: ' Convert digital value to
 Temp = TempSpan/255 * Datain/10 + Offset' temp based on Span & Offset variables.
 RETURN

Control: ' Maintain temperature around setpoint
 IF Temp > SetPoint THEN OFF
 HIGH 8
 RETURN

Off:
 LOW 8
 RETURN

Experiment #7: Real-time Control and Data Logging

Industrial Control Version 1.1 • Page 195

Display: 'Display real time and time for next change and send data for plotting
 DEBUG "!USRS Current Time:", HEX2 hours,":",HEX2 Minutes,":",HEX2 seconds
 DEBUG " Next Change at:",HEX2 Chours,":",HEX2 CMinutes,CR
 DEBUG DEC Temp,CR
 DEBUG IBIN OUT8,CR
 RETURN

SetTime:
' ****** Initialize the real time clock to start time
 RTemp = $10 : RTCCmd = CtrlReg : GOSUB WriteRTC

' Clear Write Protect bit in control register
 RTemp = Hours : RTCCmd = HrsReg : GOSUB WriteRTC ' Set initial hours
 RTemp = Minutes : RTCCmd = MinReg : GOSUB WriteRTC ' Set initial minutes
 RTemp = Seconds : RTCCmd = SecReg : GOSUB WriteRTC ' Set initial seconds
 RTemp = $80 : RTCCmd = CtrlReg : GOSUB WriteRTC

'Set write-protect bit in control register
Return

WriteRTC: 'Write to DS1202 RTC
 HIGH RTCReset
 SHIFTOUT RTC_IO, RTC_CLK, LSBFIRST, [%0\1,RTCCmd\5,%10\2,RTemp]
 LOW RTCReset
RETURN

ReadRTCBurst: 'Read all data from RTC
 HIGH RTCReset
 SHIFTOUT RTC_IO, RTC_CLK, LSBFIRST, [%1\1,BrstReg\5,%10\2]
 SHIFTIN RTC_IO, RTC_CLK, LSBPRE, [Seconds,Minutes,Hours]
 LOW RTCReset
RETURN

TimeControl: 'See if time for a change
 IF (Time = CTimeLow) AND (Setpoint = HighTempSP) THEN LowTemp
 IF (Time = CTimeHigh) AND (Setpoint = LowTempSP) THEN HighTemp
 Return

LowTemp: 'Change to evening temperatures
 Setpoint = LowTempSP
 DEBUG "Time: ", HEX2 Hours,":",HEX2 Minutes,":",HEX2 Seconds
 DEBUG "-- Setpoint = ", DEC SetPoint/10,".0",CR
 CTime = CTimeHigh
 RETURN

HighTemp: 'Change to daytime temperatures
 Setpoint = HighTempSP
 DEBUG "Time: ", HEX2 hours,":",HEX2 minutes,":",HEX2 seconds
 DEBUG "-- Setpoint = ",DEC SetPoint/10,".0",CR
 CTime = CTimeLow
 RETURN

Experiment #7: Real-time Control and Data Logging

Page 196 • Industrial Control Version 1.1

Figure 7.3: Night Setback Flowchart

Experiment #7: Real-time Control and Data Logging

Industrial Control Version 1.1 • Page 197

Note that the program will reset the time to 05:53 every time the BASIC Stamp is reset. This can occur from
program loading, manual Stamp reset, power supply cycling, and sometimes the COM port or computer
cycling. The start time is appropriate for what we are discussing in this section, but in later sections you may
want to set the values of the start-time to actual values.

'***** Initialize Settings *******
Time = $0553 ' Define initial time
Seconds = $00
CTimeLow CON $1800 ' Define time to go low temp.
CTimeHigh CON $0600 ' Define time to go high temp.

LowTempSP CON 900 ' Define low temp.
HighTempSP CON 1000 ' Define high temp.
'*********************************
GOSUB SetTime ' Set RTC (Remark out if time ok)

Note: If power is removed from the DS1302 Real Time Clock it will power-up with unpredictable values in the
time registers with Gosub SetTime remarked out.

The times for changing temperature and their new values are also set here. GOSUB SetTime sets the real
time clock to the specified time. Once the proper time is set, this line may be remarked out and downloaded
again to prevent the time from being reset to 05:53 if the BASIC Stamp is reset.

The program uses two sets of variables for time, one to set/hold the current time, and another to hold the
time we wish to change the thermostat. Note that the word variable of Time and CTime are further broken
down into Hours and Minutes:

Time VAR WORD ' Word to hold full time
Hours VAR TIME.HIGHBYTE ' High byte is hours
Minutes VAR TIME.LOWBYTE ' Low byte is hours

The variable Hours is assigned to be the high byte of the word variable Time, or those two BCD positions
representing the hour. The same is true for minutes and the lower 2 positions. This is a very powerful tool
when parts of a single variable need to be addressed individually.

Program 7.1 starts time 7 minutes before switching to the working-hours temperature. This should provide
time for temperature to stabilize at the lower temperature. Figure 7.4 is a plot of the run.

Experiment #7: Real-time Control and Data Logging

Page 198 • Industrial Control Version 1.1

Figure 7.4: Time-Controlled 'Building Heating’

The StampPlot Lite user status box displays the current time and the time that the next change is set to occur.
The time in the status box may appear to be changing at irregular intervals, but that is a result of timing of the
BS2 in displaying the data and not the time kept by the RTC. The message area displays both the time a change
occurred and the new setpoint.

The plot illustrates On/Off control at the 90 F setpoint, and the switch to the 100 F setpoint at 06:00. Using
the RTC, adding more output devices, and expanding the control section of the code, we could add numerous
time-based events to occur over the course of a day.

Download and run program 7.1. Monitor with StampPlot Lite through at least the 06:00 change. You will need
to wait another 12 hours to see if it switches back to the low setpoint at 18:00... Have time to wait?

Experiment #7: Real-time Control and Data Logging

Industrial Control Version 1.1 • Page 199

Questions and Challenges:

1) The time data stored in the DS1302 uses the ______ number system.

2) Add a temperature setting of 95 F to be enabled between 4:00PM (16:00) and 6:00 PM (18:00). Modify the

starting time and initial temperature to test both times.

3) Use the LED on P8 to simulate a house lamp. Add code to energize it at 8:00 PM (20:00) and de-energize

it at 11:00 PM (23:00). Modify the starting time of RTC to test both times.

Exercise #2: Interval Timing

Instead of having events occur at defined times of the day, often a process may need to perform actions at
certain intervals of time. The annealing process is one such process. In this example a metal is heated at a
given temperature for a set amount of time, raised to another temperature for a set amount of time, and
then cooled to yet another temperature. This tempers the metal and gives it certain desirable characteristics,
such as hardness and tensile strength.

Since we are dealing with intervals of time instead of absolute times, we will need to perform calculations to
find the target time that marks the end of an interval. The time interval must be added to the start time of
the temperature phase. This sounds simple, but it isn’t.

If you remember, our time keeping is performed in BCD, a subset of hexadecimal. When adding values
together for time, the BASIC Stamp 2 is working in hexadecimal. Take the example of 38 seconds + 5 seconds.
We know this should yield a result of 43 seconds, but since we are really adding $38 + $05 (hexadecimal), our
result is $3D (counting 5: $39, $3A, $3B, $3C, $3D). If we compare that value to a time from the RTC, it will
never occur!

We need to decimal adjust the result. This is done by checking whether the digit exceeds the legal BCD range (
>9) and adding 6 if it does. Test this with the above result:

$3D + $06 = $43 (counting 6: $3E, $3F, $40, $41, $42, $43). Success! We now have the result we needed for
BCD values.

Some other issues we need to contend with is that either the one's or ten's place may need to be adjusted.
Depending on the result we may need to carry over into our minutes or hours. Seconds and minutes need to
roll over at 60, while hours needs to roll over at 24.

Experiment #7: Real-time Control and Data Logging

Page 200 • Industrial Control Version 1.1

This is the general sequence, or algorithm, our program will use:
• Check whether the one's place in seconds is legal BCD (<$A).
¾ No: Add 6 to seconds.

• Check whether the seconds exceeded <60.
¾ No: Subtract 60 from seconds. Add one to minutes.

• Check whether the one's place in minutes is legal BCD (<$A).
¾ No: Add 6 to minutes

Here’s the code:

AdjustTime: 'BCD Time adjust routine
 IF Cseconds.lownib < $A THEN HighSec
 Cseconds = Cseconds + 6
 HighSec:
 If Cseconds < $60 Then LowMin
 Cseconds = Cseconds - $60
 Cminutes = Cminutes + 1
 LowMin:
 IF Cminutes.lownib < $A THEN HighMin
 Cminutes = Cminutes + 6
 HighMin:
 IF Cminutes < $60 THEN LowHours
 CMinutes = Cminutes - $60
 Chours = Chours + 1
 LowHours:
 IF CHours.lownib < $A THEN HighHours
 Chours = Chours + 6
 HighHours:
 IF Chours < $24 THEN AdjustDone
 Chours = Chours - $24
 AdjustDone:
 RETURN

There is one case where this algorithm won't provide the correct results: When we add a value greater than 6
in any position when the place exceeds 7. Take the example of $58 + $08. Adding in hex we get $60. This
returns a valid BCD number, just not one that is computationally correct for BCD. An easy fix for adding 8, is
to add 4, adjust, then add 4 more and adjust again. Easier yet would be to not choose timing intervals
containing the digits 7, 8, or 9!

In this section we will simulate this process with our incubator, but keep in mind annealing typically heats in
thousands of degrees. This is the sequence our annealing process will follow:

• Phase 1: Heat at 95.0 F for 5 minutes.
• Phase 2: Heat to 100 F for 15 minutes.

Experiment #7: Real-time Control and Data Logging

Industrial Control Version 1.1 • Page 201

• Phase 3: Cool to 85.0 F for 10 minutes.
• Process complete, start over for next material sample.

Make the following changes/additions to program 7.1 for Program 7.2.

' Program 7.2: Interval Timing
' Controls temperature at 3 levels for set amount of time

'****** Initialize Settings *****
Time = $1200 ' Time to set clock
Seconds = $00

PTemp1 CON 950 ' 1st phase temperature
PTemp2 CON 1000 ' 2nd phase temperature
PTemp3 CON 850 ' 3rd phase temperature

 ' Do not use digits 7 or above
PTime1 CON $05 ' Length of phase 1
PTime2 CON $15 ' Length of phase 2
PTime3 CON $10 ' Length of phase 3
'*******************************

Gosub SetTime ' Set clock (Remark out once set)
Setpoint = PTemp1 ' Initial setpoint to 1st phase temp
Gosub ReadRTCBurst ' Get clock reading
CTime = Time ' Set Change time to current
CMinutes = Minutes + PTime1 ' Add Phase 1 time
Gosub AdjustTime ' BCD adjust time

' Define A/D constants & variables

(Middle section of code remains unchanged)

TimeControl: ' Check if ready for change
 IF (Time = CTime) AND (Setpoint = PTemp3) THEN Phase1
 IF (Time = CTime) AND (Setpoint = PTemp1) THEN Phase2
 IF (Time = CTime) AND (Setpoint = PTemp2) THEN Phase3
 Return

Phase1: ' Phase 1 - Set for phase 1
 Debug "Phase 3 Complete - Next Sample",CR
 Debug "!BELL",CR
 Setpoint = PTemp1
 Cminutes = Cminutes + PTime1
 GOTO SetNext

Phase2: ' Phase 2 - Set for phase 2
 DEBUG "Phase 1 Complete",CR
 Setpoint = PTemp2

Experiment #7: Real-time Control and Data Logging

Page 202 • Industrial Control Version 1.1

 Cminutes = Cminutes + PTime2
 GOTO SetNext

Phase3: ' Phase 3 - Set for phase 3
 DEBUG "Phase 2 Complete",CR
 Setpoint = PTemp3
 Cminutes = Cminutes + PTime3

SetNext:
 GOSUB AdjustTIme ' BCD adjust time
 DEBUG "Time: ", hex2 hours,":",hex2 minutes,":",hex2 seconds
 DEBUG "-- Setpoint: ", dec setpoint,cr
 RETURN

AdjustTime: 'BCD Time adjust routine
 IF Cseconds.lownib < $A THEN HighSec
 Cseconds = Cseconds + 6
 HighSec:
 If Cseconds < $60 Then LowMin
 Cseconds = Cseconds - $60
 Cminutes = Cminutes + 1
 LowMin:
 IF Cminutes.lownib < $A THEN HighMin
 Cminutes = Cminutes + 6
 HighMin:
 IF Cminutes < $60 THEN LowHours
 CMinutes = Cminutes - $60
 Chours = Chours + 1
 LowHours:
 IF CHours.lownib < $A THEN HighHours
 Chours = Chours + 6
 HighHours:
 IF Chours < $24 THEN AdjustDone
 Chours = Chours - $24
 AdjustDone:
 RETURN

Experiment #7: Real-time Control and Data Logging

Industrial Control Version 1.1 • Page 203

Figure 7.5: Interval Timer Plot

Figure 7.5 is a screen shot of a sample run. Notice there is 3 distinct temperature phases, and then it repeats.

Download and run program 7.2. Use StampPlot Lite to monitor your system.

Questions and Challenges:

1) Why is using the RTC preferable for long-interval timing instead of PBASIC Pause commands?

2) Add the following hexadecimal values and decimal adjust the results (show work):

$15 + $15

3) Modify the program to add a 5-minute phase 4 at 80.0 F.

Experiment #7: Real-time Control and Data Logging

Page 204 • Industrial Control Version 1.1

Exercise #3: Data Logging

Data logging does not fall into the area of process-control, but it is an important subject, and since the RTC is
connected, this is an appropriate time to discuss it. The majority of our experiments have used StampPlot
Lite to graphically display current conditions in our system. Of course, one of the biggest benefits of
microcontrollers are that they are self-contained and do not require a PC. All the experiments in this text
would operate properly whether the data was being plotted on a PC or not. We simply wouldn't have any
direct feedback of the status.

Data logging is used to collect data and store it locally by the microcontroller. This data may then be
downloaded later for analysis. Some examples of this include remote weather stations and Space-Shuttle
experiments. Due to location or other factors, it may not be practical to be collecting data on a PC in real
time.

When data is logged to memory, it is important to make sure the hardware, programming, and time keeping is
as stable as possible. The data-logger may not be accessed for very long periods of time. Unintentionally
resetting the Stamp will usually lose your data and start the programming over. The Stamp is easily reset by
pressing the reset button, by connecting it to a computer sometimes, or possibly even a temporary loss
power.

Just as BASIC Stamp programs are stored in non-volatile memory (remains with loss of power) in EEPROM, we
may also write data directly into the EEPROM. The BASIC Stamp 2 has 2048 bytes of available EEPROM
memory for program and data storage. Figure 7.6 shows the BASIC Stamp 2 memory map. Programs are
stored at the end of memory, allowing us to use the top of memory for data.

Experiment #7: Real-time Control and Data Logging

Industrial Control Version 1.1 • Page 205

Figure 7.6: BASIC Stamp 2 Memory Map

When data is logged, we will need to retrieve from the unit both the value and time that a reading was
recorded. In recording the data, the time of the data may be recorded into memory along with the value.
This would require 3 bytes to be used for each measurement: Hour, Minute and Value (optionally, the second
may be recorded depending on the need). Or, we can record the time that the data recording commenced or
started; storing only the data at a known interval the program can then extrapolate the time of each
measurement. This only requires 1 byte per measurement for the value with a one-time recording of the start
time.

But what happens if the controller is inadvertently reset, such as when connecting it to the computer for the
data dump? What would happen if the start time or the current log sample location were lost? What if the
RTC was reset at some point so the time clock was reset? We can also use the EEPROM to keep track of
important data, such as the start time and next memory location in the event the controller is reset
preventing important data from being lost. The program we have developed helps to ensure data is not lost
on inadvertent resets.

Experiment #7: Real-time Control and Data Logging

Page 206 • Industrial Control Version 1.1

A power outage is one eventuality our program will not deal with. Upon power loss, the BS2 will be able to
recover current data, but the RTC will probably contain non-valid times. Some possible fixes for this are
running the project off a battery, or adding a high-capacity capacitor to the RTC as per the data sheets. A
‘super-cap’, a gold-plated capacitor can maintain the RTC time for many hours or even days. One other
option may be to continually write the current time to EEPROM so that in the event power is lost, the most
recent time may be written back to the RTC. But EEPROMs have limited write-cycles. After several thousand
writes the EEPROM will eventually fail, so we may not want to repeatedly write to the same location.

How much data can we hold? After the program is downloaded, there is approximately 700 bytes left of the
original 2K of EEPROM in the BASIC Stamp 2. This will allow us to store 700 logged pieces of data. At 5-
minute intervals, how long could we store data before memory is full? Some other options for storing data
may be on the RTC in general user registers, or on a separate device, such as a serial EEPROM.

Note: Do not log more data than the EEPROM has room for – overwriting code space will cause the BASIC
Stamp program to fail!

The WRITE command is used to write data into memory:

WRITE Memory Address, byte value

The READ command is used to read data from memory into a variable:

READ Memory Address, byte variable

We will use the DS1302 as an interval timer that will control when samples are taken. For this experiment we
will collect outside temperature over a long period of time and then download the results to StampPlot Lite.

Program 7.3 is the code for our data logger. It is sufficiently different from our other programs to require a
full listing though much of the code can be re-used.

'Program 7.3 - Real Time Data Logging
'This program will record in EEPROM memory the temperature
'at the specified intervals using the real time clock.

'*** Set Init. Time and Logging Interval **************
Time = $2246 ' Initialization Time

' Do not use digits > 6
Interval CON $05 ' Sample interval (in BCD minutes) for logging

Samples CON 500 ' Number of samples to acquire
Stop_Reset CON 0 ' When full, 0=reset, 1 = stop logging
'**

Experiment #7: Real-time Control and Data Logging

Industrial Control Version 1.1 • Page 207

'Define RTC Constants
'Register values in the RTC
SecReg CON %00000
MinReg CON %00001
HrsReg CON %00010
CtrlReg CON %00111
BrstReg CON %11111

'Constant for BS2 Pin connections to RTC
RTC_CLK CON 12
RTC_IO CON 13
RTCReset CON 14

'Real Time variables
RTCCmd VAR BYTE
RTemp VAR BYTE

' Current Time Variables
Time VAR WORD
Hours VAR Time.HIGHBYTE
Minutes VAR Time.LOWBYTE
Seconds VAR BYTE

' Log-Time variables
LTime VAR WORD
LHours VAR LTime.HIGHBYTE
LMinutes VAR LTime.LOWBYTE
LSeconds VAR BYTE

' Start time variables
STime VAR WORD
SHours VAR STime.HIGHBYTE
SMinutes VAR STime.LOWBYTE

MemAddr VAR WORD ' Current memory location for storage

' Define A/D constants & variables
CS CON 3 ' 0831 chip select active low from BS2 (P3)
CLK CON 4 ' Clock pulse from BS2 (P4) to 0831
Dout CON 5 ' Serial data output from 0831 to BS2 (P5)
Datain VAR BYTE ' Variable to hold incoming number (0 to 255)
Temp VAR WORD ' Hold the converted value representing temp
TempSpan CON 5000 ' Full Scale input span (5000 = 50 degrees span)
Offset CON 700 ' Minimum temp. Offset. (700 = 70 degrees)

DIR15 = 0
DIR8 = 1
PB VAR IN15 ' Pushbutton
LED CON 8 ' LED
LOW LED ' LED off

'***** Initialize *******

Experiment #7: Real-time Control and Data Logging

Page 208 • Industrial Control Version 1.1

INIT:
 ' To set the new time, hold down PB until LED goes off
 DEBUG "Hold button now to initialize clock and logging",cr
 HIGH 8 ' LED On
 PAUSE 2000
 IF PB = 1 THEN SkipSet ' If PB not pressed, don’t store time or restart
 Seconds = $00
 GOSUB SetTime
 GOSUB RecoveryData
 DEBUG "Release button",CR

 SkipSet:
 LOW LED ' LED OFF
 IF PB = 0 THEN SkipSet ' Wait for PB release
 READ 0,MemAddr.HIGHBYTE ' Read recovery data of memory address and time
 READ 1,MemAddr.LOWBYTE
 READ 2,SHours
 Read 3,SMinutes

 ' Initialize time keeping variables
 GOSUB ReadRTCBurst ' Read current time
 LHours = Hours ' Set change hours to current
 LMinutes = Minutes ' Set change minutes to current
 LSeconds = $00 ' Set change seconds to 00

 LMinutes = LMinutes + Interval ' Add interval to get first log time
 GOSUB AdjustTime ' Decimal adjust new time

'***** Main Loop *******
Main:
 PAUSE 500
 GOSUB Control
 GOSUB Getdata
 GOSUB Calc_Temp
 GOSUB ReadRTCBurst
 GOSUB Display
 GOSUB TimeControl
 GOTO Main

Getdata: ' Acquire conversion from 0831
 LOW CS ' Select the chip
 LOW CLK ' Ready the clock line.
 SHIFTIN Dout, CLK, MSBPOST,[Datain\9] ' Shift in data
 HIGH CS ' conversion
 RETURN

Calc_Temp: ' Convert digital value to
 Temp = TempSpan/255 * Datain/10 + Offset ' temp based on Span &
 RETURN ' Offset variables.

Control: ' If PB pressed, plot recorded data
 IF PB = 0 THEN DumpData

Experiment #7: Real-time Control and Data Logging

Industrial Control Version 1.1 • Page 209

 RETURN

TimeControl: ' Check if time for reading
 IF (Time = LTime) AND (MemAddr-4 < Samples) THEN SaveData
 RETURN

SaveData: ' Write ADC reading to memory
 WRITE MemAddr, DataIn ' Store data into EEPROM
 HIGH 8:PAUSE 250:LOW 8 ' Blink LED
 MemAddr = MemAddr + 1 ' Increment memory location for next reading
 WRITE 0,MemAddr.HIGHBYTE ' Update recovery data
 WRITE 1,MemAddr.LOWBYTE

 LMinutes = LMinutes + Interval ' Update for next interval
 IF MemAddr-4 < Samples THEN AdjustTime' If samples not full, continue
 IF Stop_Reset = 1 THEN Dont_Reset ' If samples full, restart or end logging
 GOSUB RecoveryData
Dont_Reset:

AdjustTime: 'Decimal adjust Time
 IF LSeconds.LOWNIB < $A THEN HighSec
 LSeconds = LSeconds + 6
 HighSec:
 If LSeconds < $60 THEN LowMin
 LSeconds = LSeconds - $60
 LMinutes = LMinutes + 1
 LowMin:
 IF LMinutes.LOWNIB < $A THEN HighMin
 LMinutes = LMinutes + 6
 HighMin:
 IF LMinutes < $60 THEN LowHours
 LMinutes = LMinutes - $60
 LHours = LHours + 1
 LowHours:
 IF LHours.LOWNIB < $A THEN HighHours
 LHours = LHours + 6
 HighHours:
 IF LHours < $24 THEN AdjustDone
 LHours = LHours - $24
 AdjustDone:
 RETURN

Display: 'Display real time and time for next log reading
 DEBUG "!USRS Time:", HEX2 hours,":",HEX2 minutes,":",HEX2 seconds
 DEBUG " Sample Due:",HEX2 LHours,":",HEX2 LMinutes,":",HEX2 LSeconds
 DEBUG " # ",DEC MemAddr-4, " Temp now = ", DEC Temp,CR
 DEBUG DEC Temp,CR
 Return

SetTime:
' ****** Initialize the real time clock to start time
 RTemp = $10 : RTCCmd = CtrlReg : GOSUB WriteRTC

' Clear Write Protect bit in control register

Experiment #7: Real-time Control and Data Logging

Page 210 • Industrial Control Version 1.1

 RTemp = Hours : RTCCmd = HrsReg : GOSUB WriteRTC ' Set initial hours
 RTemp = Minutes : RTCCmd = MinReg : GOSUB WriteRTC ' Set initial minutes
 RTemp = Seconds : RTCCmd = SecReg : GOSUB WriteRTC ' Set initial seconds
 RTemp = $80 : RTCCmd = CtrlReg : GOSUB WriteRTC

' Set write-protect bit in control register
Return

WriteRTC: ' Write to DS1302 RTC
 HIGH RTCReset
 SHIFTOUT RTC_IO, RTC_CLK, LSBFIRST, [%0\1,RTCCmd\5,%10\2,RTemp]
 LOW RTCReset
RETURN

ReadRTCBurst: ' Read all data from RTC
 HIGH RTCReset
 SHIFTOUT RTC_IO, RTC_CLK, LSBFIRST, [%1\1,BrstReg\5,%10\2]
 SHIFTIN RTC_IO, RTC_CLK, LSBPRE, [Seconds,Minutes,Hours]
 LOW RTCReset
RETURN

RecoveryData: ' Stores data for recovery from restart
 MemAddr = 4 ' Set starting location
 WRITE 0,MemAddr.HIGHBYTE ' Write to EEPROM
 WRITE 1,MemAddr.LOWBYTE
 WRITE 2,Hours ' Save start time in EEPROM
 WRITE 3,Minutes
Return

'*** Download and siplay logged data ***
DumpData:
 'Configure Plot
 PAUSE 500 ' Allow buffer to clear
 DEBUG "!RSET",CR ' Reset plot to clear data
 DEBUG "!TITL Interval Data Logging",CR ' Title the plot
 DEBUG "!PNTS 2000",CR ' 2000 sample data points
 DEBUG "!TMAX ", DEC MemAddr/7+1,CR ' Time based on number of samples

 DEBUG "!SPAN ",DEC offset/10,",",DEC (TempSpan/10 + Offset) / 10,CR
 DEBUG "!AMUL .1",cr ' Multiply data by 0.1
 DEBUG "!CLMM",CR ' Clear Min/Max
 DEBUG "!CLRM",CR ' Clear messages
 DEBUG "!TSMP OFF",CR ' Time Stamping off
 DEBUG "!SHFT ON",CR ' Enable plot shift
 DEBUG "!DELM",CR ' Delete message file
 DEBUG "!SAVM ON",CR ' Save messages (logged data) to file
 DEBUG "!PLOT ON",CR ' Start plotting

 PAUSE 500
 DEBUG "!RSET",CR ' Reset plot to time 0

 X VAR Word
 LTime = STime ' Set log time = start time
 DEBUG "Point,Time,Temperature",CR ' message header

Experiment #7: Real-time Control and Data Logging

Industrial Control Version 1.1 • Page 211

 FOR x = 4 to MemAddr-1 ' Loop through memory locations
 READ x,DataIn ' Read data stored in memory
 GOSUB Calc_Temp ' Calculate temp based on data
 LMinutes = LMinutes + Interval ' Add interval to get stored time
 GOSUB AdjustTime ' Decimal adjust time
 ' Display message data
 DEBUG DEC X-4,",",HEX2 LHours,":",HEX2 LMinutes,",",DEC Temp,CR
 DEBUG DEC Temp,CR ' Plot temperature
 HIGH LED
 PAUSE 100 ' Pause 0.1 second for spacing between data
 LOW LED
 NEXT

 DEBUG "!PLOT OFF",CR ' Disable plotting
 LTime = Time ' Set Log time to current time
 LMinutes = LMinutes + Interval ' Add interval to set for next data logging
 GOSUB AdjustTime
 ' After dump, hold button to reset logging
 ' Or logging will continue from current point
 HIGH 8 ' LED ON
 DEBUG "Hold button now to reset log",CR
 PAUSE 2000
 IF PB = 1 THEN SkipReset ' If button not pressed, skip restart
 GOSUB RecoveryData ' Restart - save new recovery data
 DEBUG "Release button now",CR
 SkipReset:
 LOW 8 ' LED Off
 If PB = 0 THEN SkipReset ' Wait for button release
Return

We'll discuss operation and major blocks in our code. At the top of the code is the initialization information:

'*** Set Init. Time and Logging Interval **************
Time = $2246 ' Initialization Time

 ' Do not use digits > 6
Interval CON $05 ' Sample interval (in BCD minutes) for logging

Samples CON 500 ' Number of samples to acquire
Stop_Reset CON 0 ' When full, 0=reset, 1 = stop logging
'**

This data defines the time to set the RTC, how long the interval between logging should be, and how many
samples should be logged. Stop_Reset is defines whether to stop logging (1) or reset (0) and start over
destroying the old data when the maximum samples are collected.

The pushbutton has several purposes:

Experiment #7: Real-time Control and Data Logging

Page 212 • Industrial Control Version 1.1

1. On-Power up or Reset of the BS2, a message will appear informing you to hold down the pushbutton

to initialize the clock and logging (the LED will light for this also). If the button is held down, the value
of time in the initialization section will be used to set the RTC and logging will be reset to the start.
Recovery data will be written to EEPROM for the next reset.

RecoveryData: ' Stores data for recovery from restart
 MemAddr = 4 ' Set starting location
 WRITE 0,MemAddr.HIGHBYTE ' Write to EEPROM
 WRITE 1,MemAddr.LOWBYTE
 WRITE 2,Hours ' Save start time in EEPROM
 WRITE 3,Minutes
Return

Note that a memory address is a word-sized value and must be saved as high and
low byte.

2. During logging, if the pushbutton is pressed, the data will be ‘dumped’ or downloaded. We will be
using StampPlot Lite to capture and plot the data as it is dumped. The data is NOT destroyed and the
logger will continue to log new data.

3. At the end of a data dump, if the pushbutton is held down, the data logger will reset the log to the
start destroying old data and resetting the start time of logging.

If the BASIC Stamp 2 is reset and the button is NOT held down, the program will read recovery data of current
memory location and start time from the EEPROM. The RTC time will NOT be reset. It should be maintaining
proper time through the reset UNLESS power was lost. Figure 7.7 is the flowchart of the initialization of the
program.

Experiment #7: Real-time Control and Data Logging

Industrial Control Version 1.1 • Page 213

Figure 7.7: Logging Initialization Routine

Experiment #7: Real-time Control and Data Logging

Page 214 • Industrial Control Version 1.1

Figure 7.8: Control and Saving Routines

Time Control routine (Figure 7.8) is used to determine if it is time to save new data to memory. This is
contingent on the memory location for samples being less than the number of samples specified.

TimeControl: ' Check if time for reading
 IF (Time = LTime) AND (MemAddr-4 < Samples) THEN SaveData
 RETURN

The Save Data routine is called from Time Control when it is time to write a new sample to memory. The
current DataIn (value read from the ADC) is stored in the current memory address, and the memory address
is incremented for the next cycle. The next interval time is calculated (and later BCD adjusted). If the

Experiment #7: Real-time Control and Data Logging

Industrial Control Version 1.1 • Page 215

maximum number of samples is reached, depending on the Stop_Reset value, data logging will either ceased
(see Time Control) or logging will start over.

Note that the raw DataIn value from the ADC is stored and not the temperature-calculated value. This allows
the data to be stored in one byte instead of two as a word. The stored value will be converted into
temperature when it is ‘dumped’ to the PC.

SaveData: ' Write ADC reading to memory
 WRITE MemAddr, DataIn ' Store data into EEPROM
 HIGH 8:PAUSE 250:LOW 8 ' Blink LED
 MemAddr = MemAddr + 1 ' Increment memory location for reading

 WRITE 0,MemAddr.HIGHBYTE ' Update recovery data
 WRITE 1,MemAddr.LOWBYTE

 LMinutes = LMinutes + Interval ' Update for next interval
 IF MemAddr-4 < Samples THEN AdjustTime ' If samples not full, continue
 IF Stop_Reset = 1 THEN Dont_Reset ' If samples full, restart or end logging
 GOSUB RecoveryData
Dont_Reset:

AdjustTime:

Figure 7.9 illustrates the flow of the DumpData routine. When the pushbutton is pressed, Dump Data
configures StampPlot for plotting, and creates a loop reading through the logged values, converting them to
temperatures, and sending the values for plotting and the message window. Note that the log time is set to
the start time, and the timing interval is added to the log time each loop iteration to determine the original
time the data was logged.

Once the loop is complete, the log time is set back to the current time and the user is requested to hold down
the pushbutton to reset the logging to start (the LED will light for indication also).

Experiment #7: Real-time Control and Data Logging

Page 216 • Industrial Control Version 1.1

Figure 7.9: Data Dump Routine Flowchart

Once DumpData is complete, the control time will be updated to the time of the next sample, and logging will
continue from the point it left off, allowing downloading without affecting the stored data. Figure 7.10a is a
screenshot of our collected data dumped to StampPlot Lite.

Experiment #7: Real-time Control and Data Logging

Industrial Control Version 1.1 • Page 217

Figure 7.10a: Sample Data Dump of Logged Data

The format of the message data is suitable for importing into a spreadsheet for graphing, as seen in Figure
7.10b. A portion of the saved message file is as follows:

Point,Time,Temperature
0,22:51,787
1,22:56,787
2,23:01,787
3,23:06,787
4,23:11,783
5,23:16,783

Experiment #7: Real-time Control and Data Logging

Page 218 • Industrial Control Version 1.1

Figure 7.10b: Imported Message Data to Excel

Logged Temperature Data

700
725
750
775
800
825
850
875
900

22
:5

1

00
:0

1

01
:1

1

02
:2

1

03
:3

1

04
:4

1

05
:5

1

07
:0

1

08
:1

1

09
:2

1

10
:3

1

11
:4

1

12
:5

1

14
:0

1

15
:1

1

16
:2

1

17
:3

1

18
:4

1

19
:5

1

21
:0

1

22
:1

1

23
:2

1

00
:3

1

Time

Te
m

pe
ra

tu
re

 (t
en

th
s)

We set the incubator outside of a window and recorded outdoor temperatures.. Outdoor temperature can be
tricky due to effects of wind cooling, sunlight heating, and thermal layers in the canister trapping heat. We
had quite a few spikes in readings. Can you do better?

Our plot shows temperatures from 22:51 to 22:51 the next night. Note the rise and falls in temperature
during the day. The expected high for the day was 88F, and we came pretty close!

Of course, we are not restricted s temperature range 70F-120F. Refer back to Experiment #4. Software
range values are determined by the span and offset voltage settings to the ADC0831.

TempSpan CON 5000 ' Full Scale input span (5000 = 50 degrees span)
Offset CON 700 ' Minimum temp. Offset. (700 = 70 degrees)

Experiment #7: Real-time Control and Data Logging

Industrial Control Version 1.1 • Page 219

Questions and Challenges:

1. Perform Logging of a System: Determine a temperature that you want to log over a long period of
time. This may be outdoors, the room temperature (does the heating/cooling change during evening
hours?), or maybe some other slow changing system (a water tank in the sun?).

1) Determine the range of expected values for temperature. Set the span and offset variables and

potentiometers appropriately.

2) Determine the length of time you need to collect the data (one day? the weekend?). Based on a

maximum of 50 samples, calculate the interval time needed for logging.

3) Ready to program? If you are going to move your BOE, make sure it is running on a battery that will

last throughout the logging!

4) We also want to check the accuracy of the RTC in this experiment, so when the program is ready to

download:

a) Open the Windows clock and pick an upcoming time.
b) Set the start time to this upcoming time (remember to use 24-hour time)

Time = $1530
c) 5 seconds before the initializing time, download the file to the BS2 and hold the circuit push-

button down until the LED goes off or debug window instructs you to release it.
d) Use the Debug Window or StampPlot to note the BS2 and the PC Times.

BS2: _________ PC: __________ Difference: ________

e) Let your data record! After the 1st sample is done, you may test the data dump by pressing the
push-button.

f) After you are finished recording data, run and connect StampPlot Lite, press the push-button to
dump the data.

g) Use the Debug Window or StampPlot to note the BS2 and the PC Time.

BS2:_________ PC: __________ Difference: ________

h) Extrapolate the time-error for 24 hours: _________

Did the data conform to your expectations?

Experiment #7: Real-time Control and Data Logging

Page 220 • Industrial Control Version 1.1

2. Discuss the 'system' you monitored and conclusions of your results.

3. How much time error was calculated over a 24-hour period? How could this error be compensated
for in software?

4. Why is it important to limit the amount of data that can be stored in the BS2?

Appendix A: StampPlot Lite

Industrial Control Version 1.1 • Page 221

Appendix A:
StampPlot Lite

StampPlot Lite is an application developed by SelmaWare Solutions for the
Industrial Control series. The application allows plotting and capture of analog,
digital and general data.

Downloading and Installing StampPlot Lite

StampPlot Lite may be downloaded from the Stamps in Class web site at http://www.stampsinclass.com. The
program is installed by double-clicking on the setup.exe icon and accepting the default directories.

To download StampPlot Lite, click on
the “Downloads” button on our web site
and scroll down to the “Industrial
Control” section.

Appendix A: StampPlot Lite

Page 222 • Industrial Control Version 1.1

Data from the BASIC Stamp is processed in one of four ways by the application:

Analog Values

Any string sent beginning with a numeric value will be processed as an analog value and graphed.

Debug DEC 100, 13 'Plot the number 100

Digital Values

Any string sent beginning with '%' will be processed as digital values. A separate digital plot will be started for
each binary value in the string. For example, "%1001" will plot four digital values. Up to a 9-bit value may be
sent. Once digital plots are started, caution should be used to always send the same number of bits since the
plots are position-order dependent.

Debug IBIN4 INC,13 'Plots 4 digital values

Control Settings

Any string beginning with '!' will be processed as a control setting. The various settings of the application may
be controlled from the BASIC Stamp using specified control words and values, if required.

Debug "!AMAX 200",13 'Sets analog maximum for plot to 200
Debug "!RSET",13 'Resets the plot

Other Strings

All other strings simply will be added to the running message list box.

Debug "Hello world!",13

Note that each instance of data MUST end with a carriage return (13 or CR).

Appendix A: StampPlot Lite

Industrial Control Version 1.1 • Page 223

The steps for using BASIC Stamp programs with StampPlot Lite are as follows:

1. Start StampPlot Lite through your Start/Programs/StampPlot/StampPlot Lite icon.
2. Enter and run your BASIC Stamp program from the BASIC Stamp editor.
3. Close the blue BASIC Stamp debug window by clicking on the “close” box.
4. Select the COM port and click 'Connect' checkbox.
5. Click the 'Plot Data' checkbox.
6. Some programs may require you to reset the Board of Education (BASIC Stamp) to catch initial

configuration and control settings. Do this by pressing the Reset button on the board.
7. Prior to downloading (running) another program to the BASIC Stamp, be sure to uncheck the

StampPlot 'Connect' checkbox or your COM port will be locked by StampPlot Lite.

The plot will acquire analog and digital data and store it temporarily so that it may be resized or shifted on
the screen. The number of data points collected is adjustable. Once the data points reach maximum, the plot
must either be stopped or reset.

The following program will perform some configuration settings, continually plot and display the value of X on
StampPlot, and plot the four digital bits of the value of X. Enter the program and use the steps above to test
it with StampPlot Lite.

'Appendix A Program, StampPlot Example
'Configure StampPlot ' Variable for counting
Pause 500: Debug "!RSET",CR ' Short pause and reset
Debug "!SPAN 0, 50",CR ' Span the analog range
Debug "!TSMP ON",CR ' Time Stamp the messages
Debug "!TMAX 60",CR ' Set plot to 60 seconds max
Debug "!RSET",CR ' Reset the plot

X var Byte
Loop:
Debug "Starting loop", CR ' Message that loop is resetting.
For X = 0 to 15 ' For-Next loop to count to 15
Debug DEC X, CR ' Plot Analog value of X
Debug IBIN4 X, CR ' Plot digital bits of X
 ' Change the User Status message.
Debug "!USRS The value of X is ", DEC X, CR
Pause 200 ' Short pause
Next
Goto Loop ' Restart

Appendix A: StampPlot Lite

Page 224 • Industrial Control Version 1.1

Below is a screen shot of StampPlot Lite showing the above program plotted.

Appendix A: StampPlot Lite

Industrial Control Version 1.1 • Page 225

Tool Text Help

If a copy of StampPlot Lite is running on your computer, you may place the cursor over each control for 'Tool
Text Help.’ The following is a brief summary of each control. The BASIC Stamp programmable command,
where applicable, is in brackets:

Top Section: General Controls

• Com 1: Drop down to select the applicable COM port.
• Connect: Connects the application to the selected COM port.
• Plot Data: Allows plotting of incoming data. Deselecting this control will stop the plotting of data but will

allow messages and other actions to continue. [!PLOT ON/OFF]
• Reset: Clears the plot, resets to time 0, clears minimum and maximum value (optional). [!RSET]
• Stop Plot: When maximum data points are reached, the plot stops (Plot Data becomes unchecked).

[!MAXS]
• Reset Plot: When maximum data points are reached, the plot resets. [!MAXR]
• User Status: (showing "The value of X is 9") Optional status messages from the BASIC Stamp may place

data here. [!USRS message]

Appendix A: StampPlot Lite

Page 226 • Industrial Control Version 1.1

Left Section: Primarily for Setting the Analog Plot

• Span Drop-Down box: Allows a selection of pre-defined plot ranges. Use of the
BASIC Stamp command !SPAN will add a range to this drop-down.
[!SPAN minvalue, maxvalue]

• + and - buttons: Respectively double or halve the span. The minimum value
does not change.

• Multiplier: Defines the amount incoming BASIC Stamp analog data will be
multiplied by prior to plotting or saving to file. [!AMUL value]

• Save Data to File: Saves the incoming data to a text file in the application
directory called "stampdat.txt.” If time stamping is enabled, each record will be
marked with the current system time and the number of seconds since the last
reset. The value of the data point for analog and digital values will also be
recorded. Each record will have the following form:

- Time of day, seconds since reset, analog data point, analog value, digital
data point, digital data value. Note that each record is comma
delineated for importing into a spreadsheet, if desired.

- Note: Data is saved ONLY when ANALOG data arrives. To force saving
when no analog data is recorded, debug a value such as zero (DEBUG
DEC 0, CR).[!SAVD ON/OFF]

• Delete Data File: Deletes "stampdat.txt.” If data saving is enabled, the file will be re-created after
deleting it. [!DELD]

• Analog Minimum and Maximum values: These may be manually changed. Tab off, or click another
control, to set the new value. [!AMIN value !AMAX value <or> !SPAN minvalue, maxvalue]

• Time Stamp: Enables time stamping of messages and data to the file. It includes both the current
time and seconds since the last reset. [!TSMP ON/OFF]

• Clear Messages: Clears the messages in the listbox. [!CLRM]
• Save messages to file: Saves messages to the file "stampmsg.txt" in the application directory.

Messages will be saved the same way they appear in the message box. [!SAVM ON/OFF]
• Delete Msg file: Deletes "stampmsg.txt" in the application directory. If the "Save Messages…" is

enabled, the file will be re-created. [!DELM]

Appendix A: StampPlot Lite

Industrial Control Version 1.1 • Page 227

Bottom Section: Plot Shift and Time Span

• The minimum and maximum times of the plot may be set manually. Tab-off or click another control
to apply the value. [!TMIN value and !TMAX value]

• Scroll Bar: If the plot extends beyond the current limits, the scroll bar may be used to reposition the
plot (if collecting data, Enable Shift must be on).

• Enable Shift: Allows the plot to shift automatically when maximum plotted time is exceeded. Also
enables operation of the scroll bar when collecting data. Note: Shifting of the plot during data
collection may cause time errors in the data as the plot refreshes. [!SHFT ON/OFF]

• +/-: Respectively doubles or halves the time span of the plot. The minimum value of the plot will not
change.

Right Section: Plot Data

• Data Points: To allow the plot to be manipulated, data is stored in memory.
The maximum number of points (either analog or digital) that may be
recorded is the Max. ‘Current’ displays the current data point being stored.
Once the maximum is reached, the plot will either reset or stop, depending
on the configuration. [!PNTS 1000]

• Last Analog Data: Displays the time since reset and the last analog value
plotted.

• Plot Pointer: Moving the plot pointer on the display shows the current
analog value and time for that point on the plot.

• Maximum: Records the maximum analog value and the time it was reached.
• Minimum: Records the minimum analog value and the time it was reached.
• Clear Min/Max: Clears the recorded minimum and maximum values. [!CLMM

]
• Clear min/max on reset: Allows a reset to clear the minimum and maximum

values. [!CMMR]

Appendix A: StampPlot Lite

Page 228 • Industrial Control Version 1.1

Appendix A: StampPlot Lite

Industrial Control Version 1.1 • Page 229

Display Control and Zoom

• Moving the cursor on the plot will set the plot pointer time and value to the current position.
• Double-clicking the plot will shift display modes from yellow to white background and thin lines to

thick lines for better printing (ALT-Print Screen to capture form to the clipboard) and projected
display.

• Shift-Click (hold) and Drag allows you to specify an area of the plot to zoom.

BASIC Stamp Control and Configuration Commands

The majority of the plot configuration and controls may be set from within the BASIC Stamp program. To use
these commands, simply debug from the BASIC Stamp. All commands must end with a CR (ASCII 13): DEBUG
"!PLOT ON", CR.

Command Description
!TITL message Sets the title of the form to the message
!USRS message Sets the User Status box to display the message
!BELL Sounds the bell on the PC
!AMAX value Sets the plot maximum analog value
!AMIN value Sets the plot minimum analog value
!SPAN minValue,
maxValue

Sets the plots analog maximum and minimum as above (also adds the range to
the Range Drop-Down box).

!AMUL value Sets the value to multiply incoming data by
!TMAX value Sets the plot maximum time (seconds)
!TMIN value Sets the plot minimum time (seconds)
!PNTS value Sets the number of data points to collect
!PLOT ON/OFF Enables/disables the plotting of data
!RSET Resets the plot and all data
!CLRM Clears the message list
!CLMM Clears the min/max recorded values
!CMMR ON/OFF Enables/Disables clearing of Min/Max recorded values on reset
!MAXS Sets the plot to STOP when data points are full
!MAXR Sets the plot to RESET when data points are full
!SHFT ON/OFF Enables/disables the plot from shifting when recording data (may cause a loss

of data accuracy if enabled)
!TSMP ON/OFF Enables time stamping of list messages; messages and data saved to files
!SAVD ON/OFF Enables saving of analog and digital data to files
!SAVM ON/OFF Enables saving of messages to a file
!DELD Deletes the saved data file
!DELM Deletes the saved message file

Appendix A: StampPlot Lite

Page 230 • Industrial Control Version 1.1

Additional Application Notes

The amount of the plot that is used is dependent on the number of data points and the rate at which they are
transmitted. For example, if you wish 60 seconds of data to fill the screen and are transmitting from the
BASIC Stamp at a maximum rate of 100 msec (Pause 100 + processing time): 60/.1 = 600 data points.

The application needs a minimum regular pause in the reception of data for complete processing. A pause of
10 msec is typically sufficient for a fairly fast computer. If the application senses it cannot keep up with
incoming data, a message box will appear and the application will disconnect. Some indications that the
computer cannot keep up are: garbled data, no plotting, and the inability to affect any controls (locks up).

The greater the number of data points and the higher the current data point, the longer the plot will take to
respond to plot shifts as it redraws. For faster, reliable configuration from the BASIC Stamp on initial power
up or resetting, the following is recommended:

• Pause for 500msec at the start to allow StampPlot's buffer to clear.
• Perform a StampPlot RESET (!RSET) prior to making configuration changes to allow the data points to

be cleared so redrawing is not performed.
• Reset (!RSET) at the end of the configuration resets the plot to time 0.

As with any application, the best way to learn it is to play. Have fun!

Appendix A: StampPlot Lite

Industrial Control Version 1.1 • Page 231

Upgrade to StampPlot Pro for your Industrial Control experiments!

A few of the features include:

• Plotting of multiple analog channels.
• Saving of plots and images.
• Advanced logging features.
• Ability to draw graphics.
• PC based macros of instructions, including data manipulation.
• Interactive capabilities for adjustments on the fly.

This screen shot of StampPlot Pro shows the PID exercise in Experiment #7 plotting actual and setpoint
temperature along with the %Drive (bottom bars).

The gain values may be
entered in the data
window to be read by your
BS2!

A PC based macro shows
the temperature in the
thermometer.

Examples based on the
Industrial Control text are
posted in the on-line
tutorials. Download and
evaluate free!

http://www.selmaware.ccom/

Appendix A: StampPlot Lite

Page 232 • Industrial Control Version 1.1

Appendix B: Fan Encoder Printouts

Industrial Control Version 1.1 • Page 233

Appendix B:
Fan Encoder Printouts

These printouts are full size, and should be an
ideal fit for your fan used as a digital switch in
Experiment #2.

Appendix B: Fan Encoder Printouts

Page 234 • Industrial Control Version 1.1

Appendix C: Potter Brumfield SSR Datasheet

Industrial Control Version 1.1 • Page 235

Appendix C:
Potter Brumfield SSR
Datasheet

Appendix C consists of the Potter Brumfield “Hockey Puck” Solid State Relay. Their datasheets may be
downloaded from http://www.pandbrelays.com/.

Appendix C: Potter Brumfield SSR Datasheet

Page 236 • Industrial Control Version 1.1

Appendix C: Potter Brumfield SSR Datasheet

Industrial Control Version 1.1 • Page 237

Appendix C: Potter Brumfield SSR Datasheet

Page 238 • Industrial Control Version 1.1

Appendix D: LM34 Manufacturer’s Datasheet

Industrial Control Version 1.1 • Page 239

Appendix D:
National Semiconductor
LM34 Datasheet

Appendix D consists of the National Semiconductor LM34 datasheet. This appendix includes the first five (5)
pages of the 12-page datasheet. Should you wish to see more applications of the LM34 than are shown in this
datasheet, the entire document may be downloaded from http://www.national.com/ds/LM/LM34.pdf.

Appendix D: LM34 Manufacturer’s Datasheet

Page 240 • Industrial Control Version 1.1

Appendix D: LM34 Manufacturer’s Datasheet

Industrial Control Version 1.1 • Page 241

Appendix D: LM34 Manufacturer’s Datasheet

Page 242 • Industrial Control Version 1.1

Appendix D: LM34 Manufacturer’s Datasheet

Industrial Control Version 1.1 • Page 243

Appendix D: LM34 Manufacturer’s Datasheet

Page 244 • Industrial Control Version 1.1

Appendix E: LM358 Manufacturer’s Datasheet

Industrial Control Version 1.1 • Page 245

Appendix E:
National Semiconductor
LM358 Datasheet

Appendix E consists of the National Semiconductor LM358 datasheet. This appendix includes the first five (5)
pages of the 23-page datasheet. Should you wish to see more applications of the LM358 than are shown in
this datasheet, the entire document may be downloaded from http://www.national.com/ds/LM/LM158.pdf.

Appendix E: LM358 Manufacturer’s Datasheet

Page 246 • Industrial Control Version 1.1

Appendix E: LM358 Manufacturer’s Datasheet

Industrial Control Version 1.1 • Page 247

Appendix E: LM358 Manufacturer’s Datasheet

Page 248 • Industrial Control Version 1.1

Appendix E: LM358 Manufacturer’s Datasheet

Industrial Control Version 1.1 • Page 249

Appendix E: LM358 Manufacturer’s Datasheet

Page 250 • Industrial Control Version 1.1

Appendix F: DS1302 Manufacturer’s Datasheet

Industrial Control Version 1.1 • Page 251

Appendix F:
Dallas Semiconductor
1302 Datasheet

Appendix F consists of the Dallas Semiconductor 1302 datasheet. This appendix includes the first five (5) pages
of the 23-page datasheet. Should you wish to see more applications of the DS1302 than are shown in this
datasheet, the Parallax web site includes AppKit documentation for this part.

Appendix F: DS1302 Manufacturer’s Datasheet

Page 252 • Industrial Control Version 1.1

Appendix F: DS1302 Manufacturer’s Datasheet

Industrial Control Version 1.1 • Page 253

Appendix F: DS1302 Manufacturer’s Datasheet

Page 254 • Industrial Control Version 1.1

Appendix F: DS1302 Manufacturer’s Datasheet

Industrial Control Version 1.1 • Page 255

Appendix F: DS1302 Manufacturer’s Datasheet

Page 256 • Industrial Control Version 1.1

Appendix G: Parts Listing and Sources

Industrial Control Version 1.1 • Page 257

Appendix G:
Parts Listing
and Sources

All components (next page) used in the Industrial Control
experiments are readily available from common electronic suppliers.
Customers who would like to purchase a complete kit may also do so
through Parallax. To use this curriculum you need three items: (1) a

BASIC Stamp II module (available alone, or in the Board of Education - Full Kit); (2) a Board of Education
(available alone or in a Board of Education Full Kit); and 3) the Industrial Control Parts Kit.

Board of Education Kits

The BASIC Stamp II (BS2-IC) is available separately or in the Board of Education Full Kit. If you already have a
BS2-IC module, then purchase the Board of Education Kit. Individual pieces may also be ordered using the
Parallax stock codes shown below.

Board of Education – Full Kit (#28102)
Parallax Code# Description Quantity
28150 Board of Education 1
800-00016 Pluggable wires 10
BS2-IC BASIC Stamp II module 1
750-00008 300 mA 9 VDC power supply 1
800-00003 Serial cable 1

Board of Education Kit (#28150)

Parallax Code# Description Quantity
28102 Board of Education and pluggable wires 1
BS2-IC Pluggable wires 6

This printed documentation is very useful for additional background information:

BASIC Stamp Documentation
Parallax Code# Description Internet Availability?
27919 BASIC Stamp Manual Version 2.0 http://www.stampsinclass.com
27341 Industrial Control Text http://www.stampsinclass.com

Appendix G: Parts Listing and Sources

Page 258 • Industrial Control Version 1.1

The Industrial Control experiments require the Industrial Control Parts Kit (#27340)

Similar to all Stamps in Class curriculum, you need a Board of Education with BASIC Stamp and the Parts Kit.
The contents of the Industrial Control Parts Kit is listed below, broken down by experiment. Replacement
parts in the kit may be ordered from http://www.stampsinclass.com.

Industrial Control Parts Kit (#27340)

Stock# Description #1 #2 #3 #4 #5 #6 #7 Total/Kit
150-01020 1K ¼ watt resistor 1 1 2
150-01030 10K ¼ watt resistor 1 2 1 1 2
150-
02030

20K ¼ watt resistor 1 1 1 1

150-02210 220 ohm ¼ watt
resistor

1 2 3 1 1 1 1 4

150-04710 470 ohm ¼ watt
resistor

 1 1 1 1 1 4

152-01031 10K ¼ watt multi-turn
pot

1 2 2 2 2 2 2 2

153-
00001

5.1 V .5 W Zener Diode 1 1 1 1

153-00002 BS170 MOSFET 1 1 1
200-
06840

.68uF capacitor 1 1 1 1

201-01050 1uF capacitor 1 1
201-01060 10uF 10V capacitor 1 1 1 1 1
251-03230 32.768 kHz Clock

Crystal
 1 1

350-00001 LED green 1 1 1 1
350-00006 LED red 1 1 1 1 1 1 1
350-00007 LED yellow 1 1
350-00017 IR Led w/ shrink tube 1 1
350-00018 Infrared

Phototransistor
 1 1

400-00002 Pushbutton 1 2 2 1 1 2
500-00001 2N3904 Transistor 1 1 1 1 1 1 2
604-00005 DS 1302 Clock Chip 1 1
602-00015 LM358 Dual Op-Amp 1 1 1 1

Appendix G: Parts Listing and Sources

Industrial Control Version 1.1 • Page 259

700-00039 35 mm Black Film
Canister

 1 1 1 1 1 1

700-00040 12 VDC Brushless Fan 1 1 1 1 1 1 1
800-00027 LM34 Temperature

Probe
 1 1 1 1 1

800-00028 47 Ohm Resistor
Heater

 1 1 1 1 1 1

ADC0831 ADC 0831 8-bit A/D
converter

 1 1 1 1 1

Appendix H: Commercial Incubator Challenge

Industrial Control Version 1.1 • Page 261

Hopefully this text has given you insight into the
selection and proper interfacing of industrial field
devices.

The film-canister incubator has provided a system for
modeling basic process control strategies. The BASIC

Stamp is well suited for monitoring and controlling applications ranging from around-the-house hobby
circuits to critical industrial process control. A great project for the serious hobbyist or for a school
laboratory is to develop a real microcontroller-based poultry and game bird incubator. Tabletop systems are
available for as low as $20.00. GQF Manufacturing of Savanna, Georgia (http://www.gqfmfg.com) is only one
of many manufactures that carry a full line of incubators and equipment. The tabletop Model 2362 pictured
below would be an excellent choice. It contains a 25 watt 120 VAC heater and a 120 VAC – 500 mA circulating
fan. Add to this the Model 1611 egg turner and you have three 120 VAC outputs to control. The total cost is
around $90.00.

Mfg #2362N Mfg #1611

Appendix H:
Commercial Incubator
Challenge

Appendix H: Commercial Incubator Challenge

Page 262 • Industrial Control Version 1.1

Experiment #3 discusses the interfacing of relays to control high voltage, high power loads. The fan and egg
turner are turned on and off infrequently and could be controlled with a properly sized electromechanical
relay. The heating element will be cycled quickly and should be controlled by an electronic solid-state relay.

Radio shack carries a variety of suitable relays.

An in-line bi-metal mechanical thermostat usually controls the incubator’s heating element. This should be
left in place as a “failsafe” cutoff and adjusted to 2 degrees higher than the desired setpoint It would
therefore remove power if your electronic thermostat or solid state relay failed. The LM34/ADC 0831 sensor
circuit and current boost heater drive circuit used in Experiments #4 through #7 would work great for our
real application. Instead of driving the 47-ohm resistor however you would be driving the solid-state relay.
The relay, in turn, controls the high-voltage heater.

Optimum hatching temperature is dependant on the type of eggs. For instance, chicken eggs should be
incubated at 101.5 while the best temperature for goose and duck eggs is 100.5. The span of the ADC0831
could be more focused around this temperature and Experiment #4 gave you the insight to do this. Doing so
would give better resolution and more accurate data.

Your control strategy for the heater could be based on any of the five modes that were discussed in
Experiments #5 and #6. Experimentation and plotting with StampPlot Lite gives you the information needed to
analyze and evaluate the pros and cons of each method.

An audible alarm for out-of-range conditions would be a good feature to add to the incubator. Radio Shack’s
108 dB Piezo Buzzer (part # 273-057) pictured below would definitely get your attention. And, it could be
driven form the BASIC Stamp’s power supply. The current boost BS170 MOSFET used in Figure 3.9d would be
an effective drive circuit to deliver its 150 mA requirement.

Over temperature and prolonged under-temperature should be alarmed. You would want to add a couple of
pushbutton switch inputs to program for alarm reset and deactivation during initial warm-up. Review
Experiment #2 for proper interfacing and programming of digital inputs.

Appendix H: Commercial Incubator Challenge

Industrial Control Version 1.1 • Page 263

A water pan in the incubator ensures that humidity stays high enough to keep the eggs hydrated. How could
the BASIC Stamp add intelligence to this aspect of our incubator? Perhaps an LED could flash to remind you
to check the water. Or better yet, the moister sensing lab in the Stamps-in-Class Earth Measurements text
could be modified to detect the pan being dry. This condition could flash the lamp or beep the alarm. To
automate the process, the output of a humidity sensor could be compared to a voltage reference at the
inputs to your LM358. The HI/LOW output of the comparator would be an electronic digital input to the
Stamp. When humidity drops below the desired value, turn on a humidifier and pipe in some water vapor.

Adding the DS1302 timekeeping chip introduced in Experiment #7 gives you all of the features of a top-of-line
commercial incubator. Temperature and humidity is monitored and controlled. Daily reports of temperature
variations can be time-stamped and reported. The eggs can be turned at programmed intervals. Cool down
can be scheduled and a 1-degree ramp up for the 24 hours before catching can be programmed. Each
Experiments 7’s three exercises can be modified to accomplish these tasks. The healthy chicks pictured below
are the successful result of maintaining the process for 21 days.

If you dedicate a computer to the system, StampPlot Lite could continually plot and report system conditions.
If you really want to get fancy though, StampPlot Pro software adds an enormous amount of computer
interface possibilities. Multiple analog channel plotting, full graphic drawing capability, two-way interaction
on the fly, and the ability to diplay .jpg and play .wav files only limits the possibilities to the limit of your
imagination. In addition, StampPlot Pro’s Internet capability allows you monitor and control the incubator
remotely. Stamp Plot Pro is available for evaluation through Parallax at the Stamps in Class web sites.

Appendix H: Commercial Incubator Challenge

Page 264 • Industrial Control Version 1.1

As you can see, this commercial incubator application incorporates the concepts covered in every section of
this text. It is doubtful that many of you will be stop here and become chicken ranchers. As you continue to
experiment with the BASIC Stamp and apply it to your hobbies and in your real industrial application, keep
these concepts in mind and this textbook on your shelf as a reference.

