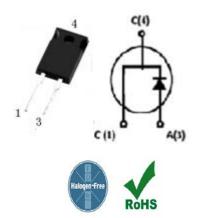


G3S065100P

650V/ 100A Silicon Carbide Power Schottky Barrier Diode

Features

- Rated to 650V at 100 Amps
- Zero reverse recovery current
- Zero forward recovery voltage
- Temperature independent switching behaviour
- High temperature operation
- High frequency operation


Key Characteristics			
V _{RRM}	650	V	
I _F	-	Α	
Qc	385	nC	

Benefits

- Unipolar rectifier
- Substantially reduced switching losses
- No thermal run-away with parallel devices
- Reduced heat sink requirements

Applications

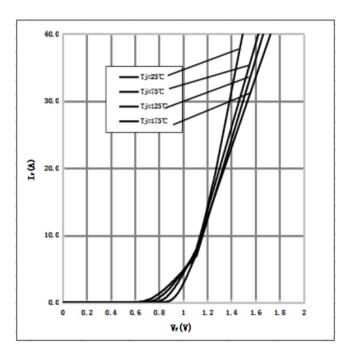
- SMPS, e.g., CCM PFC;
- Motor drives, Solar application, UPS, Wind turbine, Rail traction, EV/HEV

Part No.	Package Type	Marking
G3S065100P	TO-247AC	G3S065100P

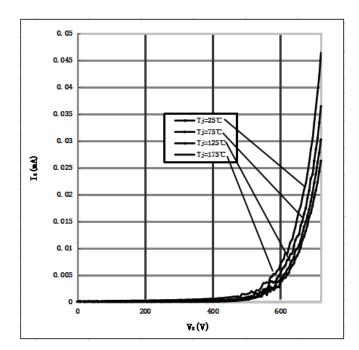
Maximum Ratings

Parameter	Symbol	Test Condition	Value	Unit
Repetitive Peak Reverse Voltage	V_{RRM}		650	V
Surge Peak Reverse Voltage	V_{RSM}		650	
DC Blocking Voltage	V_{DC}		650	
Continuous Forward Current	I _F	-	-	А
Repetitive Peak Forward Surge Current	I _{FRM}	$T_C=25^{\circ}C$, tp=10ms, Half Sine Wave, D=0.3	-	А
Non-repetitive Peak Forward Surge Current	l _{FSM}	$T_C=25^{\circ}\mathrm{C}$, tp=10ms, Half Sine Wave	-	А
Power Dissipation	P _{TOT}	T _C =25°C	484	W
		T _C =110°C	210	W
Operating Junction	T _j		-55°C to 175°C	°C
Storage Temperature	T_{stg}		-55°C to 175°C	°C
Mar all as Trans		M3 Screw	1	Nm
Mounting Torque		6-32 Screw	8.8	lbf-in

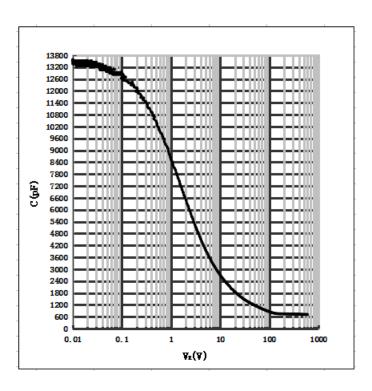
Thermal Characteristics

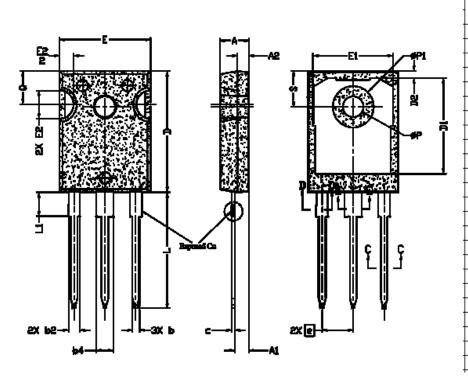

Parameter	Symbol	Test Condition	Value	l lm:4	
			Тур.	Unit	
Thermal resistance from junction to case	R _{th JC}		0.31	°C/W	

Electrical Characteristics


Parameter	Symbol	Test Conditions	Numerical		Unit
		rest Conditions	Тур.	Max.	Unit
Forward Voltage	V _F	I _F =40A, T _j =25 ℃	1.4	1.7	\ /
		I _F =40A, T _j =175 ℃	1.7	2	V
Reverse Current	I _R	V_R =650 V , T_j =25 $^{\circ}$ C	10	50	
		V _R =650V, T _j =175 ℃	20	100	μΑ
Total Capacitive Charge		$V_R=400V, T_j=150^{\circ}C$			
	Q_C	$Qc = \int_0^{VR} C(V)dV$	385	-	nC
Total Capacitance	_	V_R =0V, T_j =25 $^{\circ}$ C, f=1MHZ	13500	14000	
	С	V_R =200V, T_j =25 $^{\circ}$ C, f=1MHZ	745	755	pF
		V_R =400V, T_j =25 $^{\circ}$ C, f=1MHZ	730	740	

Performance Graphs


1) Forward IV characteristics as a function of Tj:


2) Reverse IV characteristics as a function of Tj:

3) Capacitance vs. reverse voltage:

Package TO-247

SYMBOL	I		L		
21 MDOL	MIN	NOM	MAX	NOTES	
A	4.83	5.02	5. 21		
A1	2.29	2. 41	2.55		
A2	1.50	2.00	2.49		
b	1.12	1.20	1.33		
b1	1.12	1.20	1.28		
b2	1.91	2.00	2.39	6	ſ
b3	1.91	2.00	2.34		ſ
b4	2.87	3.00	3.22	6,8	
b5	2.87	3.00	3.18		
С	0.55	0.60	0.69	6	
c1	0.55	6.00	0.65		
D	20.80	20.95	21.10	4	
D1	16.25	16.55	17.65	5	
D2	0.51	1.19	1.35		
E	15.75	15.94	16.13	4	
E1	13.46	14.02	14.16	5	
E2	4.32	4.91	5.49	3	
е	5.44 BSC				
L	19.81	20.07	20.32		
L1	4.10	4.19	4.40	6	
ФР	3.56	3.61	3.65	7	
ФР1	7.19 REF				
Q	5.39	5.79	6.20		Ĺ
S	6.04	6.17	6.30		Ĺ

Note: The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC(RoHS2). RoHS Certification and other certifications can be obtained from GPT sales representatives or GPT website: http://globalpowertech.cn/English/index.asp

More product datasheets and company information can be found in: http://globalpowertech.cn/English/index.asp

