

Animated Snake Eyes Bonnet for

Raspberry Pi

Created by Phillip Burgess

https://learn.adafruit.com/animated-snake-eyes-bonnet-for-raspberry-pi

Last updated on 2022-12-01 02:51:27 PM EST

©Adafruit Industries Page 1 of 28

3

5

10

15

19

25

27

Table of Contents

Overview

Hardware Assembly

• Plan a Head

Software Installation

• Enable SSH

• Install Commands

• Dry Run

Customizing the Hardware

• Analog Controls

• Buttons

• Software Changes

Customizing the Look

• Changing the Python Code

• Changing Graphics

• Replacing Everything

Using Just the Software

Downloads

• Files

• Schematic

• Fab Print

©Adafruit Industries Page 2 of 28

Overview

The Snake Eyes Bonnet is a Raspberry Pi accessory for driving two small OLED or TFT

LCD displays, and also provides four analog inputs for sensors.

It's fantastic for making cosplay masks, props, spooky sculptures for Halloween,

animatronics, robots...anything where you want to add a pair of animated eyes!

©Adafruit Industries Page 3 of 28

It’s a follow-on of sorts to another project: Electronic Animated Eyes Using Teensy 3.2

(). The Teensy 3.2 is a very capable microcontroller, and the code for that project

squeezed every bit of space and performance from it. I had been experimenting with

the Raspberry Pi as an alternative…though still somewhat experimental, why not make

that work available to others?

The Raspberry Pi offers some potential benefits:

Hardware-accelerated 3D graphics (OpenGL), including antialiasing.

A faster CPU, ample RAM and dual SPI buses could yield faster frame rates.

Standard graphics formats like JPEG, PNG and SVG can be decoded on the fly; n

o preprocessing step.

The eye rendering code is written in a high-level language — Python — making

it easier to customize.

And some possible downsides to the Pi:

Raspberry Pi takes time to boot an operating system off an SD card,

whereas Teensy is instant-on with all code in flash memory, . The Pi also

requires an explicit shutoff procedure (usually ()).

The Raspberry Pi is not as suitable for wearable applications…it’s larger, uses

more power, and the SD card makes it less rugged.

This is a somewhat technical and not-inexpensive project. Please read through

everything first before commiting. If it seems daunting, the original Teensy Eyes () are

•

•

•

•

•

•

©Adafruit Industries Page 4 of 28

file:///home/deploy/animated-electronic-eyes-using-teensy-3-1
file:///home/read-only-raspberry-pi
file:///home/deploy/animated-electronic-eyes-using-teensy-3-1

more “Arduino-like” to build and customize, or other guides like Animating Multiple

LED Backpacks () provide a more approachable introduction to code and electronics

with less of an investment.

A Raspberry Pi 2 or greater is highly recommended. The code will run on a Pi Zero or

other single-core Raspberry Pi boards, but performance lags quite a bit. Pi 4 works

now, which was previously incompatible.

Hardware Assembly

Compatible Devices

The code for this project works only with our 128x128 pixel OLED () and TFT () di

splays and 240x240 pixel IPS TFT () displays. Other displays such as

our 160x128 TFT or various PiTFT displays ARE NOT SUPPORTED AT ALL,

period, not even sorta.

Any recent Raspberry Pi board with the 40-pin GPIO header should work. The

very earliest Pi boards — Model A and B, with the 26-pin GPIO header — are not

compatible.

A Raspberry Pi 2 or greater is highly recommended. The code will run on a Pi

Zero or other single-core Raspberry Pi boards, but performance lags quite a bit.

Pi 4 works now, which was previously incompatible.

Plan a Head

Before committing to any particular hardware, think your project through. There are

some decisions to be made…

One display or two? You don’t have to connect two displays…some of the most

creative variants of the “Teensy eyes” had only a single eye ().

OLED (), TFT LCD () or IPS TFT () displays? OLEDs have a wide viewing angle and

excellent contrast and color saturation, but they’re somewhat pricey, and have a

finite lifespan (albeit many thousands of hours). TFTs make good economy

Our Bonnet only comes with the PCB that lets you connect two displays. The

displays are not included and must be purchased separately!

Some situations don’t require the screens or Bonnet at all! See the “Using Just

the Software” page if planning a single, non-interactive HDMI eye.

•

•

•

•

•

©Adafruit Industries Page 5 of 28

file:///home/deploy/animating-multiple-led-backpacks
file:///home/deploy/animating-multiple-led-backpacks
file:///home/deploy/animating-multiple-led-backpacks
file:///home/deploy/animating-multiple-led-backpacks
https://www.adafruit.com/product/1431
https://www.adafruit.com/product/2088
https://www.adafruit.com/product/3787
file:///home/purple-people-eater
file:///home/purple-people-eater
https://www.adafruit.com/product/1431
https://www.adafruit.com/product/2088
https://www.adafruit.com/product/3787

displays if you’re okay with the slightly washed-out appearance. IPS TFT

displays are in-between in cost and super sharp!

What model of Raspberry Pi to drive it? The latest multi-core boards have

enough performance for buttery smooth animation…but their size and power

draw might make them best for stationary displays, like maybe a Halloween

window prop. Costume and portable installations may fare better with the

diminutive Pi Zero, though the animation will be much less smooth.

Will the animation be running autonomously, or do you plan to control the

eyes with a joystick and buttons? Will the pupils react to light? These require

additional components.

There’s one more factor to consider: how do you want everything connected? Think

about your intended installation. Is it temporary or permanent? Is space at a premium

or do you have ample working room? These can influence your choice of wiring and

connectors.

The breakout pins along the edge of each display board are wired up to matching

pins on the bonnet boards. But you need the correct row for each display type…

If using OLED display(s): use the “upper”

rows (with the word “OLED” between

them).

There are 11 pins on the OLED breakout

boards, which map directly to the 11 pins

on the bonnet board.

Make absolutely certain the wires are in

the same order. “SI” and “G” on the display

board should go to “SI” and “G” on the

bonnet, and each pin in-between…no wires

should cross.

•

•

©Adafruit Industries Page 6 of 28

https://learn.adafruit.com//assets/37983
https://learn.adafruit.com//assets/37983
https://learn.adafruit.com//assets/37984
https://learn.adafruit.com//assets/37984

If using TFT or IPS display(s): use the

“lower” rows (with the word “TFT”

between them).

There are 11 pins on the TFT breakout

boards, which map directly to the 11 pins

on the bonnet board.

Make absolutely certain the wires are in

the same order. “Vin” and “Lite” on the

display board should go to “Vin” and “Lite”

on the bonnet, and each pin in-between…

no wires should cross.

There’s a common trope in science fiction stories: that there is no “up” or “down” in

space. Wiring these displays is a little like that…it doesn’t matter if the wires or

headers come out the front or back of the display breakout board, or use straight or ri

ght-angle pins…as long as those wires get from the display to the bonnet in the same

positions and order, everything’s good.

(As for up and down: right now the software assumes the displays are oriented with

the breakout pins along the top edge; other rotations are not currently handled.)

The 1.54" IPS display breakout has a 12th pin labeled "TE". DO NOT CONNECT

THAT PIN TO THE BONNET. Only connect the other 11 pins from "Vin" through

"Lite."

©Adafruit Industries Page 7 of 28

https://learn.adafruit.com//assets/37986
https://learn.adafruit.com//assets/37986
https://learn.adafruit.com//assets/37987
https://learn.adafruit.com//assets/37987

Here’s a probable layout for a non-

portable installation. Straight header pins

have been soldered to the bonnet board

and the displays, projecting “up” and

“back,” respectively. Two 11-pin female-to-

female ribbon cables then join everything.

This might be easiest to assemble (and

disassemble), and the straight header pins

on the displays make them easy to re-use

in breadboard projects later.

…but that’s not the only option.

This TFT display has right-angle hader

pins on the front of the board (front, back,

doesn’t matter as long as the wires

connect in the same order). This makes it

very slim, but also a fair bit taller.

And this OLED has an 11-pin ribbon cable

directly soldered to the board, no header

pins at all. Again…front or back, ribbon

could go straight out or can double back

across the board…it all depends on your

construction and space needs, as long as

the pin order is followed. This is the most

space-efficient, but requires patience and

ace soldering skills, and isn’t easily re-

used in other projects.

If using “rainbow” ribbon cables: these have 10 colors, while the displays use 11

wires…this means the cables will have the same color wire along both edges.

Therefore, DO NOT rely on a visual mnemonic like “black wire is ground” or “red wire

is Vin,” because your cable may have two black wires, or two reds, or two anything.

Instead, make sure to manually follow the first wire all the way from the bonnet to the

display, make sure they line up right, then install the remaining wires in order.

If you’re really economizing for space, here’s a secret: only 7 wires are really needed

…it’s just easier and less error-prone to solder a header at each end and plug all

11 wires straight through. If using the OLED display, the SC, SO, CD and 3V pins can

©Adafruit Industries Page 8 of 28

https://learn.adafruit.com//assets/38048
https://learn.adafruit.com//assets/38048
https://learn.adafruit.com//assets/38049
https://learn.adafruit.com//assets/38049

optionally be skipped. If using TFT, the 3v3 SO, CCS and Lite pins can be skipped.

Make certain the exact same pins are skipped at the bonnet end, don’t mix them up!

To ensure a clean signal from bonnet to displays, aim to keep your wiring short and

tidy. Electrical interference can lead to animation glitches…we’ll explain on the next

page how to dial that back if needed. It’s possible to use long ribbon cables (even a

couple meters), but it invites problems with interference or signal reliability.

For optional features like joysticks, light

sensors, blink and halt buttons, see

the “Customizing the Hardware” page.

When finished soldering, you can peel the clear plastic covering off the displays. It’s

meant to protect them in shipping and during soldering. But unlike the screen

protector on a phone or tablet, it’s not optically pure and makes the display look

cloudy.

The project thumbnail image shows lenses and 3D-printed enclosures. These were a

carry-over from an earlier project that used 1.5" acrylic cabochons (), before we

started carrying proper lenses () which provide better optics and have a mounting

flange…but we don’t have enclosure designs for those, you’d need to model

something yourself.

©Adafruit Industries Page 9 of 28

https://learn.adafruit.com//assets/38070
https://learn.adafruit.com//assets/38070
https://learn.adafruit.com//assets/38071
https://learn.adafruit.com//assets/38071
https://learn.adafruit.com/animated-electronic-eyes/3d-printing
https://www.adafruit.com/product/3917

Software Installation

We’ll start by installing a suitable version of Raspberry Pi OS onto a SD card. If this is

your first time or you need a refresher, we have a separate guide explaining the

process () (opens in new window).

If using a Raspberry Pi 4, Pi 400, or Compute Module 4: the latest Raspberry Pi OS De

sktop software is required (“Lite” versions, and versions prior to “Bullseye” in late

2021, won’t support this code on these boards). For brevity, we’ll call all of these

boards “Pi 4” going forward in this guide.

All other Raspberry Pi boards: Raspberry Pi OS Lite (Legacy) software is required.

Look for both Lite and Legacy in the name!

For all boards: use the 32-bit version of the operating system, not the 64-bit variant.

If your target system is a Raspberry Pi Zero, you may find the setup process easier

with a spare full-size Raspberry Pi board with Ethernet and/or USB, then move the

card over to the Pi Zero when finished. If this is not an option, see this guide () for

steps to make the Pi Zero act as a “USB Ethernet gadget,” and also create a file called

“ssh” in the boot volume to enable ssh login.

If using the Raspberry Pi Imager application: from the “CHOOSE OS” menu, select a

compatible operating system version as described above. Before writing the card, see

“Enable SSH” below.

If using Balena Etcher or other application: download a compatible operating system

image from the Raspberry Pi web site () (opens in new window). After writing the card,

see “Enable SSH” below.

In either case, use the correct OS for the target system, as described earlier.

Enable SSH

It’s usually easiest to set up and install this project remotely over a network, so you

can copy-and-paste commands from this page to the command line.

If using the Raspberry Pi Imager application: before writing the card, press

Control+Shift+X (Windows) or Command+Shift+X (Mac) to open the Advanced Options

menu. Here you can Enable SSH for remote access. If you want to set up WiFi instead

©Adafruit Industries Page 10 of 28

https://learn.adafruit.com/adafruit-raspberry-pi-lesson-1-preparing-and-sd-card-for-your-raspberry-pi/overview
https://learn.adafruit.com/adafruit-raspberry-pi-lesson-1-preparing-and-sd-card-for-your-raspberry-pi/overview
file:///home/turning-your-raspberry-pi-zero-into-a-usb-gadget
https://www.raspberrypi.com/software/operating-systems/

of a wired Ethernet connection, those options are also in this menu. Now you can

write the card!

If using Balena Etcher or other application: after writing the card, don’t eject! Create

an empty file called ssh in the /boot partition. This will enable SSH over a wired

Ethernet connection. If you want WiFi, you’ll have to connect temporarily with

Ethernet and configure wireless through raspi-config…or see below.

A third option—and required if you only have WiFi but no Ethernet—is to do this on

the Raspberry Pi after first boot, with monitor and keyboard connected. The raspi-

config utility includes options for enabling WiFi and SSH. Then the rest of this

installation can be done remotely.

Once your Raspberry Pi is powered up and connected to a network you can follow

the steps below to install the Pi Eyes software.

If you're familiar with connecting to the Raspberry Pi over SSH () you can use an SSH

terminal application to connect and skip down to the install commands section below

().

Install Commands

Run the following at the command line:

cd
curl https://raw.githubusercontent.com/adafruit/Raspberry-Pi-Installer-Scripts/
master/pi-eyes.sh >pi-eyes.sh
sudo bash pi-eyes.sh

©Adafruit Industries Page 11 of 28

file:///home/adafruits-raspberry-pi-lesson-6-using-ssh/overview
file:///home/raspberry-pi-video-looper/installation#install-commands

This downloads and runs a script which installs all the prerequisite software and does

some system configuration. It will ask a few questions along the way…

Is the target system a Pi 4-type board, or something else? Target system is an

important distinction here — this refers to the Pi board where this SD card will

ultimately be used, if it’s different from the one where you’re currently installing.

Will you be connecting OLED (128x128), TFT (128x128) or IPS (240x240) displays

? Can’t mix and match; must be one or the other. (There’s also an HDMI option —

see the “Using Just the Software ()” page for guidance.)

These are the screen types:

Select TFT if you have Product #2088

The 1.44" 128x128 plain TFT

Select IPS if you have Product #3787

The 1.54" 240x240 IPS TFT

•

•

©Adafruit Industries Page 12 of 28

file:///home/animated-snake-eyes-bonnet-for-raspberry-pi/using-just-the-software
https://learn.adafruit.com//assets/59089
https://learn.adafruit.com//assets/59089
https://learn.adafruit.com//assets/59090
https://learn.adafruit.com//assets/59090

Select OLED if you have Product #1431

The 1.5" 128x128 color OLED

The GPIO-halt utility performs an orderly shutdown using a momentary

pushbutton between an unused GPIO pin and ground, no login required. If you

don’t have a button and plan to shutdown the system the usual way, answer “n”.

Will you be connecting ANALOG input devices like a JOYSTICK or LIGHT

SENSOR? If so, answer “y” when asked “Install ADC support?”

There’s one final confirmation before installation, explaining the steps that will be

taken and making it extra clear that the Pi will be dedicated to this one task, it should

not be installed on a “daily driver” computer that you use for real work.

The installer has to collect software packages from all over the world. Very

infrequently, a server or connection might be unreachable. If this happens, or the

script “hangs” mid-download, set the project aside for a couple hours and try again

later.

Dry Run

Reboot when prompted by the software installer. When the system restarts, after a

minute or so, you should see some activity on the display(s).

The eyes run automatically on every startup; it is a dedicated system. If you don’t

want that, you’ll need to edit /etc/rc.local and remove or comment out the line that

includes “python3 eyes.py”, typing the full command that appears there manually

each time you want to start the code.

•

•

It can take a long time to download, build and install everything — ESPECIALLY

NUMPY! Often 10 minutes or more. Be patient, it’s working.

©Adafruit Industries Page 13 of 28

https://learn.adafruit.com//assets/59091
https://learn.adafruit.com//assets/59091

If everything seems to be working well, you can skip ahead to the next page and

ignore the steps below.

If the eyes are experiencing glitches (video snow, tearing, dropped frames or weird

inverted colors), here’s what to do…

Log into the Pi remotely using ssh. Then type the following commands:

cd /boot/Pi_Eyes
sudo killall fbx2

The displays will stop updating. This is normal.

Then, if you have OLED displays, type the following:

sudo ./fbx2 -o -b 8000000

Or, for TFT displays, try:

sudo ./fbx2 -t -b 10000000

The first argument (-o, -t or -i) sets the display type in use; OLED, TFT or IPS,

respectively. Second argument (-b) sets the maximum bitrate for the displays. The

higher the bitrate, the smoother the animation…but…there’s a limit to how fast this can

go, and it can vary with wire lengths, connections, environment (such as interference

from other nearby devices) and even slight manufacturing variances from one display

to the next.

For OLED displays, the default bitrate is 10000000 (10 MHz). For TFT displays, default

is 12000000 (12 MHz). IPS uses 96000000 (96 MHz) by default. But if there’s trouble,

we have to dial these back.

Try a lower value, like the 8 MHz or 10 MHz examples above. Watch the output for a

minute…does it seem to have stabilized now? If only one of the two displays glitches,

you’ll still need to work the speed down until both run reliably.

Press Control+C to kill the program and test again with a different bitrate…maybe

work down 4 MHz at a time, then up 1 MHz at a time until you find the “sweet spot”

IT’S NORMAL THAT THE EYES MAY EXHIBIT “GLITCHES” ON THE FIRST TRY.

We’ll fine-tune some parameters to get them working right.

©Adafruit Industries Page 14 of 28

between speed and reliability. Once you find it, Control+C again and let’s make the

change permanent…

sudo nano /etc/rc.local

A couple lines from the bottom you’ll find this:

/boot/Pi_Eyes/fbx2 -o &

(or “-t” if using TFT displays)

Insert the additional -b and bitrate value before the & character:

/boot/Pi_Eyes/fbx2 -o -b 8000000 &

Save changes and exit the editor. Then:

sudo reboot

After a minute or so the eyes should come up again, glitch-free this time. If not, repeat

these steps again, trying a lower bitrate until you find a setting that works reliably.

Another way to reduce glitches is to solder ribbon cables directly between the bonnet

and displays, with no headers or plugs in-between; every intermediary part is an

opportunity for noise or connection problems. Consider this if you plan on permanent

installation.

Customizing the Hardware

By default the eyes will animate on their own, looking around randomly. With some

minor additional hardware (and enabling corresponding lines in the code), the eyes’

direction, blinks and pupil dilation can be controlled manually or with sensors…

©Adafruit Industries Page 15 of 28

At the bottom-right of the bonnet are a few

extra connection points for 5 Volts, 3.3

Volts and ground, if you have a circuit that

needs them. These are OK for small

loads like ICs or a few LEDs, but not for big

things like servos, which will need their

own power source.

To the left are four analog input pins (along

with four more 3.3V and ground points).

You can use these to interface analog

circuits such as a joystick to steer the

eyes, photocell to make the pupils react to

light, or perhaps to monitor battery voltage

(use a voltage divider in this case, since

the analog input must be 0 to 3.3 Volts).

Additionally, most of the GPIO pins are

broken out in a single row across the

bonnet. Some of these serve special

purposes and should be avoided, but

technical users still have access to them if

really needed…

TX and RX are available

as GPIO14 and 15 if the serial console

is disabled with raspi-config.

SPI0 (SPI bus used for the right eye)

uses GPIO8-11 (CE0, MISO, MOSI and

SCLK, respectively). Steer clear!

SPI1 (second SPI bus used for left eye)

uses GPIO16 (CE2) and 19-21 (MISO, MOSI,

SCLK). Avoid! Also, I2S audio devices can’t

be used because the pins overlap.

GPIO5 and 6 connect to the DC and

RESET pins of both displays, so these too

should be avoided unless you have some

special situation.

Woops, we swapped SDA and SCL on the silkscreen - apologies! SCL is the left-

most pin, and SDA is the pin to the right of it!

©Adafruit Industries Page 16 of 28

https://learn.adafruit.com//assets/38067
https://learn.adafruit.com//assets/38067
https://learn.adafruit.com//assets/38068
https://learn.adafruit.com//assets/38068

Analog Controls

Any analog controls that are added should include connections to the 3.3V and GND

pins. Do not use the 5V pins or there will be…trouble.

XOUT and YOUT from a joystick can

connect to analog pins A0 and A1.

The eyes move autonomously by default —

settings in the code enable the joystick

instead.

If you need to mount the joystick in a

different orientation, there are also

settings to invert each axis. Swap the X

and Y pins in the code to use the joystick

sideways.

This thumb stick has a click feature, which

could be used to control eye blinks if

desired. The smaller “mini” stick doesn’t

have this, but is extra tiny for working into

a costume or puppet.

To have the pupils contract or expand in

response to light, connect a photocell and

10K resistor in series. The midpoint

connects to analog pin A2.

Analog input for the pupils (either

photocell or the dial below) are enabled in

the code by default. You can comment out

IRIS_PIN in the code to have this move

autonomously.

©Adafruit Industries Page 17 of 28

https://learn.adafruit.com//assets/38110
https://learn.adafruit.com//assets/38110
https://learn.adafruit.com//assets/38113
https://learn.adafruit.com//assets/38113

For manual control of pupil dilation

(instead of responding to light) a 10K

potentiometer can be used. The center leg

connects to analog pin A2 (same input as

the photocell, just substituting a different

analog control).

Buttons

The eyes normally blink autonomously, but you can also add one or more buttons to

make them blink (or even wink individually) on command.

For all buttons, connect one leg of each

to GND, and the opposite leg to a digital

pin:

GPIO Pin 22 is the left eye wink.

GPIO Pin 23 blinks both eyes.

GPIO Pin 24 winks the right eye.

If using our analog joystick breakout

board, that stick includes a clicky button

when you press down on it (on the SEL

pin). This can optionally be used for

manual blink control, or you can use a

separate button for this (I find the joystick

button a bit hamfisted).

Software Changes

Adjustments to the code must be made to use any of the above features. You’ll find

the code in /boot/Pi_Eyes/eyes.py. It’s located in /boot to simplify “offline” editing on

another system…if editing on the same Pi where it runs, you may need to edit as root

(e.g. “sudo nano /boot/Pi_Eyes/eyes.py”).

©Adafruit Industries Page 18 of 28

https://learn.adafruit.com//assets/38112
https://learn.adafruit.com//assets/38112
https://learn.adafruit.com//assets/38111
https://learn.adafruit.com//assets/38111

After making changes, you could hunt down the background Python process that was

run at startup, kill and restart…but it’s usually easiest just to reboot.

Hardware config settings can be found near the top of the code:

INPUT CONFIG for eye motion --

JOYSTICK_X_IN = -1 # Analog input for eye horiz pos (-1 = auto)
JOYSTICK_Y_IN = -1 # Analog input for eye vert position (")
PUPIL_IN = -1 # Analog input for pupil control (-1 = auto)
JOYSTICK_X_FLIP = False # If True, reverse stick X axis
JOYSTICK_Y_FLIP = False # If True, reverse stick Y axis
PUPIL_IN_FLIP = False # If True, reverse reading from PUPIL_IN
TRACKING = True # If True, eyelid tracks pupil
PUPIL_SMOOTH = 16 # If > 0, filter input from PUPIL_IN
PUPIL_MIN = 0.0 # Lower analog range from PUPIL_IN
PUPIL_MAX = 1.0 # Upper "
WINK_L_PIN = 22 # GPIO pin for LEFT eye wink button
BLINK_PIN = 23 # GPIO pin for blink button (BOTH eyes)
WINK_R_PIN = 24 # GPIO pin for RIGHT eye wink button
AUTOBLINK = True # If True, eyes blink autonomously

For example, to enable analog joystick input and a photocell, set JOYSTICK_X_IN,

JOYSTICK_Y_IN and/or PUPIL_IN to analog channel numbers (0 to 3). If the response

from the stick or sensor is backwards, set JOYSTICK_X_FLIP, JOYSTICK_Y_FLIP and/

or PUPIL_IN_FLIP to “True” as needed.

Customizing the Look

Changing the Python Code

The installer script places the code and data in the directory /boot/Pi_Eyes. If you’re

not familiar with Linux text editors and so forth, you can move the SD card over to

a regular Windows or Mac system, where the “boot” partition appears as a drive and

you can edit these files with your text editor of choice.

If using TFT or OLED screens on a Snake Eyes Bonnet board, the Python script of

interest is eyes.py. If using HDMI output (with or without the bonnet), look for cyclops.

py (so named because it only renders one eye).

After making changes to the code, rather than tracking down and killing processes,

it’s often easier just to reboot the Pi. After a minute or so, the revised code will run on

startup.

©Adafruit Industries Page 19 of 28

This section near the top of the code (previously mentioned on the Hardware page)

includes a couple of items that are relevant to the appearance of the eyes:

INPUT CONFIG for eye motion --

JOYSTICK_X_IN = -1 # Analog input for eye horiz pos (-1 = auto)
JOYSTICK_Y_IN = -1 # Analog input for eye vert position (")
PUPIL_IN = -1 # Analog input for pupil control (-1 = auto)
JOYSTICK_X_FLIP = False # If True, reverse stick X axis
JOYSTICK_Y_FLIP = False # If True, reverse stick Y axis
PUPIL_IN_FLIP = False # If True, reverse reading from PUPIL_IN
TRACKING = True # If True, eyelid tracks pupil
PUPIL_SMOOTH = 16 # If > 0, filter input from PUPIL_IN
PUPIL_MIN = 0.0 # Lower analog range from PUPIL_IN
PUPIL_MAX = 1.0 # Upper "
WINK_L_PIN = 22 # GPIO pin for LEFT eye wink button
BLINK_PIN = 23 # GPIO pin for blink button (BOTH eyes)
WINK_R_PIN = 24 # GPIO pin for RIGHT eye wink button
AUTOBLINK = True # If True, eyes blink autonomously

Most relevant here are AUTOBLINK and TRACKING. If AUTOBLINK is changed to Fals

e, the eyes will stop their automatic blinking (responding only to button presses, if you

have something like that wired up). If TRACKING is changed to False, the eyelids will

no longer follow the pupils as they move around (this is an interesting thing that real

eyes actually do, but sometimes you want a continuous wide-eyed stare).

Sometimes you may want no eyelids at all…just a full unblinking hemisphere. You can

achieve this by simply commenting out the two lines that render the eyelids (put a “#”

character at the start of each line). This is much later in the code, near line 430:

 upperEyelid.draw()
 lowerEyelid.draw()

The other settings above are mostly related to hardware stuff.

Changing Graphics

Certain aspects (such as iris color) can be changed by substituting different graphics

files. These are in the directory /boot/Pi_Eyes/graphics. One could just overwrite the

files that are there, but I prefer to keep the originals around for reference and assign

new names to the changed files. To make the code load these changed files, look for

this section starting around line 122:

Load texture maps --

irisMap = pi3d.Texture("graphics/iris.jpg" , mipmap=False,
 filter=pi3d.GL_LINEAR)

©Adafruit Industries Page 20 of 28

scleraMap = pi3d.Texture("graphics/sclera.png", mipmap=False,
 filter=pi3d.GL_LINEAR, blend=True)

Most common graphics formats (JPG, GIF, PNG — the latter with or without

transparency) are supported. The images are square to make the OpenGL library

happy.

The graphics are stored flat and unrolled,

like a map projection. The horizontal (X)

axis works like the longitude, or angle

around the eye, while the vertical (Y) axis

is the latitude.

The iris (file iris.jpg) is what we think of as

the “color” of the eye and is most often

what you’ll want to edit. Sometimes you

just need to edit the hue & saturation in a

program like Photoshop, or you can make

something totally custom if you’re after a

particular look.

The sclera (file sclera.png) is the “white” of

the eye…which really isn’t that white at all.

There’s veins and blotches and gross stuff!

This file is a transparent PNG to simulate

the transition where the sclera meets the

lens…it’s not an abrupt transition, there’s a

slight “fuzziness” to it. When editing, try to

preserve that transparency (and note the

couple of transparent rows at the bottom,

necessary because of the way OpenGL

interpolates these images).

©Adafruit Industries Page 21 of 28

https://learn.adafruit.com//assets/46706
https://learn.adafruit.com//assets/46706
https://learn.adafruit.com//assets/46707
https://learn.adafruit.com//assets/46707
https://learn.adafruit.com//assets/46708
https://learn.adafruit.com//assets/46708

(The third file, lidMap, probably shouldn’t be changed. It’s complicated.)

Around line 79 in the code is this:

Load SVG file, extract paths & convert to point lists --------------------

dom = parse("graphics/eye.svg")

eye.svg (or cyclops-eye.svg for the single-eye code) is a Scalable Vector Graphics

(SVG) file that determines the size and shape of various elements. Suppose you want

Krampus eyes, with that freaky horizontal goat pupil? Or dragon eyes with a vertical

slit pupil? (In fact there’s an example file there for that — dragon-eye.svg.)

InkScape and Adobe Illustrator (among others) can both load and save SVG files.

But…editing / substituting this file is fairly tricky, as the names of individual paths are

used in the Python code. If your graphics editor of choice does not maintain these

element names exactly when changing or saving the file, the Python code will fail to

run.

In Illustrator, you can see the path names by toggling “Layer 1” open:

The largest blue circle there, which extends to the edges of the document, can mostly

be ignored…it’s there for reference and represents the outer bounds of the eye ball

(which can’t be changed).

The iris path (which needs to remain a circle, though you can change its size)

determines the size of the outer edge of the iris relative to the whole eye.

©Adafruit Industries Page 22 of 28

pupilMin and pupilMax are the size and shape of the pupil in its most contracted and

most dilated positions, as it responds to light. This doesn’t need to be a circle! Have a

look at dragon-eye.svg for example.

Two additional blue circles — scleraFront and scleraBack — are used in determining

the “sweep” of the white of the eye. Notice it overlaps the outer edge of the iris

slightly, and is open at the back (we have no need for the back of the eye, so it’s not

modeled or rendered).

Red paths are used for animating the eyelids. upperLidOpen and upperLidClosed are

the shape of the upper eyelid in its fully-open and fully-closed positions. lowerLidOpe

n and lowerLidClosed are the same for the lower eyelid. upperLidEdge and lowerLidE

dge are used by the software to generate the other edge of the eyelid mesh

geometry, which is really a 2D polygon that occludes the eye behind it.

You’ll notice the default eye is not symmetrical. Eyes are interesting things and have a

unique shape left and right! Looking at the SVG graphics, the other eye (and nose, if

we had one) would be to the left. cyclops-eye.svg is left/right symmetrical…it’s

designed for the Pi’s single HDMI output, which might be split to two identical

displays…the asymmetrical eye would look weird and lopsided in that case, so we go

for the naïve “football shape.”

(At some point I hope to add a translucent nictitating membrane to the dragon eye,

but this hasn’t happened yet.)

Replacing Everything

Well, almost everything.

Our Python code generates OpenGL animation that goes to the Pi’s normal HDMI

video framebuffer, whether or not there’s actually an HDMI display attached. A

separate program — fbx2 — continuously copies two sections of the framebuffer to

the TFT or OLED displays attached to the Snake Eyes Bonnet.

This means, if you really want, the entire eye-animating program could be replaced

with code of your own design in whatever language you like. As long as your code

positions graphics in the right places, fbx2 will present that on the TFT/OLED screens.

(I’ve even tried installing fbx2 over RetroPie — yes, you can play Doom on these

eyes!)

©Adafruit Industries Page 23 of 28

The pi-eyes.sh installer script configures the Pi’s video output resolution to either

640x480 pixels (for OLED or TFT) or 1280x720 pixels (for IPS). It could be nearly any

resolution, but these sizes were chosen for a reason, explained in a moment…

Picture the screen split evenly; two rectangular regions side-by-side. The eyes will be

centered within these regions, regardless their size or aspect ratio. The size of the

rendered eyes is specified on the command line to the Python code using the --radius

option, for example:

python eyes.py --radius 128

The fbx2 program performs repeated

screen captures, scaling it by 50%

(providing a smooth 2:1 downsampling in

the process) and then copying two

squares centered on these regions to the

connected SPI screens. For OLED or TFT,

the screens are 128x128 pixels, so the

sections of the screen copied are

256x256 pixels, and the eyes have a

radius of 128 pixels. IPS screens are

240x240 pixels, so the copied sections

are 480x480 pixels and the eyes have a

radius of 240 pixels.

There’s a lot of unused blank space around the eyes; this is normal and by design. If

developing your own code, this allows you to put debugging or status information in

the margins of the HDMI display, but not have it copied to the SPI screens. Also, the

eyelids are rendered by dynamically generating 2D meshes, and these need to be a

little larger than the eyes to fully block things out. If the eyes were right up against

each other, these would overlap.

©Adafruit Industries Page 24 of 28

https://learn.adafruit.com//assets/53165
https://learn.adafruit.com//assets/53165
https://learn.adafruit.com//assets/53212
https://learn.adafruit.com//assets/53212

Using Just the Software

The pair of TFT displays or OLEDs are great for life-size props or costumes. If you’re

looking for something larger than life, you can use the Raspberry Pi’s video output to

feed an HDMI monitor, video projector…or we’ve been having fun with the Gakken

WorldEye, a 10 inch hemispherical display from Japan…

Using HDMI video out doesn’t require the Bonnet board, unless you want analog

inputs for a joystick control or a light sensor.

Follow the steps on the “Software Installation ()” page — start with Raspbian Lite, do

some first-time configuration and get the system on your network.

Download and run the pi-eyes.sh installer script as explained there.

When prompted for a screen type, select HDMI.

Install GPIO-halt if you want a single-button shutdown option. This requires

wiring up a button between one of the GPIO header pins and ground.

Install ADC support only if you have the Snake Eyes Bonnet and want analog

inputs for a joystick or light sensor.

Install USB Ethernet gadget support only if using a Raspberry Pi Zero (or Zero W)

and want a direct USB connection from your main computer. It’s explained a bit

in this guide ().

After rebooting (about 30 seconds to one minute), you’ll be greeted with a single

large eye centered on the screen.

Use an HDMI splitter to feed the same image to multiple screens…

•

•

•

•

©Adafruit Industries Page 25 of 28

file:///home/animated-snake-eyes-bonnet-for-raspberry-pi/software-installation
file:///home/animated-snake-eyes-bonnet-for-raspberry-pi/software-installation
file:///home/turning-your-raspberry-pi-zero-into-a-usb-gadget/ethernet-gadget
file:///home/turning-your-raspberry-pi-zero-into-a-usb-gadget/ethernet-gadget

In order to work with the WorldEye display (or other HDMI devices), the code and

graphics for this version are slightly different. The TFT/OLED code (eyes.py), designed

for two separate physically-wired screens, provides a distinct shape for the left and

right eyes to approximate the caruncle (the inner corner of the eyes). The HDMI code

(cyclops.py) generates a single symmetrical eye (no carnucle), so it can be fed to an

HDMI splitter and not look lopsided on two screens.

If using something other than a WorldEye display, and if the eye image looks oddly

stretched and not round, this probably has to do with the screen aspect ratio. We can

adjust the Pi’s video output resolution to match your display’s native HDMI resolution:

sudo nano /boot/config.txt

(Or substitute your editor of choice for “nano”)

Look for this line near the end of the file:

hdmi_cvt=640 480 60 1 0 0 0

©Adafruit Industries Page 26 of 28

Change the first two numbers — 640 and 480 — to the desired resolution. Save the

changes and then reboot.

Downloads

Files

EagleCAD PCB files on GitHub ()

Fritzing object in Adafruit Fritzing library ()

Schematic

Fab Print

Dims. in mm

•

•

©Adafruit Industries Page 27 of 28

https://github.com/adafruit/Adafruit-Animated-Eyes-Bonnet-PCB
https://github.com/adafruit/Fritzing-Library

©Adafruit Industries Page 28 of 28

	Animated Snake Eyes Bonnet for Raspberry Pi
	Table of Contents
	Overview
	Hardware Assembly
	Software Installation
	Customizing the Hardware
	Customizing the Look
	Using Just the Software
	Downloads

	Overview
	Hardware Assembly
	Compatible Devices

	Plan a Head
	Software Installation
	Enable SSH

	Install Commands
	Dry Run
	Customizing the Hardware
	Analog Controls
	Buttons
	Software Changes
	Customizing the Look
	Changing the Python Code
	Changing Graphics
	Replacing Everything
	Using Just the Software
	Downloads
	Files
	Schematic
	Fab Print

