

SNVS061G-MONTH 2003-REVISED JULY 2013

LMS1585A 5A/LMS1587 5A and 3A Low Dropout Fast Response Regulators

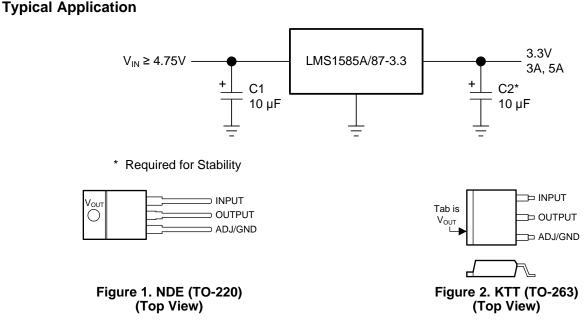
Check for Samples: LMS1585A , LMS1587

FEATURES

- Fast Transient Response
- Available in Adjustable, 1.5V, and 3.3V versions
- **Current Limiting and Thermal Protection**
- Commercial Temp. Tange: 0°C to 125°C
- Industrial Temp. Range: -40°C to 125°C
- Line Regulation 0.005% (typical)
- Load Regulation 0.05% (typical)
- Direct Replacement for LT[®] 1585A/87

APPLICATIONS

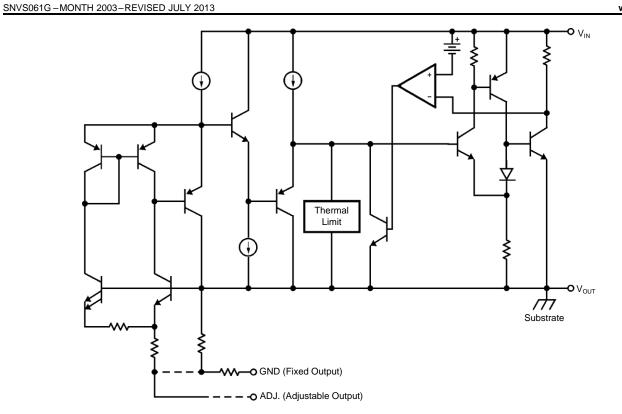
- Pentium[®] processor supplies
- **PowerPC[®] supplies**
- Other microprocessor supplies
- Low voltage logic supplies


DESCRIPTION

The LMS1585A and LMS1587 are low dropout positive regulators with output load current of 5A and 3A respectively. Their low dropout voltage (1.2V) and fast transient response make them an excellent solution for low voltage microprocessor applications.

The LMS1585A/87 are available in adjustable versions, which can set the output voltage with only two external resistors. In addition, they are also available in 1.5V and 3.3V fixed voltage versions⁽¹⁾.

The LMS1585A/87 circuits include a zener trimmed bandgap reference, current limiting and thermal shutdown. The LMS1585A/87 series are available in KTT (TO-263) and NDE (TO-220) packages.


⁽¹⁾ Consult factory for other fixed voltage options.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of **5**3 Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPC is a registered trademark of IBM. Pentium is a registered trademark of Intel Corporation. LT is a registered trademark of Linear Technology.

Table 1. LMS1585A/LMS1587 Device Options

Part Number	Output Voltage	Operating Temperature	Package Drawing	Package Type	Output Current	
LMS1585AIS-1.5	1.5V	40%C to 405%C				
LMS1585AIS-3.3	3.3V	-40°C to 125°C				
LMS1585ACS-ADJ	Adjustable		КТТ	TO-263	5A	
LMS1585ACS-1.5	1.5V					
LMS1585ACS-3.3	3.3V	0°C to 125°C				
LMS1585ACT-1.5	1.5V			TO 000	5.0	
LMS1585ACT-3.3	3.3V		NDE	TO-220	5A	
LMS1587IS-ADJ	Adjustable					
LMS1587IS-1.5	1.5V	-40°C to 125°C				
LMS1587IS-3.3	3.3V		1/77	TO 000		
LMS1587CS-ADJ	Adjustable		- KTT	TO-263		
LMS1587CS-3.3	3.3V	0°C to 125°C			3A	
LMS1587CS-1.5	1.5V					
LMS1587IT-1.5	1.5V	-40°C to 125C				
LMS1587CT-ADJ	Adjustable	0%0 to 405%0	NDE	TO-220		
LMS1587CT-3.3	3.3V	0°C to 125°C				

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

SNVS061G-MONTH 2003-REVISED JULY 2013

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾⁽²⁾

Maximum Input to Output Voltage (VIN to GND)	13V
Power Dissipation ⁽³⁾	Internally Limited
Junction Temperature (T _J) ⁽³⁾	150°C
Storage Temperature Range	-65°C to 150°C
Lead Temperature	260°C, 10 sec
ESD Tolerance ⁽⁴⁾	2000V

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics.

(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.
 (3) The maximum power dissipation is a function of T_{J(max)}, θ_{JA}, and T_A. The maximum allowable power dissipation at any ambient temperature is P_D = (T_{J(max)}-T_A)/θ_{JA}. All numbers apply for packages soldered directly into a PC board.
 (4) For testing purposes, ESD was applied using human body model, 1.5 kΩ in series with 100 pF.

Copyright © 2003-2013, Texas Instruments Incorporated

SNVS061G-MONTH 2003-REVISED JULY 2013

ELECTRICAL CHARACTERISTICS

Typicals and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, 0°C to 125°C for commercial grade and -40°C to 125°C for industrial grade.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
V _{REF}	Reference Voltage	$ \begin{array}{l} LMS1585A-ADJ \\ V_{IN}-V_{OUT}=3V, \ I_{OUT}=10mA \\ 10mA \leq I_{OUT} \leq 5A, \ 1.5V \leq V_{IN}-V_{OUT} \leq 5.75V \end{array} $	1.238 1.225	1.250 1.250	1.262 1.275	V V
		LMS1587-ADJ 10mA \leq I _{OUT} \leq 3A, 1.5V \leq V _{IN} -V _{OUT} \leq 5.75V	1.225	1.250	1.275	V
V _{OUT}	Output Voltage	$ \begin{array}{l} LMS1585A-1.5\\ I_{OUT}=0mA,\ V_{IN}=5V\\ 0\leq I_{OUT}\leq 5A,\ 3V\leq V_{IN}\leq 7V \end{array} $	1.485 1.470	1.500	1.515 1.530	V V
		LMS1585A-3.3 I _{OUT} = 0mA, V _{IN} = 5V $0 \le I_{OUT} \le 5A$, 4.75V $\le V_{IN} \le 7V$	3.267 3.235	3.300 3.300	3.333 3.365	V V
		LMS1587-1.5 V $_{\rm IN}$ = 5V, I $_{\rm OUT}$ = 0mA, TJ = 25°C 0≤ I $_{\rm OUT}$ ≤ 3A, 3V ≤ V $_{\rm IN}$ ≤ 7V	1.485 1.470	1.500 1.500	1.515 1.530	V V
		LMS1587-3.3 0 \leq I _{OUT} \leq 3A, 4.75V \leq V _{IN} \leq 7V	3.235	3.300	3.365	V
ΔV _{OUT} Line Regu	Line Regulation ⁽³⁾	LMS1585A/87-ADJ I _{OUT} = 10mA, 2.75V ≤ V _{IN} ≤ 7V		0.005	0.2	%
		LMS1585A/87-3.3 I _{OUT} = 0mA, 4.75V ≤ V _{IN} ≤ 7V		0.005	0.2	%
		LMS1585A/87-1.5 I _{OUT} = 0mA, 3V ≤ V _{IN} ≤ 7V		0.005	0.2	%
ΔV _{OUT}	Load Regulation ⁽³⁾	LMS1585A-ADJ $V_{IN}-V_{OUT} = 3V$, 10mA $\leq I_{OUT} \leq 5A$		0.05	0.3 0.5	%
		LMS1585A-1.5/LMS1585A-3.3 V _{IN} = 5V, 0 ≤ I _{OUT} ≤ 5A		0.05 0.05	0.3 0.5	%
		LMS1587-ADJ $V_{IN}-V_{OUT} = 3V$, 10mA \leq IOUT \leq 3A		0.05 0.05	0.3 0.5	%
		LMS1587-1.5/LMS1587-3.3 V _{IN} = 5V, 0 ≤ I _{OUT} ≤ 3A		0.05 0.05	0.3 0.5	% %
V _{IN} -V _{OUT}	Dropout Voltage	LMS1585A-ADJ/LMS1587-ADJ ΔV _{REF} = 1%, I _{OUT} = 3A		1.15	1.3	V
		LMS1585A-3.3/LMS1587-3.3/ LMS1585A-1.5/LMS1587-1.5 ΔV _{OUT} = 1%, I _{OUT} = 3A		1.15	1.3	V
		LMS1585A-ADJ ∆V _{REF} = 1%, I _{OUT} = 5A		1.2	1.4	V
		LMS1585A-1.5/LMS1585A-3.3 ΔV _{OUT} = 1%, I _{OUT} = 5A		1.2	1.4	V

All limits are specified by testing or statistical analysis. (1)

(2) (3) Typical Values represent the most likely parametric norm.

Load and line regulation are measured at constant junction temperature, and are ensured up to the maximum power dissipation of 30W. Power dissipation is determined by the input/output differential and the output current. Ensured maximum power dissipation will not be available over the full input/output range.

Copyright © 2003–2013, Texas Instruments Incorporated

SNVS061G-MONTH 2003-REVISED JULY 2013

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

Typicals and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, 0°C to 125°C for commercial grade and -40°C to 125°C for industrial grade.

I _{LIMIT}	Current Limit	LMS1585A-ADJ/LMS1585A-3.3/LMS1585A-1.5 V _{IN} -V _{OUT} = 5.5V	5.0	6.6		А
		LMS1587-ADJ/LMS1587-3.3/LMS1587-1.5 V _{IN} -V _{OUT} = 5.5V	3.1	4.3		A
	Minimum Load Current ⁽⁴⁾	LMS1585A/87-ADJ 1.5V ≤ V _{IN} −V _{OUT} ≤ 5.75V		2.0	10.0	mA
	Quiescent Current	LMS1585A-3.3/LMS1587-3.3/ LMS1585A-1.5/LMS1587-1.5 V _{IN} = 5V		7.0	13.0	mA
	Thermal Regulation	TA = 25°C, 30ms Pulse		0.003		%/W
	Ripple Rejection	LMS1585A-ADJ $f_{RIPPLE} = 120Hz, V_{IN}-V_{OUT} = 3V,$ $I_{OUT} = 5A, C_{OUT} = 25\mu F Tantalum$		72		dB
		$\label{eq:LMS1585A-1.5} \begin{split} LMS1585A-1.5 \\ f_{RIPPLE} &= 120Hz, \ C_{OUT} = 25\mu F \\ Tantalum, \ I_{OUT} &= 5A, \ V_{IN} = 4.5V \end{split}$	60	72		dB
		LMS1585A-3.3 f _{RIPPLE} = 120Hz, C _{OUT} = 25 μ F Tantalum, I _{OUT} = 5A, V _{IN} = 6.3V		72		dB
		LMS1587-ADJ f _{RIPPLE} = 120 Hz, V _{IN} -V _{OUT} = 3V, I _{OUT} = 3A C _{OUT} = 25 μ F Tantalum		72		dB
		LMS1587-1.5 $f_{RIPPLE} = 120$ Hz, $C_{OUT} = 25\mu$ F Tantalum, $I_{OUT} = 3A$, $V_{IN} = 4.5V$	60	72		dB
		LMS1587-3.3 f _{RIPPLE} = 120 Hz, C _{OUT} = 25 μ F Tantalum, I _{OUT} = 3A, V _{IN} = 6.3V		72		dB
	Adjust Pin Current			55	120	μA
	Adjust Pin Current	$10mA \le I_{OUT} \le I_{FULLLOAD},$ $1.5V \le V_{IN}-V_{OUT} \le 5.75V^{(5)}$		0.2		μA
	Temperature Stability			0.5		%
	Long Term Stability	TA = 125°C, 1000Hrs		0.03		%
	RMS Output Noise (% of V _{OUT})	10Hz ≤ f ≤ 10kHz		0.003		%
	Thermal Resistance Junction-to-Case	3-Lead KTT (TO-263): Control/Output Section 3-Lead NDE (TO-220): Control/Output Section			0.65/2.7 0.65/2.7	*C/W *C/W

(4) The minimum output current required to maintain regulation.
(5) I_{FULLLOAD} is 5A for LMS1585A and 3A for LMS1587.

APPLICATION NOTE

OUTPUT VOLTAGE

The adjustable version develops at 1.25V reference voltage, (VREF), between the output and the adjust terminal. As shown in Figure 3, this voltage is applied across resistor R1 to generate a constant current I1. This constant current then flows through R2. The resulting voltage drop across R2 adds to the reference voltage to sets the desired output voltage.

The current I_{ADJ} from the adjustment terminal introduces an output error. But since it is small (120µA max), it becomes negligible when R1 is in the 100 Ω range.

For fixed voltage devices, R1 and R2 are integrated inside the devices.

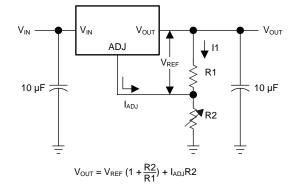


Figure 3. Basic Adjustable Regulator

Copyright © 2003–2013, Texas Instruments Incorporated

11-Jan-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
LMS1585ACS-1.5	NRND	DDPAK/ TO-263	КТТ	3	45	Non-RoHS & Green	Call TI	Call TI	0 to 125	LMS1585 ACS-1.5	
LMS1585ACS-1.5/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	0 to 125	LMS1585 ACS-1.5	Samples
LMS1585ACS-3.3	NRND	DDPAK/ TO-263	КТТ	3	45	Non-RoHS & Green	Call TI	Call TI	0 to 125	LMS1585 ACS-3.3	
LMS1585ACS-3.3/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	0 to 125	LMS1585 ACS-3.3	Samples
LMS1585ACSX-1.5/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	0 to 125	LMS1585 ACS-1.5	Samples
LMS1585ACSX-3.3/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	0 to 125	LMS1585 ACS-3.3	Samples
LMS1585ACSX-ADJ/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	0 to 125	LMS1585 ACS-ADJ	Samples
LMS1585ACT-1.5/NOPB	ACTIVE	TO-220	NDE	3	45	RoHS & Green	SN	Level-1-NA-UNLIM	0 to 125	LMS1585ACT 1.5	Samples
LMS1585ACT-3.3/NOPB	ACTIVE	TO-220	NDE	3	45	RoHS & Green	SN	Level-1-NA-UNLIM	0 to 125	LMS1585 ACT-3.3	Samples
LMS1585AIS-1.5	NRND	DDPAK/ TO-263	КТТ	3	45	Non-RoHS & Green	Call TI	Call TI	-40 to 125	LMS1585 AIS-1.5	
LMS1585AIS-1.5/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	-40 to 125	LMS1585 AIS-1.5	Samples
LMS1585AIS-3.3/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	-40 to 125	LMS1585 AIS-3.3	Samples
LMS1585AISX-3.3/NO	ACTIVE	DDPAK/ TO-263	КТТ	3	500	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	-40 to 125	LMS1585 AIS-3.3	Samples
LMS1587CS-1.5/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	0 to 125	LMS1587 CS-1.5	Samples
LMS1587CS-3.3/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	0 to 125	LMS1587 CS-3.3	Samples
LMS1587CS-ADJ	NRND	DDPAK/ TO-263	КТТ	3	45	Non-RoHS & Green	Call TI	Call TI	0 to 125	LMS1587 CS-ADJ	

PACKAGE OPTION ADDENDUM

11-Jan-2021

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
LMS1587CS-ADJ/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	0 to 125	LMS1587 CS-ADJ	Samples
LMS1587CSX-1.5/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	0 to 125	LMS1587 CS-1.5	Samples
LMS1587CSX-3.3/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	0 to 125	LMS1587 CS-3.3	Samples
LMS1587CSX-ADJ/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	0 to 125	LMS1587 CS-ADJ	Samples
LMS1587CT-3.3	NRND	TO-220	NDE	3	45	Non-RoHS & Green	Call TI	Call TI	0 to 125	LMS1587 CT-3.3	
LMS1587CT-3.3/NOPB	ACTIVE	TO-220	NDE	3	45	RoHS & Green	SN	Level-1-NA-UNLIM	0 to 125	LMS1587 CT-3.3	Samples
LMS1587CT-ADJ/NOPB	ACTIVE	TO-220	NDE	3	45	RoHS & Green	SN	Level-1-NA-UNLIM	0 to 125	LMS1587 CT-ADJ	Sample
LMS1587IS-1.5	NRND	DDPAK/ TO-263	КТТ	3	45	Non-RoHS & Green	Call TI	Call TI	-40 to 125	LMS1587 IS-1.5	
LMS1587IS-1.5/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	-40 to 125	LMS1587 IS-1.5	Samples
LMS1587IS-3.3	NRND	DDPAK/ TO-263	КТТ	3	45	Non-RoHS & Green	Call TI	Call TI	-40 to 125	LMS1587 IS-3.3	
LMS1587IS-3.3/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	-40 to 125	LMS1587 IS-3.3	Samples
LMS1587IS-ADJ	NRND	DDPAK/ TO-263	КТТ	3	45	Non-RoHS & Green	Call TI	Call TI	-40 to 125	LMS1587 IS-ADJ	
LMS1587IS-ADJ/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	-40 to 125	LMS1587 IS-ADJ	Samples
LMS1587ISX-3.3/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	-40 to 125	LMS1587 IS-3.3	Sample
LMS1587ISX-ADJ/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	RoHS-Exempt & Green	SN	Level-3-245C-168 HR	-40 to 125	LMS1587 IS-ADJ	Sample
LMS1587IT-1.5/NOPB	ACTIVE	TO-220	NDE	3	45	RoHS & Green	SN	Level-1-NA-UNLIM	-40 to 125	LMS1587 IT-1.5	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

11-Jan-2021

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

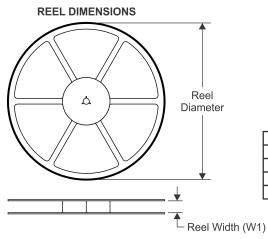
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

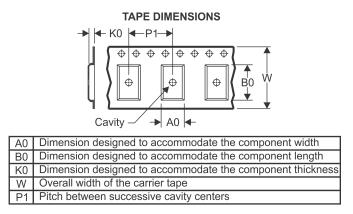
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

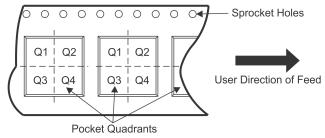
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

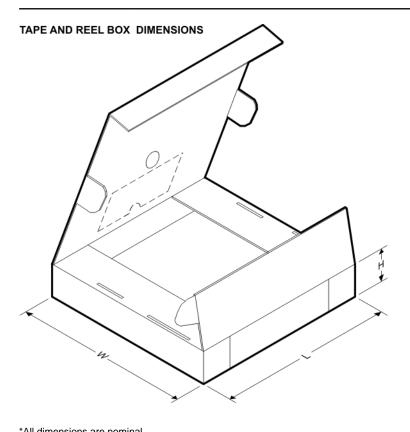

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

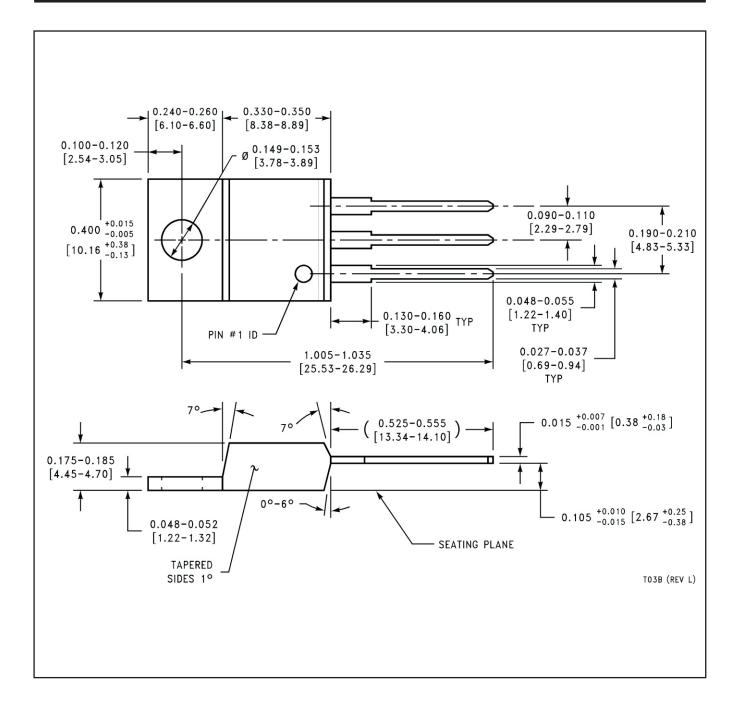
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMS1585ACSX-1.5/NOPB	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LMS1585ACSX-3.3/NOPB	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
_MS1585ACSX-ADJ/NOP B	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LMS1585AISX-3.3/NO	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LMS1587CSX-1.5/NOPB	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LMS1587CSX-3.3/NOPB	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LMS1587CSX-ADJ/NOPB	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LMS1587ISX-3.3/NOPB	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LMS1587ISX-ADJ/NOPB	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2

TEXAS INSTRUMENTS

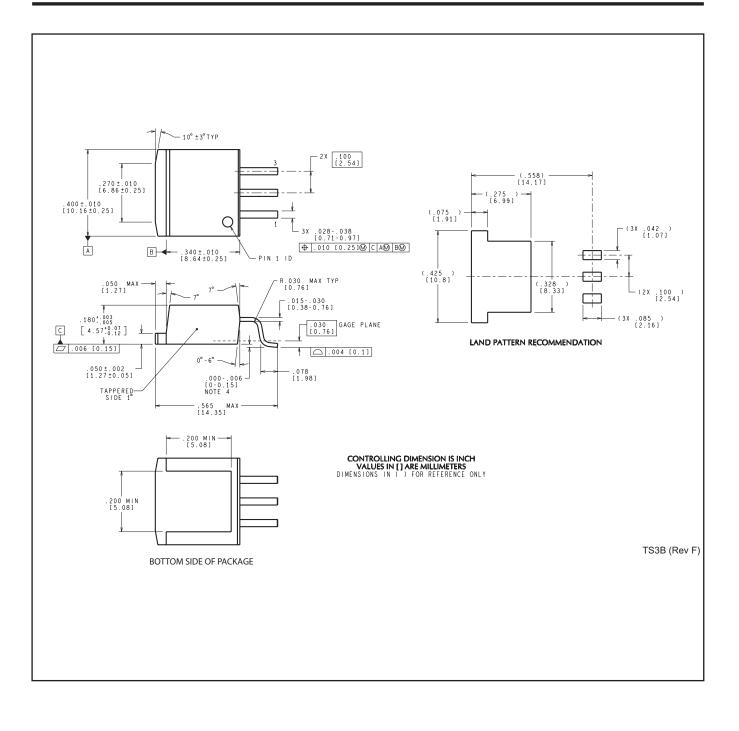
www.ti.com

PACKAGE MATERIALS INFORMATION


15-Sep-2018

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMS1585ACSX-1.5/NOPB	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1585ACSX-3.3/NOPB	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1585ACSX-ADJ/NOP B	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LMS1585AISX-3.3/NO	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1587CSX-1.5/NOPB	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1587CSX-3.3/NOPB	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1587CSX-ADJ/NOPB	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1587ISX-3.3/NOPB	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1587ISX-ADJ/NOPB	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0

MECHANICAL DATA


NDE0003B

MECHANICAL DATA

KTT0003B

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated