
AVAILABL
E

Functional Diagrams

Pin Configurations appear at end of data sheet.
Functional Diagrams continued at end of data sheet.
UCSP is a trademark of Maxim Integrated Products, Inc.

  
   

Application Note: 

HFAN-4.0.4 
Rev.1; 04/08 

 

 
 

 

 

 

 

 

 

Jitter in Digital Communication Systems, Part 2 
 

 

 

 

 

 

 

 

 

 

 

 

 



Application Note HFAN-4.0.4 (Rev.1; 04/08)  Maxim Integrated 
  Page 2 of 7 

Jitter in Digital Communication Systems, Part 2 
 

1 Introduction 
A previous application note on jitter, HFAN-4.0.3 
"Jitter in Digital Communication Systems, Part 1," 
defined jitter and its various sub-components. The 
purpose of this application note is to answer the 
question, "So now that we know what jitter is, why 
should I care?" To answer this question, we will 
explore some of the ways that jitter causes bit errors 
in digital communication systems. 

2 Background 
A basic characteristic of digital communications 
systems is the need for synchronization between the 
binary encoded data (the bit stream) and the various 
circuit elements in the transmitter and receiver. Bit 
synchronization information is generally conveyed 
separately in the transmitter and receiver by the bit 
clock, which is a square wave signal that has a 
frequency (in Hz) equal to the data rate (in bits per 
second). The relationship between an NRZ encoded 
bit stream and the bit clock is illustrated in Figure 1. 

 

 

 

 

 

 

 

 

A fundamental problem is how to get the bit 
synchronization information from the transmitter to 
the receiver. In general, digital communication 
systems transmit only the bit stream and then 
regenerate the bit clock at the receiver through use 
of a clock and data recovery (CDR) circuit such as 
Maxim's MAX3873, MAX3875, or MAX3877. 
Distortions and noise in the received bit stream as 
well as imperfections in receiver bit clock 

regeneration result in mistiming (jitter) between the 
received bit stream and the regenerated bit clock that 
can cause bit errors. 

3 Receiver Decisions 
The receiver in a digital communication system 
(illustrated in Figure 2) is tasked with accurately 
making two decisions: (1) when to sample the 
received bit stream, and (2) whether the sampled 
value represents a binary one or zero. The bit clock 
controls the timing of the first decision. Jitter 
between the bit clock and the bit stream may cause 
the receiver to sample the bit stream at the wrong 
time, which can result in bit errors. 

To better understand the relationship between jitter 
and the resulting bit errors, it is necessary to 
understand the details of the two decisions made by 
the receiver about each bit. We will first discuss the 
second decision (one or zero?) and then come back 
to the first decision (when to sample?). 

 

 

 

 

 

 

 

 

3.1 The One or Zero Decision 

The decision circuit in a basic receiver simply 
compares the sampled voltage, v(t), to a reference 
value, γ, called the decision threshold. If v(t) is 
greater than γ, it indicates that a binary one was sent, 
whereas if v(t) is less than γ, it indicates that  a 
binary zero was sent. Assuming perfect 
synchronization between the bit stream and the bit 
clock, the major obstacle to making the correct 
decision is noise in the received data. 
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Figure 1. NRZ encoded bit stream 
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Figure 2. Block-diagram of a fiber-optic receiver 
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If we assume that additive white Gaussian noise 
(AWGN) is the dominant cause of erroneous 
decisions, then we can calculate the statistical 
probability of making such a decision. The 
probability density function for v(t) with AWGN can 
be written mathematically as: 
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where vS is the voltage sent by the transmitter (the 
mean value of the density function), v(t) is the 
sampled voltage value in the receiver at time, t, and 
σ is the standard deviation of the noise. Equation (1) 
is illustrated in Figure 3.  

 

 

 

 

 

 

 
 

In binary signaling, vS can take on one of two 
voltage levels, which we will call vS0 and vS1, and 
the probability of making an erroneous decision in 
the receiver is: 

P[ε] = P[v(t) > γ | vS = vS0] P[vS0] +  

                              P[v(t) < γ | vS = vS1] P[vS1]  (2) 

where P[ε] is the probability of error and P[x | y] 
represents the probability of x given y. If we assume 
an equal probability of sending vS0 versus vS1 (50% 
mark density), then P[vS0] = P[vS1] = 0.5. Also, in 
order to simplify the example, we will assume that 
the same noise effects either voltage level (i.e., σ0 = 
σ1), which means that P[v(t) > γ | vS = vS0] = P[v(t) < 
γ | vS = vS1]. Using these assumptions, equation (2) 
can be reduced to: 

     P[ε] = P[v(t) > γ | vS = vS0] × 0.5 

                        + P[v(t) < γ | vS = vS1] × 0.5  
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where PROB[v(t),σx] is defined in equation (1).  
This result is illustrated in Figure 4. 
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Figure 3.  AWGN probability density function 
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Figure 4.  Probability of error for binary signaling 
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From Figure 4 and equations (2) and (3) we can 
conclude that the probability of error is equal to the 
area under the tails of the density functions that 
extend beyond the threshold, γ. This area, and thus 
the bit error ratio (BER), is determined by two 
factors: (1) the standard deviations of the noise (σ0 
and σ1) and (2) the voltage difference between vS0 
and vS1 (i.e., the signal-to-noise ratio).  

It is important to note that for the special case when 
σ0 = σ1, the threshold is halfway between the one 
and zero levels (i.e., γ = (vS1−vS0)/2).  For the more 
general case when σ0 ≠ σ1, the optimum threshold 
for minimum BER will be higher or lower than 
(vS1−vS0)/2. For optimum performance, then, the 
decision circuit include an adjustable threshold level, 
as in Maxim's MAX3877 and MAX3878. 

To simplify computation of the probability of bit 
error we can rewrite equation (3) in terms of the 
error function, Er(x), which is defined as1:  
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for a standard normal distribution (i.e., mean = 0, σ 
= 1).  [Note that there are a number of variations of 
this function published in the literature.] This 
function gives the area under the tail of the Gaussian 
probability density function (PDF) between x and 
infinity. This form of the error function is useful 
because numerical solutions are available in both 
tabulated form1 and as built-in functions with many 
software utilities (e.g., Er(x) = 1- NORMSDIST(x) 
in Microsoft Excel). In terms of Er(x), equation (3) 
can be rewritten as1 (see Maxim application note 
HFAN-09.0.2 for more details on the derivation of 
this equation): 
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where [v1(t) - v0(t)]/(σ0 + σ1) represents the signal-
to-noise ratio (sometimes called the "Q-factor")2 and 
v1(t), v0(t) are defined in Figure 5. 

3.2 Timing of the Sampling Instant 

In the receiver, the rising or falling edge of the 
regenerated bit clock controls the timing of the  

sampling circuit.  The sampling circuit compares the 
instantaneous voltage of the input waveform to the 
decision threshold at an instant in time we will call 
the sampling instant to determine whether the 
received signal represents a one (received signal > γ) 
or a zero (received signal < γ). Jitter between the bit 
clock and the bit stream may cause the sampling 
instant to deviate from the ideal, which can in turn 
influence the quality of the zero/one decision.  

In the previous section it was shown that the 
probability of making a correct decision is 
determined by both the noises associated with the 
input waveform (σ0 and σ1) and the difference 
between the zero and one levels (vS1 - vS2). The 
timing location of the sampling instant has no effect 
on the noise, but it can affect the difference between 
the zero and one levels and thereby increase the 
probability of bit errors.  

We can represent the timing of the sampling instant  
by t<subscript>, as shown in Figure 5.  
 

 

 

 

 

 

 

 

 
From Figure 5 we can see that the difference 
between vS1 and vS0 is maximized (and thus the bit 
error ratio is minimized) when the bit is sampled in 
the stable region, tstable. If, due to jitter, the bit is 
sampled between tn-1 and tstable or tstable and tn, then 
the difference between vS1 and vS0 will be less than 
the maximum, resulting in an increased probability 
of bit error. When the bit is sampled exactly at the 
transition time or beyond (t ≤ tn-1 or t ≥ tn), the 
probability of bit error is 50% (assuming 50% mark-
density random data). 

Figure 5. Timing of the sampling instant 
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4 Predicting the BER Caused  
by Jitter 

Some bit errors will occur in the absence of jitter 
effects (i.e., even with optimum sampling), as a 
consequence of amplitude noise. (This was 
discussed in section 3.1). Jitter adds the dimension 
of time to the problem of predicting the bit error 
ratio (BER). When jitter is included in the analysis, 
the calculated probability of bit error, P[ε], must take 
into account the probability of bit error at each 
potential sampling instant, P[ε | tS], as well as the 
probability that each sampling instance actually 
occurs, P[tS]. 

4.1 Probability of Error at Each 
Sampling Instant 

Equation (5) shows that probability of bit error, P[ε], 
is determined by the signal amplitude, v1(t)-v0(t), 
and the noise (σ0 and σ1).  The noise can be directly 
measured and its magnitude typically stays constant 
for long periods of time.  The sampled signal 
amplitude, however, may vary depending on the 
sampling instant. For example, the sampled signal 
amplitude in Figure 5 will be different when the 
signal is sampled at tB than when it is sampled at tA. 
This means that P[ε] will be different, depending on 
the sampling instant. 

An example of the relationship between the 
sampling instant and P[ε] is illustrated in Figures 6, 
7, and 8. These figures are discussed in the 
following paragraphs.  

Figure 6(a) represents the eye diagram of the data 
signal at the input to the sampling circuit in a typical 
receiver (e.g., the "D" input of Figure 2). We will 
define the jitter in this eye diagram as the time 
difference between the data transitions (represented 
by the zero crossings in the eye diagram) and the 
corresponding transitions of the bit clock. For such a 
case, the jitter can be visualized from either of two 
perspectives: clock-referenced jitter or data-
referenced jitter. The clock-referenced perspective 
involves fixing the horizontal position of the clock 
and watching the relative horizontal movement of 
the data eye diagram (this is commonly done in 
practice by triggering an oscilloscope using the 
clock signal). The data-referenced perspective can 
be visualized as fixing the horizontal position of the 
data eye diagram and watching the relative 
horizontal movement of the clock signal (data-

referenced jitter). Both of these perspectives are 
equivalent, but, for purposes of this example, it is 
more convenient to use the data-referenced 
perspective. 

Using the data referenced perspective, we can 
neglect jitter in the eye diagram of Figure 6 for now 
(we will consider all the jitter to be associated with 
the clock and analyze its effects later). We will, 
however, assume that the data eye diagram contains 
amplitude noise (σ0 and σ1). We will also assume 
that we have measured σ0 and σ1 (one way to do this 
is with the vertical histogram mode of the 
oscilloscope), that they are Gaussian, statistically 
independent, and that their magnitudes are constant. 
We also note that the time between the zero 
crossings represents one unit interval (UI), that the 
rise and fall times are different, and that, in the 
general case, there may be other distortions. 
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Figure 6. Computing P[ε] at each sampling instant 
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Figure 6(b) is a plot of the eye diagram amplitude 
difference, v1(t)-v0(t), versus time. This was 
generated by subtracting the average value of v0(t) 
from the average value of v1(t) at each point in time 
within the UI. Outside of the UI, we will set the 
amplitude difference to zero.  

Figure 6(c) is a plot of the probability of bit error at 
each sampling instant, P[ε | ts]. This plot shows the 
probability that the bit will be erroneously detected 
as a function of the sampling instant. Figure 6(c) 
was generated by applying equation (5), using each 
time instant in Figure 6(b) for the numerator of the 
argument and, for purposes of this example, setting 
σ0 + σ1 = 0.25. 

The plot in Figure 6(c) is commonly called a "jitter 
bathtub plot", and can be generated using the "BERT 
Scan Technique3."  It is important to note, however, 
that there are some key differences between the plot 
of Figure 6(c) and the conventional jitter bathtub 
plot. For example, Figure 6(c) was generated from a 
jitter-free eye diagram and thus does not include any 
jitter. The roll-off on the sides of the plot is due to 
the non-zero rise and fall times and the asymmetry 
between the two sides is due to the difference 
between the rise and fall times.  Much of the jitter 
bathtub plot analysis contained in the literature relies 
on the assumption that the probability of bit error is 
zero for all sampling instants within the UI and 50% 
outside of the UI (i.e., infinitely short rise/fall times 
and/or negligible amplitude noise). If this 
assumption were true (i.e., P[ε] = 0 for all sampling 
instants within the UI), then the sides of the jitter-
free bathtub plot would be vertical and the bottom of 
the bathtub plot would be a horizontal line at a 
probability of zero. 

As an important side note, we notice that, as a 
general rule, the left and right sides of any given 
data eye diagram are not symmetrical. Because of 
this asymmetry, as well as other factors such as the 
setup and hold times of the receiver decision circuit, 
it may be advantageous (i.e., improve the BER) to 
shift the sampling time to a position other than the 
center of the eye diagram. This can be done using 
the phase-adjust feature of Maxim's MAX3877 and 
MAX3878. 

4.2 Sampling Time Probability 

The sampling instant for each bit in any bit pattern is 
determined by the timing relationship between the 

data and the clock.  This relationship will vary from 
one bit to the next, due to jitter. Using the data 
referenced jitter perspective (described in the 
previous section) the probability that the sampling 
instant (i.e., clock transition) occurs at any given 
time in the UI can be represented by a probability 
density function (PDF)4 of the jitter. This PDF can 
then be used in conjunction with the probability of 
bit error at each sampling instant (Figure 6(c)) to 
compute the overall probability of bit error.  

Figure 7 is a modeled example of a sampling instant 
PDF (i.e., jitter histogram) plotted on both linear and 
logarithmic vertical scales. This PDF represents the 
timing probability of the recovered bit clock relative 
to the data at the input to the receiver sampling 
circuit.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The key point to notice in Figure 7 is that, even 
though it is highly probable that the bit will be 
sampled in the vicinity of the center of the UI, there 
is still a finite probability, due to jitter, that the bit 
will be sampled in the vicinity of the bit transition or 
beyond.  
 

Figure 7. Sampling instant probability density 
               function (PDF) 
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4.3 BER due to Jitter 

At this point we finally have all of the information 
necessary to compute the bit error ratio (BER) due to 
jitter. In order to do this, we can apply the statistical 
definition of conditional probability5 to compute the 
probability of bit error over the full range of 
sampling times, as shown in the following equation: 

     ][]|[],[ sss tPtPtP ×= εε    (6) 

In accordance with equation (6), we can do a point-
by-point multiplication of the jitter-free bathtub plot 
of Figure 6(c) ( i.e., P[ε | ts] ) and sampling instant 
PDF of Figure 7 ( i.e., P[ts] ).  The result is the total 
probability of bit error distributed over the full range 
of possible sampling time instants.  This result is 
plotted in Figure 8. It is interesting to note from 
Figure 8 that most of the of bit errors in this example 
occur near the bit transition times, and that these 
errors are caused by the relatively improbable 
extremes in sampling instant deviation (i.e., jitter). 

 

 

 

 

 

 

 

 

 

The cumulative P[ε] (i.e., BER) can be computed by 
integrating the result of equation (6) with respect to 
time: 
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Numerical integration of the example plot of Figure 
8 (i.e., the cumulative area under the curve) yields a 
BER due to jitter of 3.27 × 10-5. This result is in 
contrast to the jitter-free BER at the center of the 
bathtub plot of Figure 6(c) of 9.27 × 10-14. (Jitter-
free BER assumes optimum sampling near the center 
of the UI.)  

5 Conclusions 
Jitter can cause bit errors by shifting the bit sampling 
instant away from the optimum position and into 
regions of the bit time that are close to (or beyond) 
the bit transition points (at the rising and falling 
edges).  It is possible to predict the effect of jitter on 
the system BER using measurements of the eye 
diagram, noise, and jitter PDF.  

The example jitter BER calculations outlined in this 
application note show that there may be a significant 
difference in results depending on whether jitter is 
considered. (Note: The examples herein include 
intentionally exaggerated noise and jitter amplitudes 
in order to more effectively illustrate the manner in 
which jitter affects BER.) Some important 
observations are as follows: 

1. If the jitter is small enough, the resulting timing 
deviations of the sample clock will be confined to 
the "stable region" of the bit period (defined in 
Figure 5), in which case the jitter will have no effect 
on the BER. 

2. The stable region of the bit period can be 
increased (and thus susceptibility to jitter decreased) 
by decreasing the rise and fall times and/or 
decreasing the noise. 

3. Some of the existing literature on jitter utilizes 
unwritten assumptions that rise/fall times are 
infinitely short, that there is no amplitude noise, 
and/or that there is no distortion inherent in the eye 
diagram. In order to make accurate predictions of 
jitter BER, it is important to consider these effects. 

                                                      
1 B. Sklar, Digital Communications: Fundamentals and 
Applications, Englewood Cliffs, New Jersey: Prenctice 
Hall, pp. 741-743 
2 N.S. Bergano, F.W. Kerfoot, and C.R. Davidson, 
"Margin Measurements in Optical Amplifier Systems, " in 
IEEE Photonics Technology Letters, vol.5, no. 3, pp. 304-
306, Mar. 1993. 
3 National Committee for Information Technology 
Standardization (NCITS), T11.2/Project 1230, Rev8 
(working draft), http://www.t11.org, 15 march 1999. 
4 K.S. Shanmugan and A.M. Breipohl, Random Signals: 
Detection, Estimation, and Data Analysis, New York: 
John Wiley and Sons, pp. 33-34. 
5 A. Papoulis, Probability, Random Variables, and 
Stochastic Processes, New York, New York: McGraw-
Hill, pp. 27. 

-2.00E-06
0.00E+00
2.00E-06
4.00E-06
6.00E-06
8.00E-06
1.00E-05
1.20E-05
1.40E-05
1.60E-05

time 

Probability 

P[ε,ts] = P[ε | ts] x P[tS] 

Figure 8. Probability of bit error over the range of 
               possible sampling instants 

1 UI 


