

MSP430FR5969-SP

SLASEK0A - DECEMBER 2017 - REVISED MARCH 2018

MSP430FR5969-SP Radiation Hardened Mixed-Signal Microcontroller

1 Device Overview

INSTRUMENTS

1.1 Features

Texas

- Radiation-Hardness Assured
 - Extended Temperature Operation (–55°C to 105°C) ⁽¹⁾
 - Single Event Latchup (SEL) Immune to 72 MeV.cm²/mg at 125°C
 - Radiation Lot Acceptance Tested to 50 krad
 - 48-pin VQFN Plastic Package
 - Single Controlled Baseline
 - Extended Product Change Notification
 - Product Traceability
 - Extended Product Life Cycle
- Embedded Microcontroller
 - 16-Bit RISC Architecture up to 16-MHz Clock
 - Wide Supply Voltage Range (1.8 V to 3.6 V) ⁽²⁾
- Optimized Ultra-Low-Power Modes
 - Active Mode: Approximately 100 µA/MHz
 - Standby (LPM3 With VLO): 0.4 µA (Typical)
 - Real-Time Clock (LPM3.5): 0.25 µA (Typical) (3)
 - Shutdown (LPM4.5): 0.02 μA (Typical)
- Ultra-Low-Power Ferroelectric RAM (FRAM)
 - Up to 64KB of Nonvolatile Memory
 - Ultra-Low-Power Writes
 - Fast Write at 125 ns Per Word (64KB in 4 ms)
 - Unified Memory = Program + Data + Storage in One Single Space
 - 10¹⁵ Write Cycle Endurance
 - Radiation Resistant and Nonmagnetic
- Intelligent Digital Peripherals
 - 32-Bit Hardware Multiplier (MPY)
 - 3-Channel Internal DMA
 - Real-Time Clock (RTC) With Calendar and Alarm Functions
 - Five 16-Bit Timers With up to Seven Capture/Compare Registers Each
- (1) Refer to MSP430FR5969-SP EM Lifetime Derating Chart in the *Specifications* Section.
- Minimum supply voltage is restricted by SVS levels.
 BTC is clocked by a 2.7 pE envited.
- (3) RTC is clocked by a 3.7-pF crystal.

1.2 Applications

• Spacecraft Distributed Telemetry and Housekeeping

- 16-Bit Cyclic Redundancy Checker (CRC)
- High-Performance Analog
 - 16-Channel Analog Comparator
 - 12-Bit Analog-to-Digital Converter (ADC)
 With Internal Reference and Sample-and-Hold and up to 16 External Input Channels
- Multifunction Input/Output Ports
 - Accessible Bit-, Byte-, and Word-Wise (in Pairs)
 - Edge-Selectable Wake From LPM on All Ports
 - Programmable Pullup and Pulldown on All Ports
- Code Security and Encryption
 - 128-Bit or 256-Bit AES Security Encryption and Decryption Coprocessor
 - Random Number Seed for Random Number Generation Algorithms
- Enhanced Serial Communication
 - eUSCI_A0 and eUSCI_A1 Support
 - UART With Automatic Baud-Rate Detection
 - IrDA Encode and Decode
 - SPI
 - eUSCI_B0 Supports
 - I²C With Multiple Slave Addressing
 - SPI
 - Hardware UART
- Flexible Clock System
 - Fixed-Frequency DCO With 10 Selectable Factory-Trimmed Frequencies
 - Low-Power Low-Frequency Internal Clock Source (VLO)
 - 32-kHz Crystals (LFXT)
 - High-Frequency Crystals (HFXT)
- Development Tools and Software
 - Free Professional Development Environments With EnergyTrace++[™] Technology
 - Development Kit (MSP-TS430RGZ48C)
- For Complete Module Descriptions, See the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide
- Sensor Management
- Data Logging

1.3 Description

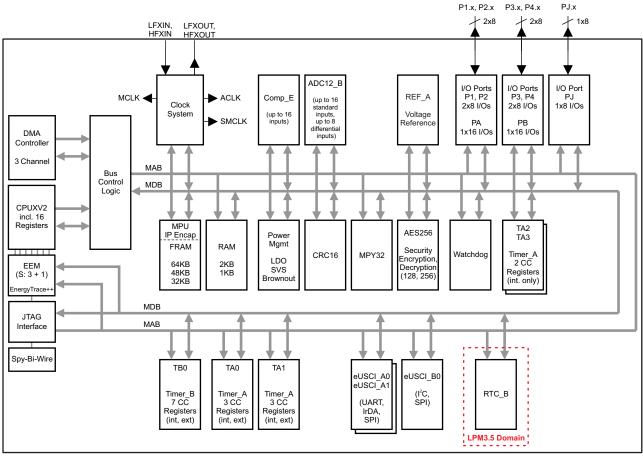
The MSP430[™] ultra-low-power (ULP) FRAM platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, allowing innovators to increase performance at lowered energy budgets. FRAM technology combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash at much lower power.

The ultra low-power architecture of the MSP430FR5969-SP showcases seven low-power modes, optimized to achieve power efficient distributed telemetry/housekeeping systems.

The integrated mixed-signal features of the MSP430FR5969-SP make it ideally suited for distributed telemetry applications in next-generation spacecraft. The strong immunity to single-event latchup and total ionizing dose, enable the device to be used in a variety of space and radiation environments.

....

Device Information ⁽¹⁾						
PART NUMBER	GRADE	PACKAGE ⁽²⁾				
M4FR5969SRGZT-MLS	MLS	48-pin VQFN 7.00 mm × 7.00 mm				
M4FR5969SPHPT-MLS	MLS	HTQFP (48) 7.00 mm × 7.00 mm				


(1) For the most current part, package, and ordering information for all available devices, see the *Package Option Addendum* in Section 8, or see the TI website at www.ti.com.

(2) The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 8.

1.4 Functional Block Diagram

Figure 1-1 shows the functional block diagram of the devices.

Copyright © 2017, Texas Instruments Incorporated

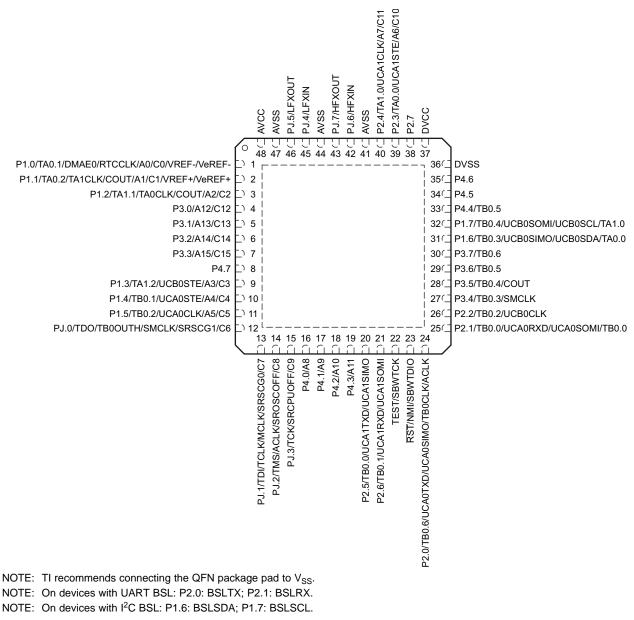
Figure 1-1. Functional Block Diagram

Table of Contents

1	Devid	ce Overview	<u>1</u>
	1.1	Features	
	1.2	Applications	
	1.3	Description	
	1.4	Functional Block Diagram	<u>3</u>
2	Revis	sion History	2 3 5
3	Term	inal Configuration and Functions	
	3.1	Pin Diagrams	<u>6</u>
	3.2	Signal Descriptions	<u> </u>
	3.3	Pin Multiplexing	<u>11</u>
	3.4	Connection of Unused Pins	<u>11</u>
4	Spec	ifications	<u>12</u>
	4.1	Absolute Maximum Ratings	<u>12</u>
	4.2	ESD Ratings	<u>12</u>
	4.3	Recommended Operating Conditions	<u>12</u>
	4.4	Active Mode Supply Current Into V _{CC} Excluding External Current	13
	4.5	Typical Characteristics – Active Mode Supply Currents	14
	4.6	Low-Power Mode (LPM0, LPM1) Supply Currents Into V _{CC} Excluding External Current	14
	4.7	Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into V_{CC}) Excluding External Current	15
	4.8	Low-Power Mode (LPM3.5, LPM4.5) Supply Currents (Into V _{CC}) Excluding External Current	16
	4.9	Typical Characteristics, Current Consumption per Module	17
	4.10	Thermal Resistance Characteristics	17
	4.11	Timing and Switching Characteristics	18
	4.12	Emulation and Debug	46
5	Detai	led Description	47
	5.1	Overview	47

	5.2	CPU	47
	5.3	Operating Modes	48
	5.4	Interrupt Vector Table and Signatures	51
	5.5	Memory Organization	54
	5.6	Bootloader (BSL)	
	5.7	JTAG Operation	
	5.8	FRAM	
	5.9	Memory Protection Unit Including IP Encapsulation	56
	5.10	Peripherals	
	5.11	Input and Output Diagrams	_
	5.12	Device Descriptor (TLV)	105
	5.13	Identification	107
6	Appli	ications, Implementation, and Layout	108
	6.1	Software Best Practices for Radiation Effects	
		Mitigation	<u>108</u>
	6.2	Device Connection and Layout Fundamentals	<u>108</u>
	6.3	Peripheral- and Interface-Specific Design	
		Information	<u>112</u>
7	Devid	ce and Documentation Support	<u>114</u>
	7.1	Getting Started and Next Steps	<u>114</u>
	7.2	Tools and Software	<u>115</u>
	7.3	Documentation Support	<u>117</u>
	7.4	Radiation Information	<u>118</u>
	7.5	Related Links	<u>118</u>
	7.6	Community Resources	<u>119</u>
	7.7	Trademarks	<u>119</u>
	7.8	Electrostatic Discharge Caution	<u>119</u>
	7.9	Export Control Notice	<u>119</u>
	7.10	Glossary	<u>119</u>
8		nanical, Packaging, and Orderable mation	<u>120</u>

2 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (December 2017) to Revision A	Page
Added PHP package option	<u>2</u>

3 Terminal Configuration and Functions

3.1 Pin Diagrams

Figure 3-1 shows the 48-pin RGZ package for the MSP430FR5969-SP MCU.

Figure 3-1. 48-Pin RGZ/PHP Package (Top View) – MSP430FR5969-SP

6

3.2 Signal Descriptions

describes the signals for all device variants and package options.

Signal Descriptions

TERMINAL				
NO. ⁽²⁾		I/O ⁽¹⁾	DESCRIPTION	
NAME	RGZ and PHP			
P1.0/TA0.1/DMAE0/ RTCCLK/A0/C0/VREF-/ VeREF-	1	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TA0 CCR1 capture: CCI1A input, compare: Out1 External DMA trigger RTC clock calibration output (not available on MSP430FR5x5x devices) Analog input A0 for ADC Comparator input C0 Output of negative reference voltage Input for an external negative reference voltage to the ADC	
P1.1/TA0.2/TA1CLK/ COUT/A1/C1/VREF+/ VeREF+	2	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TA0 CCR2 capture: CCI2A input, compare: Out2 TA1 input clock Comparator output Analog input A1 for ADC Comparator input C1 Output of positive reference voltage Input for an external positive reference voltage to the ADC	
P1.2/TA1.1/TA0CLK/ COUT/A2/C2	3	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TA1 CCR1 capture: CCI1A input, compare: Out1 TA0 input clock Comparator output Analog input A2 for ADC Comparator input C2	
P3.0/A12/C12	4	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 Analog input A12 for ADC Comparator input C12	
P3.1/A13/C13	5	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 Analog input A13 for ADC Comparator input C13	
P3.2/A14/C14	6	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 Analog input A14 for ADC Comparator input C14	
P3.3/A15/C15	7	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 Analog input A15 for ADC Comparator input C15	
P4.7	8	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
P1.3/TA1.2/UCB0STE/ A3/C3	9	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TA1 CCR2 capture: CCI2A input, compare: Out2 Slave transmit enable – eUSCI_B0 SPI mode Analog input A3 for ADC Comparator input C3	

(1) I = input, O = output

(2) N/A = not available

Copyright © 2017–2018, Texas Instruments Incorporated

7

Signal Descriptions (continued)

TERMINAL				
NO. ⁽²⁾		I/O ⁽¹⁾	DESCRIPTION	
NAME	RGZ and PHP			
			General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
			TB0 CCR1 capture: CCI1A input, compare: Out1	
P1.4/TB0.1/UCA0STE/ A4/C4	10	I/O	Slave transmit enable – eUSCI_A0 SPI mode	
			Analog input A4 for ADC	
			Comparator input C4	
			General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
			TB0 CCR2 capture: CCI2A input, compare: Out2	
P1.5/TB0.2/UCA0CLK/ A5/C5	11	I/O	Clock signal input – eUSCI_A0 SPI slave mode, Clock signal output – eUSCI_A0 SPI master mode	
			Analog input A5 for ADC	
			Comparator input C5	
			General-purpose digital I/O	
			Test data output port	
PJ.0/TDO/TB0OUTH/	12	I/O	Switch all PWM outputs high impedance input – TB0	
SMCLK/SRSCG1/C6	12	1/0	SMCLK output	
			Low-Power Debug: CPU Status Register Bit SCG1	
			Comparator input C6	
	13		General-purpose digital I/O	
PJ.1/TDI/TCLK/MCLK/			Test data input or test clock input	
SRSCG0/C7		I/O	MCLK output	
			Low-Power Debug: CPU Status Register Bit SCG0	
			Comparator input C7	
			General-purpose digital I/O	
PJ.2/TMS/ACLK/			Test mode select	
SROSCOFF/C8	14	I/O		
			Low-Power Debug: CPU Status Register Bit OSCOFF	
			Comparator input C8	
			General-purpose digital I/O	
PJ.3/TCK/ SRCPUOFF/C9	15	I/O	Test clock	
			Low-Power Debug: CPU Status Register Bit CPUOFF Comparator input C9	
			General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
P4.0/A8	16	I/O	Analog input A8 for ADC	
			General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
P4.1/A9	17	I/O	Analog input A9 for ADC	
			General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
P4.2/A10	18	I/O	Analog input A10 for ADC	
			General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
P4.3/A11	P4.3/A11 19		Analog input A11 for ADC	
			General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
P2.5/TB0.0/UCA1TXD/			TB0 CCR0 capture: CCI0B input, compare: Out0	
UCA1SIMO	20	I/O	Transmit data – eUSCI_A1 UART mode	
			Slave in, master out – eUSCI_A1 SPI mode	
L		1		

Signal Descriptions (continued)

TERMINAL				
NO. ⁽²⁾		I/O ⁽¹⁾	DESCRIPTION	
NAME	RGZ and PHP			
P2.6/TB0.1/UCA1RXD/ UCA1SOMI	21	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TB0 CCR1 compare: Out1 Receive data – eUSCI_A1 UART mode	
			Slave out, master in – eUSCI_A1 SPI mode	
TEST/SBWTCK	22	I	Test mode pin – select digital I/O on JTAG pins Spy-Bi-Wire input clock	
RST/NMI/SBWTDIO	23	I/O	Reset input active low Nonmaskable interrupt input Spy-Bi-Wire data input/output	
P2.0/TB0.6/UCA0TXD/ UCA0SIMO/TB0CLK/ ACLK	24	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TB0 CCR6 capture: CCI6B input, compare: Out6 Transmit data – eUSCI_A0 UART mode BSL Transmit (UART BSL) Slave in, master out – eUSCI_A0 SPI mode TB0 clock input ACLK output	
P2.1/TB0.0/UCA0RXD/ UCA0SOMI/TB0.0	25	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TB0 CCR0 capture: CCI0A input, compare: Out0 Receive data – eUSCI_A0 UART mode BSL receive (UART BSL) Slave out, master in – eUSCI_A0 SPI mode TB0 CCR0 capture: CCI0A input, compare: Out0	
P2.2/TB0.2/UCB0CLK	26	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TB0 CCR2 compare: Out2 Clock signal input – eUSCI_B0 SPI slave mode Clock signal output – eUSCI_B0 SPI master mode	
P3.4/TB0.3/SMCLK	27	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TB0 CCR3 capture: CCI3A input, compare: Out3 SMCLK output	
P3.5/TB0.4/COUT	28	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TB0 CCR4 capture: CCI4A input, compare: Out4 Comparator output	
P3.6/TB0.5	29	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TB0 CCR5 capture: CCI5A input, compare: Out5	
P3.7/TB0.6	30	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TB0 CCR6 capture: CCI6A input, compare: Out6	
P1.6/TB0.3/UCB0SIMO/ UCB0SDA/TA0.0	31	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TB0 CCR3 capture: CCI3B input, compare: Out3 Slave in, master out – eUSCI_B0 SPI mode I ² C data – eUSCI_B0 I ² C mode BSL Data (I ² C BSL) TA0 CCR0 capture: CCI0A input, compare: Out0	

Signal Descriptions (continued)

TERMINAL				
NO. ⁽²⁾		I/O ⁽¹⁾	DESCRIPTION	
NAME	RGZ and PHP			
P1.7/TB0.4/UCB0SOMI/ UCB0SCL/TA1.0	32	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TB0 CCR4 capture: CCI4B input, compare: Out4 Slave out, master in – eUSCI_B0 SPI mode I ² C clock – eUSCI_B0 I ² C mode BSL clock (I ² C BSL) TA1 CCR0 capture: CCI0A input, compare: Out0	
P4.4/TB0.5	33	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TB0CCR5 capture: CCI5B input, compare: Out5	
P4.5	34	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
P4.6	35	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
DVSS	36		Digital ground supply	
DVCC	37		Digital power supply	
P2.7	38	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
P2.3/TA0.0/UCA1STE/ A6/C10	39	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TA0 CCR0 capture: CCI0B input, compare: Out0 Slave transmit enable – eUSCI_A1 SPI mode Analog input A6 for ADC Comparator input C10	
P2.4/TA1.0/UCA1CLK/ A7/C11	40	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TA1 CCR0 capture: CCI0B input, compare: Out0 Clock signal input – eUSCI_A1 SPI slave mode Clock signal output – eUSCI_A1 SPI master mode Analog input A7 for ADC Comparator input C11	
AVSS	41		Analog ground supply	
PJ.6/HFXIN	42	I/O	General-purpose digital I/O Input for high-frequency crystal oscillator HFXT (in RHA and DA packages: MSP430FR595x devices only)	
PJ.7/HFXOUT	43	I/O	General-purpose digital I/O Output for high-frequency crystal oscillator HFXT (in RHA and DA packages: MSP430FR595x devices only)	
AVSS	44		Analog ground supply	
PJ.4/LFXIN	45	I/O	General-purpose digital I/O Input for low-frequency crystal oscillator LFXT (in RHA and DA packages: MSP430FR594x devices only)	
PJ.5/LFXOUT	46	I/O	General-purpose digital I/O Output of low-frequency crystal oscillator LFXT (in RHA and DA packages: MSP430FR594x devices only)	
AVSS	47		Analog ground supply	
AVCC	48		Analog power supply	
QFN Pad	Pad		QFN package exposed thermal pad. TI recommends connection to $V_{SS}.$	

3.3 Pin Multiplexing

Pin multiplexing for these devices is controlled by both register settings and operating modes (for example, if the device is in test mode). For details of the settings for each pin and diagrams of the multiplexed ports, see Section 5.11.

3.4 Connection of Unused Pins

Table 3-1 lists the correct termination of all unused pins.

PIN	POTENTIAL	COMMENT
AVCC	DV _{CC}	
AVSS	DV _{SS}	
Px.0 to Px.7	Open	Set to port function, output direction (PxDIR.n = 1)
RST/NMI	DV_{CC} or V_{CC}	47-k Ω pullup or internal pullup selected with 2.2-nF (10-nF $^{(2)})$ pulldown
PJ.0/TDO PJ.1/TDI PJ.2/TMS PJ.3/TCK	Open	The JTAG pins are shared with general-purpose I/O function (PJ.x). If not used as JTAG pins, these pins should be switched to port function, output direction. When used as JTAG pins, these pins should remain open.
TEST	Open	This pin always has an internal pulldown enabled.

Table 3-1. Connection of Unused Pins⁽¹⁾

(1) Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin connection guidelines.

(2) The pulldown capacitor should not exceed 2.2 nF when using devices in Spy-Bi-Wire mode or in 4wire JTAG mode with TI tools like FET interfaces or GANG programmers. If JTAG or Spy-Bi-Wire access is not needed, up to a 10-nF pulldown capacitor may be used.

4 Specifications

4.1 Absolute Maximum Ratings⁽¹⁾

over operating temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Voltage applied at DVCC and AVCC pins to V _{SS}	-0.3	4.1	V
Voltage difference between DVCC and AVCC pins ⁽²⁾		±0.3	V
Voltage applied to any pin ⁽³⁾	-0.3	V _{CC} + 0.3 V (4.1 Max)	V
Diode current at any device pin		±2	mA
Storage temperature, T _{stg} ⁽⁴⁾	-55	125	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Voltage differences between DVCC and AVCC exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.

(3) All voltages referenced to V_{SS}.

(4) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

4.2 ESD Ratings

				VALUE	UNIT
	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1000	N/		
`	V(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±250	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance.

4.3 Recommended Operating Conditions

Typical data are based on V_{CC} = 3.0 V, T_A = 25°C (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage range applied at all DVCC and AVCC pins $^{(1)}$ $^{(2)}$ $^{(3)}$		1.8 ⁽⁴⁾		3.6	V
V _{SS}	Supply voltage applied at all DVSS and AVSS pins			0		V
TJ	Operating junction temperature		-55		105	°C
C _{DVCC}	Capacitor value at DVCC ⁽⁵⁾		1_20%			μF
	SYSTEM Processor frequency (maximum MCLK frequency) ⁽⁶⁾	No FRAM wait states (NWAITSx = 0)	0		8 ⁽⁷⁾	N 41 1-
ISYSTEM		With FRAM wait states $(NWAITSx = 1)^{(8)}$	0		16 ⁽⁹⁾	MHz
f _{ACLK}	Maximum ACLK frequency				50	kHz
f _{SMCLK}	Maximum SMCLK frequency				16 ⁽⁹⁾	MHz

(1) TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.

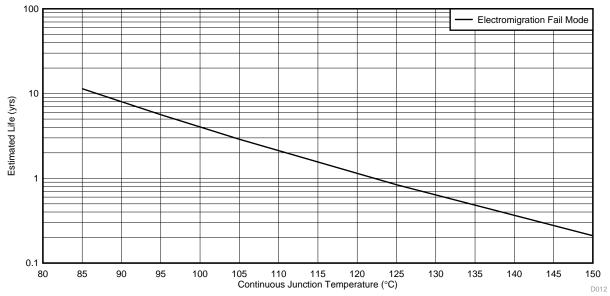
(2) See Table 4-1 for additional important information.

(3) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.

(4) The minimum supply voltage is defined by the supervisor SVS levels. See Table 4-2 for the exact values.

(5) Connect a low-ESR capacitor with at least the value specified and a maximum tolerance of 20% as close as possible to the DVCC pin.

(6) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.


(7) DCO settings and HF crystals with a typical value less or equal the specified MAX value are permitted.
 (8) Wait states only occur on actual FRAM accesses; that is, on FRAM cache misses. RAM and peripheral accesses are always executed

without wait states.
(9) DCO settings and HF crystals with a typical value less or equal the specified MAX value are permitted. If a clock sources with a larger typical value is used, the clock must be divided in the clock system.

12 Specifications

UMENTS

- (1) See data sheet for absolute maximum and minimum recommended operating conditions.
- (2) The predicted operating lifetime vs junction temperature is based on reliability modeling using electromigration as the dominant failure mechanism affecting device wear-out for the specific device process and design characteristics.

Figure 4-1. MSP430FR5969-SP EM Lifetime Derating Chart

4.4 Active Mode Supply Current Into V_{cc} Excluding External Current

over recommended operating temperature (unless otherwise noted)^{(1) (2)}

						FREG	UENCY (f	MCLK = fs	мськ)				
PARAMETER	EXECUTION MEMORY	v _{cc}	1 MH 0 wait s (NWAITS	tates	4 Mi 0 wait s (NWAITS	tates	8 MH 0 wait s (NWAITS	tates	12 M 1 wait s (NWAITS	states	16 M 1 wait s (NWAITS	tates	UNIT
			TYP	MAX	ТҮР	MAX	ТҮР	MAX	ТҮР	MAX	TYP	MAX	
I _{AM, FRAM_UNI} (Unified memory) ⁽³⁾	FRAM	3.0 V	210		640		1220		1475		1845		μΑ
I _{AM, FRAM (0%)} ⁽⁴⁾ ⁽⁵⁾	FRAM 0% cache hit ratio	3.0 V	370		1280		2510		2080		2650		μA
I _{AM, FRAM (50%)} ^{(4) (5)}	FRAM 50% cache hit ratio	3.0 V	240		745		1440		1575		1990		μΑ
I _{AM, FRAM (66%)} ^{(4) (5)}	FRAM 66% cache hit ratio	3.0 V	200		560		1070		1300		1620		μΑ
I _{AM, FRAM (75%)} ^{(4) (5)}	FRAM 75% cache hit ratio	3.0 V	170	255	480		890	1085	1155	1310	1420	1620	μA

All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.
 Characterized with program executing typical data processing.

f_{ACLK} = 32768 Hz, f_{MCLK} = f_{SMCLK} = f_{DCO} at specified frequency, except for 12 MHz. For 12 MHz, f_{DCO}= 24 MHz and $f_{MCLK} = f_{SMCLK} = f_{DCO}/2.$

At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency (f_{MCLK.eff}) decreases. The effective MCLK frequency also depends on the cache hit ratio. SMCLK is not affected by the number of wait states or the cache hit ratio.

The following equation can be used to compute f_{MCLK.eff}:

 $f_{MCLK,eff} = f_{MCLK} / [wait states × (1 - cache hit ratio) + 1]$

For example, with 1 wait state and 75% cache hit ratio, $f_{MCKL.eff} = f_{MCLK} / [1 \times (1 - 0.75) + 1] = f_{MCLK} / 1.25$.

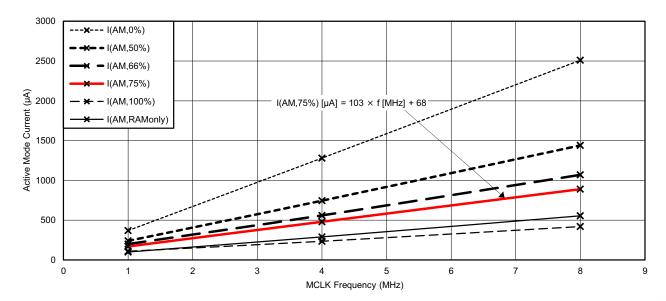
Represents typical program execution. Program and data reside entirely in FRAM. All execution is from FRAM. (3)

Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit (4) ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 75% ratio implies three of every four accesses is from cache, and the remaining are FRAM accesses.

See Figure 4-2 for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for best (5) linear fit using the typical data from Section 4.4.

Copyright © 2017-2018, Texas Instruments Incorporated

Active Mode Supply Current Into V_{cc} Excluding External Current *(continued)*


						FREG	UENCY (f	_{NCLK} = f _s	MCLK)				
PARAMETER	EXECUTION MEMORY	v _{cc}	1 MHz 0 wait states (NWAITSx = 0)		4 MHz 0 wait states (NWAITSx = 0)		8 MHz 0 wait states (NWAITSx = 0)		12 MHz 1 wait states (NWAITSx = 1)		16 MHz 1 wait states (NWAITSx = 1)		UNIT
			TYP	MAX	TYP	MAX	TYP	MAX	ТҮР	MAX	TYP	MAX	
I _{AM, FRAM (100%)} ^{(4) (5)}	FRAM 100% cache hit ratio	3.0 V	110		235		420		640		730		μA
I _{AM, RAM} ⁽⁶⁾	RAM	3.0 V	130		320		585		890		1070		μA
I _{AM, RAM only} ⁽⁷⁾ ⁽⁵⁾	RAM	3.0 V	100	180	290		555		860		1040	1300	μA

over recommended operating temperature (unless otherwise noted)^{(1) (2)}

(6) Program and data reside entirely in RAM. All execution is from RAM.

(7) Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.

4.5 Typical Characteristics – Active Mode Supply Currents

NOTE: I(AM, cache hit ratio): Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 75% ratio implies three of every four accesses is from cache, and the remaining are FRAM accesses.

NOTE: I(AM, RAMonly): Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.

Figure 4-2. Typical Active Mode Supply Currents vs MCLK Frequency, No Wait States

4.6 Low-Power Mode (LPM0, LPM1) Supply Currents Into V_{cc} Excluding External Current

over recommended operating temperature (unless otherwise noted)⁽¹⁾ (2)

		FREQUENCY (f _{SMCLK})										
PARAMETER	V _{cc}	1 MHz		4 MHz		8 MHz		12 MHz		16 MHz		UNIT
		TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
	2.2 V	70		95		150		250		215		
ILPM0	3.0 V	80	115	105		160		260		225	260	μA
I _{LPM1}	2.2 V	35		60		115		215		180		
	3.0 V	35	60	60		115		215		180	205	μA

(1) All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current.

(2) Current for watchdog timer clocked by SMCLK included.

 f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = f_{DCO} at specified frequency, except for 12 MHz. For 12 MHz, f_{DCO} = 24 MHz and f_{SMCLK} = f_{DCO} / 2.

www.ti.com

4.7 Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into V_{cc}) Excluding External Current

	PARAMETER	V _{cc}	MIN TYP	MAX	UNIT
1	(2) (3) (4)	2.2 V	0.9		٨
LPM2,XT12	Low-power mode 2, 12-pF crystal ^{(2) (3) (4)}	3 V	0.9	17	μA
1	Low power mode 2, 2,7 pC ervetel ⁽²⁾ (5) (4)	2.2 V	0.9		A
ILPM2,XT3.7	Low-power mode 2, 3.7-pF crystal ^{(2) (5) (4)}	3 V	0.9		μA
	Low never mode 2, $M_{\rm O}$ indudes $S_{\rm V}(S_{\rm O})$	2.2 V	0.7		۸
LPM2,VLO	Low-power mode 2, VLO, includes SVS ⁽⁶⁾	3 V	0.7	16.7	μA
1	Low-power mode 3, 12-pF crystal, excludes SVS ⁽²⁾ ⁽³⁾	2.2 V	0.6		٨
LPM3,XT12	SVS ⁽²⁾ (3) (7)	3 V	0.6	4.9	μA
	Low-power mode 3, 3.7-pF crystal, excludes SVS ^{(2) (5) (8)}	2.2 V	0.5		
I _{LPM3,XT3.7}	SVS ⁽²⁾ (5) (6) (also see)	3 V	0.5		μΑ
	1 subscription mode 2 $\lambda/4$ $\Omega_{\rm subscription}$ $\Omega/\Omega^{(9)}$	2.2 V	0.4		٨
LPM3,VLO	Low-power mode 3, VLO, excludes SVS ⁽⁹⁾	3 V	0.4	4.7	μA
	Low-power mode 4, includes SVS ⁽¹⁰⁾	2.2 V	0.5		•
I _{LPM4,SVS}	(also see)	3 V	0.5	4.8	μΑ
		2.2 V	0.3		
I _{LPM4}	Low-power mode 4, excludes SVS ⁽¹¹⁾	3 V	0.3	4.6	μΑ
I _{IDLE,GroupA}	Additional idle current if one or more modules from Group A (see Table 5-3) are activated in LPM3 or LPM4.	3 V	0.02	1.3	μΑ

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)⁽¹⁾

- (1) All inputs are tied to 0 V or to $V_{CC}.$ Outputs do not source or sink any current.
- (2) Not applicable for devices with HF crystal oscillator only.
- (3) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5-pF load.
- (4) Low-power mode 2, crystal oscillator test conditions: Current for watchdog timer clocked by ACLK and RTC clocked by XT1 are included. Current for brownout and SVS are included. CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2), f_{XT1} = 32768 Hz, f_{ACLK} = f_{XT1}, f_{MCLK} = f_{SMCLK} = 0 MHz
- f_{XT1} = 32768 Hz, f_{ACLK} = f_{XT1}, f_{MCLK} = 0 MHz
 (5) Characterized with a SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are chosen to closely match the required 3.7-pF load.
- (6) Low-power mode 2, VLO test conditions: Current for watchdog timer clocked by ACLK is included. RTC disabled (RTCHOLD = 1). Current for brownout and SVS are included. CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2), f_{XT1} = 0 Hz, f_{ACLK} = f_{VLO}, f_{MCLK} = f_{SMCLK} = 0 MHz
- (7) Low-power mode 3, 12-pF crystal, excludes SVS test conditions: Current for watchdog timer clocked by ACLK and RTC clocked by XT1 are included. Current for brownout is included. SVS disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),
 - $f_{XT1} = 32768$ Hz, $f_{ACLK} = f_{XT1}$, $f_{MCLK} = f_{SMCLK} = 0$ MHz
- (8) Low-power mode 3, 3.7-pF crystal, excludes SVS test conditions: Current for watchdog timer clocked by ACLK and RTC clocked by XT1 are included. Current for brownout is included. SVS disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), f_{XT1} = 32768 Hz, f_{ACLK} = f_{XT1}, f_{MCLK} = f_{SMCLK} = 0 MHz
 (9) Low-power mode 3, VLO, excludes SVS test conditions: Current for watchdog timer clocked by ACLK is included. RTC disabled (RTCHOLD = 1). Current for brownout is included. SVS is
- Current for watchdog timer clocked by ACLK is included. RTC disabled (RTCHOLD = 1). Current for brownout is included. SVS i disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),
 - $f_{XT1} = 0$ Hz, $f_{ACLK} = f_{VLO}$, $f_{MCLK} = f_{SMCLK} = 0$ MHz
- (10) Low-power mode 4, includes SVS test conditions: Current for brownout and SVS are included (SVSHE = 1). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), $f_{XT1} = 0$ Hz, $f_{ACLK} = 0$ Hz, $f_{MCLK} = f_{SMCLK} = 0$ MHz
- (11) Low-power mode 4, excludes SVS test conditions: Current for brownout is included. SVS is disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), $f_{XT1} = 0$ Hz, $f_{ACLK} = 0$ Hz, $f_{MCLK} = f_{SMCLK} = 0$ MHz

Copyright © 2017-2018, Texas Instruments Incorporated

Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into V_{cc}) Excluding External Current (continued)

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)⁽¹⁾

PARAMETER	V _{cc}	MIN	ТҮР	MAX	UNIT
Additional idle current if one or more modules from Group B (see Table 5-3) are activated in LPM3 or LPM4			0.015	1	μΑ

Low-Power Mode (LPM3.5, LPM4.5) Supply Currents (Into V_{cc}) Excluding External Current 4.8

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	V _{cc}	MIN	TYP	MAX	UNIT
1	Low-power mode 3.5, 12-pF crystal, includes $SVS^{(2)(3)(4)}$	2.2 V		0.45		۸
ILPM3.5,XT12	SVS ⁽²⁾⁽³⁾⁽⁴⁾	3.0 V		0.45	2	μA
	Low-power mode 3.5, 3.7-pF cyrstal, excludes SVS ⁽²⁾⁽⁵⁾⁽⁶⁾	2.2 V		0.25		
I _{LPM3.5,XT3.7}	excludes SVS ⁽²⁾⁽⁵⁾⁽⁶⁾ (also see)	3.0 V		0.25		μA
	Low-power mode 4.5, includes SVS ⁽⁷⁾	2.2 V		0.2		٨
LPM4.5,SVS	(also see)	3.0 V		0.2	1.5	μA
1	Low-power mode 4.5, excludes SVS ⁽⁸⁾	2.2 V		0.2		۸
I _{LPM4.5}	(also see)	3.0 V		0.2	1	μA

All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current. Not applicable for devices with HF crystal oscillator only. (1)

(2)

Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are (3) chosen to closely match the required 12.5-pF load.

Low-power mode 3.5, 12-pF crystal, includes SVS test conditions: (4) Current for RTC clocked by XT1 is included. Current for brownout and SVS are included (SVSHE = 1). Core regulator is disabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),

 $f_{XT1} = 32768$ Hz, $f_{ACLK} = f_{XT1}$, $f_{MCLK} = f_{SMCLK} = 0$ MHz Characterized with a SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are chosen (5) to closely match the required 3.7-pF load.

Low-power mode 3.5, 3.7-pF crystal, excludes SVS test conditions: (6)Current for RTC clocked by XT1 is included. Current for brownout is included. SVS is disabled (SVSHE = 0). Core regulator isdisabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),

 f_{XT1} = 32768 Hz, f_{ACLK} = f_{XT1} , f_{MCLK} = f_{SMCLK} = 0 MHz Low-power mode 4.5, includes SVS test conditions: (7)

Current for brownout and SVS are included (SVSHE = 1). Core regulator is disabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5), $f_{XT1} = 0$ Hz, $f_{ACLK} = 0$ Hz, $f_{MCLK} = f_{SMCLK} = 0$ MHz

Low-power mode 4.5, excludes SVS test conditions: (8)Current for brownout is included. SVS is disabled (SVSHE = 0). Core regulator is disabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5), $f_{XT1} = 0$ Hz, $f_{ACLK} = 0$ Hz, $f_{MCLK} = f_{SMCLK} = 0$ MHz

4.9 Typical Characteristics, Current Consumption per Module⁽¹⁾

MODULE	TEST CONDITIONS	REFERENCE CLOCK	MIN TYP MAX	UNIT
Timer_A		Module input clock	3	μA/MHz
Timer_B		Module input clock	5	μA/MHz
eUSCI_A	UART mode	Module input clock	5.5	μA/MHz
eUSCI_A	SPI mode	Module input clock	3.5	μA/MHz
eUSCI_B	SPI mode	Module input clock	3.5	μA/MHz
eUSCI_B	I ² C mode, 100 kbaud	Module input clock	3.5	μA/MHz
RTC_B		32 kHz	100	nA
MPY	Only from start to end of operation	MCLK	25	μA/MHz
AES	Only from start to end of operation	MCLK	21	μA/MHz
CRC	Only from start to end of operation	MCLK	2.5	μA/MHz

(1) For other module currents not listed here, see the module specific parameter sections.

4.10 Thermal Resistance Characteristics

	THERMAL METRIC	PACKAGE	VALUE	UNIT
θ_{JA}	Junction-to-ambient thermal resistance ⁽¹⁾		30.6	°C/W
$\theta_{\text{JC(TOP)}}$	Junction-to-case (top) thermal resistance ⁽²⁾		17.2	°C/W
θ_{JB}	Junction-to-board thermal resistance ⁽³⁾		7.2	°C/W
Ψ_{JB}	Junction-to-board thermal characterization parameter	QFN-48 (RGZ)	7.2	°C/W
Ψ_{JT}	Junction-to-top thermal characterization parameter		0.2	°C/W
$\theta_{\text{JC(BOTTOM)}}$	Junction-to-case (bottom) thermal resistance ⁽⁴⁾		1.2	°C/W
θ_{JA}	Junction-to-ambient thermal resistance, still air ⁽¹⁾		26.9	°C/W
θ _{JC(TOP)} \	Junction-to-case (top) thermal resistance ⁽²⁾		16.4	°C/W
θ_{JB}	Junction-to-board thermal resistance ⁽³⁾	QFP-48 (PHP)	7.6	°C/W
Ψ_{JB}	Junction-to-board thermal characterization parameter	QFP-46 (PHP)	7.6	°C/W
Ψ_{JT}	Junction-to-top thermal characterization parameter		0.2	°C/W
$\theta_{\text{JC(BOTTOM)}}$	Junction-to-case (bottom) thermal resistance ⁽⁴⁾		1.5	°C/W

(1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

(2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

(4) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

4.11 Timing and Switching Characteristics

4.11.1 Power Supply Sequencing

TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.

At power up, the device does not start executing code before the supply voltage reaches V_{SVSH+} if the supply rises monotonically to this level.

Table 4-1 lists the reset power ramp requirements.

Table 4-1. Brownout and Device Reset Power Ramp Requirements

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
V Prowpout power	Brownout power-down level ⁽¹⁾⁽²⁾	$ dDV_{CC}/d_t < 3 V/s^{(3)}$	0.7	1.68	V
V _{VCC_BOR} -	Brownout power-down levels / /	$ dDV_{CC}/d_t > 300 V/s^{(3)}$	0		V
V _{VCC_BOR+}	Brownout power-up level ⁽²⁾	$ dDV_{CC}/d_t < 3 V/s^{(4)}$	0.79	1.74	V

(1) In case of a supply voltage brownout, the device supply voltages need to ramp down to the specified brownout power-down level V_{VCC_BOR}- before the voltage is ramped up again to ensure a reliable device start-up and performance according to the data sheet including the correct operation of the on-chip SVS module.

(2) Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR resets, the supply voltage must change by less than 0.05 V per microsecond (±0.05 V/μs). Following the data sheet recommendation for capacitor C_{DVCC} should limit the slopes accordingly.

(3) The brownout levels are measured with a slowly changing supply. With faster slopes the MIN level required to reset the device properly can decrease to 0 V. Use the graph in Figure 4-3 to estimate the V_{VCC_BOR} level based on the down slope of the supply voltage. After removing VCC the down slope can be estimated based on the current consumption and the capacitance on DVCC: dV/dt = I/C with dV/dt: slope, I: current, C: capacitance.

(4) The brownout levels are measured with a slowly changing supply.

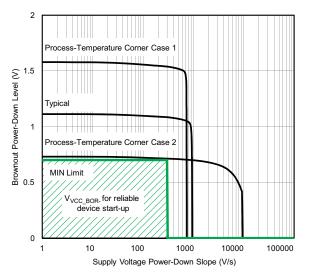


Figure 4-3. Brownout Power-Down Level vs Supply Voltage Down Slope

Table 4-2 lists the characteristics of the SVS.

Table 4-2. SVS

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{SVSH,LPM}	SVS_H current consumption, low power modes			170	300	nA
V _{SVSH-}	SVS _H power-down level		1.73	1.80	1.85	V
V _{SVSH+}	SVS _H power-up level		1.75	1.88	1.99	V
V _{SVSH_hys}	SVS _H hysteresis		40		120	mV
t _{PD,SVSH,} AM	SVS _H propagation delay, active mode	$dV_{Vcc}/dt = -10 \text{ mV}/\mu \text{s}$			10	μs

4.11.2 Reset Timing

Table 4-3 lists the required reset input timing.

Table 4-3. Reset Input

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

		V _{cc}	MIN MAX	UNIT
t _(RST)	External reset pulse duration on RST ⁽¹⁾	2.2 V, 3.0 V	2	μs

(1) Not applicable if RST/NMI pin configured as NMI.

4.11.3 Clock Specifications

Table 4-4 lists the characteristics of the LFXT.

Table 4-4. Low-Frequency Crystal Oscillator, LFXT⁽¹⁾

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		f_{OSC} = 32768 Hz, LFXTBYPASS = 0, LFXTDRIVE = {0}, T _A = 25°C, C _{L,eff} = 3.7 pF, ESR ≈ 44 kΩ	3.0 V		180		
		$\label{eq:fosc} \begin{array}{l} f_{OSC} = 32768 \mbox{ Hz}, \\ \mbox{LFXTBYPASS} = 0, \mbox{LFXTDRIVE} = \{1\}, \\ \mbox{T}_A = 25^{\circ} \mbox{C}, \mbox{ C}_{L,eff} = 6 \mbox{ pF}, \mbox{ESR} \approx 40 \mbox{k} \Omega \end{array}$	3.0 V		185		nA
IVCC.LFXT	Current consumption		3.0 V		225		ΠA
			3.0 V		330		
f _{LFXT}	LFXT oscillator crystal frequency	LFXTBYPASS = 0			32768		Hz
DC _{LFXT}	LFXT oscillator duty cycle	Measured at ACLK, f _{LFXT} = 32768 Hz		30%		70%	
f _{LFXT,SW}	LFXT oscillator logic-level square-wave input frequency	LFXTBYPASS = 1 ^{(2) (3)}		10.5	32.768	50	kHz
DC _{LFXT, SW}	LFXT oscillator logic-level square-wave input duty cycle	LFXTBYPASS = 1		30%		70%	
04	Oscillation allowance for	LFXTBYPASS = 0, LFXTDRIVE = {1}, f_{LFXT} = 32768 Hz, $C_{L,eff}$ = 6 pF			210		kΩ
OA _{LFXT}	LF crystals ⁽⁴⁾	$\label{eq:LFXTBYPASS} \begin{array}{l} LFXTBYPASS = 0, \ LFXTDRIVE = \{3\}, \\ f_{LFXT} = 32768 \ Hz, \ C_{L,eff} = 12.5 \ pF \end{array}$			300		K12
C _{LFXIN}	Integrated load capacitance at LFXIN terminal ^{(5) (6)}				2		pF
C _{LFXOUT}	Integrated load capacitance at LFXOUT terminal ^{(5) (6)}				2		pF

(1) To improve EMI on the LFXT oscillator, observe the following guidelines.

- Keep the trace between the device and the crystal as short as possible.
- Design a good ground plane around the oscillator pins.
- Prevent crosstalk from other clock or data lines into oscillator pins LFXIN and LFXOUT.
- Avoid running PCB traces underneath or adjacent to the LFXIN and LFXOUT pins.
- Use assembly materials and processes that avoid any parasitic load on the oscillator LFXIN and LFXOUT pins.
- If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins. (2) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet. Duty cycle requirements are defined by DC_{LFXT. SW}.
- Maximum frequency of operation of the entire device cannot be exceeded.
- Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application:
 - For LFXTDRIVE = {0}, $C_{L,eff}$ = 3.7 pF. For LFXTDRIVE = {1}, $C_{L,eff}$ = 6 pF

 - For LFXTDRIVE = {2}, 6 pF $\leq C_{L,eff} \leq 9 pF$ For LFXTDRIVE = {3}, 9 pF $\leq C_{L,eff} \leq 12.5$ pF
- (5) This represents all the parasitic capacitance present at the LFXIN and LFXOUT terminals, respectively, including parasitic bond and package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT are the total capacitance at the LFXIN and LFXOUT terminals, respectively.
- Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF. The PCB adds additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance of the selected crystal is met.

Table 4-4. Low-Frequency Crystal Oscillator, LFXT⁽¹⁾ (continued)

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
t _{START,LFXT} Start-up t	Start up time (7)	$ \begin{array}{l} f_{OSC} = 32768 \mbox{ Hz}, \\ \mbox{LFXTBYPASS} = 0, \mbox{LFXTDRIVE} = \{0\}, \\ \mbox{T}_A = 25^{\circ} C, \mbox{ C}_{L,eff} = 3.7 \mbox{ pF} \end{array} $	3.0 V	800			~
	Start-up time ??	$ \begin{array}{l} f_{OSC} = 32768 \mbox{ Hz}, \\ \mbox{LFXTBYPASS} = 0, \mbox{LFXTDRIVE} = \{3\}, \\ \mbox{T}_A = 25^{\circ} C, \mbox{ C}_{L,eff} = 12.5 \mbox{ pF} \end{array} $	3.0 V		1000		ms
f _{Fault,LFXT}	Oscillator fault frequency ^{(8) (9)}			0		3500	Hz

(7) Includes start-up counter of 1024 clock cycles.

(8) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specification may set the flag. A static condition or stuck at fault condition sets the flag.

(9) Measured with logic-level input frequency but also applies to operation with crystals.

Table 4-5 lists the characteristics of the HFXT.

Table 4-5. High-Frequency Crystal Oscillator, HFXT⁽¹⁾

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

PAF	RAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		$ f_{OSC} = 4 \text{ MHz}, \\ \text{HFXTBYPASS} = 0, \text{HFXTDRIVE} = 0, \text{HFFREQ} = 1^{(2)} \\ \text{T}_{A} = 25^{\circ}\text{C}, \text{ C}_{\text{L,eff}} = 18 \text{ pF}, \text{Typical ESR}, \text{ C}_{\text{shunt}} $			75		
I _{DVCC.HFXT}	HFXT oscillator crystal current HF	$ f_{OSC} = 8 \text{ MHz}, \\ \text{HFXTBYPASS} = 0, \text{HFXTDRIVE} = 1, \text{HFFREQ} = 1, \\ \text{T}_{A} = 25^{\circ}\text{C}, \text{ C}_{\text{L,eff}} = 18 \text{ pF}, \text{Typical ESR}, \text{ C}_{\text{shunt}} $	3.0 V		120		۵
'DVCC.HFXT	mode at typical ESR	$ f_{OSC} = 16 \text{ MHz}, \\ HFXTBYPASS = 0, HFXTDRIVE = 2, HFFREQ = 2, \\ T_A = 25^{\circ}\text{C}, \text{ C}_{\text{L,eff}} = 18 \text{ pF}, \text{ Typical ESR}, \text{ C}_{\text{shunt}} $	3.0 V		190		μΑ
		$f_{OSC} = 24$ MHz, HFXTBYPASS = 0, HFXTDRIVE = 3, HFFREQ = 3, T _A = 25°C, C _{L,eff} = 18 pF, Typical ESR, C _{shunt}			250		
	HFXT oscillator	HFXTBYPASS = 0, HFFREQ = $1^{(2)(3)}$		4		8	
f _{HFXT}	crystal frequency,	HFXTBYPASS = 0, HFFREQ = $2^{(3)}$		8.01		16	MHz
	crystal mode	HFXTBYPASS = 0, HFFREQ = $3^{(3)}$		16.01		24	
DC _{HFXT}	HFXT oscillator duty cycle	Measured at SMCLK, f _{HFXT} = 16 MHz		40%	50%	60%	
	HFXT oscillator	HFXTBYPASS = 1, HFFREQ = $0^{(4)(3)}$		0.9		4	
£	logic-level square-	HFXTBYPASS = 1, HFFREQ = $1^{(4)(3)}$		4.01		8	
f _{HFXT,SW}	wave input frequency, bypass	HFXTBYPASS = 1, HFFREQ = $2^{(4)(3)}$		8.01		16	MHz
	mode	HFXTBYPASS = 1, HFFREQ = $3^{(4)(3)}$		16.01		24	
DC _{HFXT, SW}	HFXT oscillator logic-level square- wave input duty cycle	HFXTBYPASS = 1		40%		60%	

(1) To improve EMI on the HFXT oscillator, observe the following guidelines.

- · Keep the traces between the device and the crystal as short as possible.
- Design a good ground plane around the oscillator pins.
- Prevent crosstalk from other clock or data lines into oscillator pins HFXIN and HFXOUT.
- Avoid running PCB traces underneath or adjacent to the HFXIN and HFXOUT pins.
- Use assembly materials and processes that avoid any parasitic load on the oscillator HFXIN and HFXOUT pins.
- If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.
-) HFFREQ = {0} is not supported for HFXT crystal mode of operation.
- (3) Maximum frequency of operation of the entire device cannot be exceeded.
- (4) When HFXTBYPASS is set, HFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet. Duty cycle requirements are defined by DC_{HFXT, SW}.

Copyright © 2017–2018, Texas Instruments Incorporated

TEXAS INSTRUMENTS

Table 4-5. High-Frequency Crystal Oscillator, HFXT⁽¹⁾ (continued)

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
•	Start-up time ⁽⁵⁾		3.0 V		1.6		
^I START,HFXT		f_{OSC} = 24 MHz , HFXTBYPASS = 0, HFXTDRIVE = 3, HFFREQ = 3, T_A = 25°C, $C_{L,eff}$ = 16 pF	3.0 V		0.6		ms
C _{HFXIN}	Integrated load capacitance at HFXIN terminal ⁽⁶⁾ (7)				2		pF
C _{HFXOUT}	Integrated load capacitance at HFXOUT terminal ⁽⁶⁾ ⁽⁷⁾				2		pF
f _{Fault,HFXT}	Oscillator fault frequency ^{(8) (9)}			0		800	kHz

(5) Includes start-up counter of 1024 clock cycles.

(6) This represents all the parasitic capacitance present at the HFXIN and HFXOUT terminals, respectively, including parasitic bond and package capacitance. The effective load capacitance, C_{L,eff} can be computed as C_{IN} × C_{OUT} / (C_{IN} + C_{OUT}), where C_{IN} and C_{OUT} are the total capacitance at the HFXIN and HFXOUT terminals, respectively.

(7) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended effective load capacitance values supported are 14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF. The PCB adds additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance of the selected crystal is met.

(8) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX might set the flag. A static condition or stuck at fault condition set the flag.

(9) Measured with logic-level input frequency but also applies to operation with crystals.

Table 4-6 lists the characteristics of the DCO.

Table 4-6. DCO

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	Vcc	MIN TYP	MAX	UNIT
f _{DCO1}	DCO frequency range 1 MHz, trimmed	Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 0, DCORSEL = 1, DCOFSEL = 0		1	±3.8%	MHz
f _{DCO2.7}	DCO frequency range 2.7 MHz, trimmed	Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 1		2.667	±3.8%	MHz
f _{DCO3.5}	DCO frequency range 3.5 MHz, trimmed	Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 2		3.5	±3.8%	MHz
f _{DCO4}	DCO frequency range 4 MHz, trimmed	Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 3		4	±3.8%	MHz
f _{DCO5.3}	DCO frequency range 5.3 MHz, trimmed	Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 4, DCORSEL = 1, DCOFSEL = 1		5.333	±3.8%	MHz
f _{DCO7}	DCO frequency range 7 MHz, trimmed	Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 5, DCORSEL = 1, DCOFSEL = 2		7	±3.8%	MHz
f _{DCO8}	DCO frequency range 8 MHz, trimmed	Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 6, DCORSEL = 1, DCOFSEL = 3		8	±3.8%	MHz
f _{DCO16}	DCO frequency range 16 MHz, trimmed	Measured at SMCLK, divide by 1, DCORSEL = 1, DCOFSEL = 4		16	±3.8% ⁽¹⁾	MHz
f _{DCO21}	DCO frequency range 21 MHz, trimmed	Measured at SMCLK, divide by 2, DCORSEL = 1, DCOFSEL = 5		21	±3.8% ⁽¹⁾	MHz
f _{DCO24}	DCO frequency range 24 MHz, trimmed	Measured at SMCLK, divide by 2, DCORSEL = 1, DCOFSEL = 6		24	±3.8% ⁽¹⁾	MHz
f _{DCO,DC}	Duty cycle	Measured at SMCLK, divide by 1, no external divide, all DCORSEL/DCOFSEL settings except DCORSEL = 1, DCOFSEL = 5 and DCORSEL = 1, DCOFSEL = 6		48% 50%	52%	
t _{DCO,} JITTER	DCO jitter	Based on f _{signal} = 10 kHz and DCO used for 12-bit SAR ADC sampling source. This achieves >74 dB SNR due to jitter (that is, it is limited by ADC performance).		2	3	ns
df _{DCO} /dT	DCO temperature drift ⁽²⁾		3.0 V	0.01		%/°C

After a wakeup from LPM1, LPM2, LPM3, or LPM4, the DCO frequency f_{DCO} might exceed the specified frequency range for a few clock cycles by up to 5% before settling into the specified steady-state frequency range. Calculated using the box method: (MAX(-55°C to 105°C) – MIN(-55°C to 105°C)) / MIN(-55°C to 105°C) / (105°C – (-55°C)) (1)

(2)

Table 4-7 lists the characteristics of the VLO.

Table 4-7. Internal Very-Low-Power Low-Frequency Oscillator (VLO)

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{VLO}	Current consumption			100		nA
f _{VLO}	VLO frequency	Measured at ACLK	3.3	9.9	16	kHz
df_{VLO}/d_T	VLO frequency temperature drift	Measured at ACLK ⁽¹⁾		0.2		%/°C
df_{VLO}/dV_{CC}	VLO frequency supply voltage drift	Measured at ACLK ⁽²⁾		0.7		%/V
f _{VLO,DC}	Duty cycle	Measured at ACLK	40%	50%	60%	

(1) Calculated using the box method: (MAX(-55°C to 105°C) - MIN(-55°C to 105°C)) / MIN(-55°C to 105°C) / (105°C - (-55°C))

(2) Calculated using the box method: (MAX(1.8 to 3.6 V) - MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V - 1.8 V)

Table 4-8 lists the characteristics of the MODOSC.

Table 4-8. Module Oscillator (MODOSC)

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IMODOSC	Current consumption	Enabled		25		μA
f _{MODOSC}	MODOSC frequency		3.75	4.8	5.5	MHz
f _{MODOSC} /dT	MODOSC frequency temperature drift ⁽¹⁾			0.08		%/°C
f _{MODOSC} /dV _{CC}	MODOSC frequency supply voltage drift ⁽²⁾			1.4		%/V
DC _{MODOSC}	Duty cycle	Measured at SMCLK, divide by 1	40%	50%	60%	

(1) Calculated using the box method: (MAX(-55°C to 105°C) - MIN(-55°C to 105°C)) / MIN(-55°C to 105°C) / (105°C - (-55°C))

(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)

4.11.4 Wake-up Characteristics

Table 4-9 list the device wake-up times.

Table 4-9. Wake-up Times From Low-Power Modes and Reset

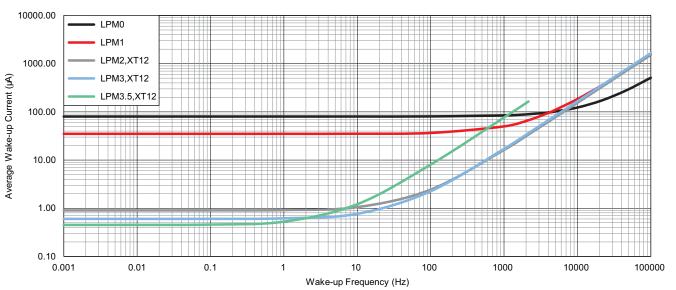
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	ТҮР	МАХ	UNIT
t _{WAKE-UP} FRAM	(Additional) wake-up time to activate the FRAM in AM if previously disabled by the FRAM controller or from an LPM if immediate activation is selected for wakeup				6	10	μS
t _{wake-up} lpm0	Wake-up time from LPM0 to active $mode^{(1)}$		2.2 V, 3.0 V			400 + 1.5 / f _{DCO}	ns
t _{WAKE-UP LPM1}	Wake-up time from LPM1 to active mode ⁽¹⁾		2.2 V, 3.0 V		6		μS
t _{WAKE-UP LPM2}	Wake-up time from LPM2 to active mode ⁽¹⁾		2.2 V, 3.0 V		6		μS
t _{WAKE-UP LPM3}	Wake-up time from LPM3 to active mode ⁽¹⁾		2.2 V, 3.0 V		7	10	μs
t _{WAKE-UP LPM4}	Wake-up time from LPM4 to active mode ⁽¹⁾		2.2 V, 3.0 V		7	10	μs
t _{WAKE-UP LPM3.5}	Wake-up time from LPM3.5 to active mode ⁽²⁾		2.2 V, 3.0 V		250	350	μS
	Make up time from LDM4.5 to potive mode $\binom{2}{2}$	SVSHE = 1	2.2 V, 3.0 V		250	350	μS
twake-up LPM4.5	Wake-up time from LPM4.5 to active mode ⁽²⁾	SVSHE = 0	2.2 V, 3.0 V		1	1.5	ms
t _{WAKE-UP-RST}	Wake-up time from a $\overline{\text{RST}}$ pin triggered reset to active mode $^{(2)}$		2.2 V, 3.0 V		250	350	μS
t _{WAKE-UP-BOR}	Wake-up time from power-up to active mode $\space^{(2)}$		2.2 V, 3.0 V		1	1.5	ms

(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first externally observable MCLK clock edge. MCLK is sourced by the DCO and the MCLK divider is set to divide-by-1 (DIVMx = 000b, f_{MCLK} = f_{DCO}). This time includes the activation of the FRAM during wakeup.

(2) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first instruction of the user program is executed.

Table 4-10 list the typical wake-up charges.


Table 4-10. Typical Wake-up Charge⁽¹⁾

also see Figure 4-4 and

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Q _{WAKE-UP FRAM}	Charge used for activating the FRAM in AM or during wakeup from LPM0 if previously disabled by the FRAM controller.		15.1		nAs
Q _{WAKE-UP LPM0}	Charge used for wakeup from LPM0 to active mode (with FRAM active)		4.4		nAs
Q _{WAKE-UP} LPM1	Charge used for wakeup from LPM1 to active mode (with FRAM active)		15.1		nAs
Q _{WAKE-UP LPM2}	Charge used for wakeup from LPM2 to active mode (with FRAM active)		15.3		nAs
Q _{WAKE-UP LPM3}	Charge used for wakeup from LPM3 to active mode (with FRAM active)		16.5		nAs
Q _{WAKE-UP LPM4}	Charge used for wakeup from LPM4 to active mode (with FRAM active)		16.5		nAs
QWAKE-UP LPM3.5	Charge used for wakeup from LPM3.5 to active mode ⁽²⁾		76		nAs
0	Observe used for unlawn from LDN4 5 to pathic mode (2)	SVSHE = 1	77		nAs
Q _{WAKE-UP} LPM4.5	Charge used for wakeup from LPM4.5 to active mode ⁽²⁾	SVSHE = 0	77.5		nAs
Q _{WAKE-UP-RESET}	Charge used for reset from $\overline{\text{RST}}$ or BOR event to active mode ⁽²⁾		75		nAs

(1) Charge used during the wake-up time from a given low-power mode to active mode. This does not include the energy required in active mode (for example, for an interrupt service routine).

(2) Charge required until start of user code. This does not include the energy required to reconfigure the device.

4.11.4.1 Typical Characteristics, Average LPM Currents vs Wake-up Frequency

NOTE: The average wakeup current does not include the energy required in active mode; for example, for an interrupt service routine or to reconfigure the device.

Figure 4-4. Average LPM Currents vs Wake-up Frequency at 25°C

4.11.5 Digital I/Os

Table 4-11 lists the characteristics of the digital inputs.

Table 4-11. Digital Inputs

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V	Desitive going input threshold voltage		2.2 V	1.2		1.65	V
V _{IT+}	Positive-going input threshold voltage		3.0 V	1.65		2.25	v
V	Negotive going input threshold voltage		2.2 V	0.55		1.00	V
V _{IT-}	Negative-going input threshold voltage		3.0 V	0.75		1.35	v
V	\mathbf{h}		2.2 V	0.44		0.98	V
V _{hys}	Input voltage hysteresis (V _{IT+} – V _{IT-})		3.0 V	0.60		1.30	v
R _{Pull}	Pullup or pulldown resistor	For pullup: $V_{IN} = V_{SS}$ For pulldown: $V_{IN} = V_{CC}$		20	35	50	kΩ
C _{I,dig}	Input capacitance, digital only port pins	$V_{IN} = V_{SS}$ or V_{CC}			3		pF
C _{I,ana}	Input capacitance, port pins with shared analog functions $^{\left(1\right) }$	$V_{IN} = V_{SS} \text{ or } V_{CC}$			5		pF
I _{lkg(Px.y)}	High-impedance input leakage current	See (2)(3)	2.2 V, 3.0 V	-20		+20	nA
t _(int)	External interrupt timing (external trigger pulse duration to set interrupt flag) ⁽⁴⁾	Ports with interrupt capability (see Section 1.4 and Section 3.2)	2.2 V, 3.0 V	22			ns
t _(RST)	External reset pulse duration on $\overline{\text{RST}}^{(5)}$		2.2 V, 3.0 V	2.2			μs

If the port pins PJ.4/LFXIN and PJ.5/LFXOUT are used as digital I/Os, they are connected by a 4-pF capacitor and a 35-MΩ resistor in (1) series. At frequencies of approximately 1 kHz and lower, the 4-pF capacitor can add to the pin capacitance of PJ.4/LFXIN and/or PJ.5/LFXOUT.

The input leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pins, unless otherwise noted. (2)

The input leakage of the digital port pins is measured individually. The port pin is selected for input, and the pullup or pulldown resistor is (3)disabled.

An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals (4)shorter than $t_{(int)}$. Not applicable if RST/NMI pin configured as NMI.

(5)

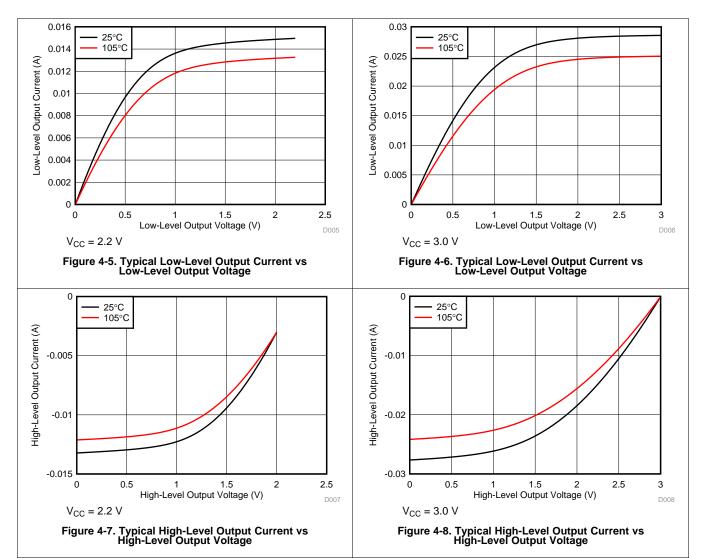
Table 4-12 lists the characteristics of the digital outputs.

Table 4-12. Digital Outputs

over recommended ranges of supply voltage and operating temperature (unless otherwise noted) (also see Figure 4-5, Figure 4-6, Figure 4-7, and Figure 4-8)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		$I_{(OHmax)} = -1 \text{ mA}^{(1)}$	2.2.1/	V _{CC} – 0.25		V _{CC}	
V	High lovel output veltage	$I_{(OHmax)} = -3 \text{ mA}^{(2)}$	2.2 V	V _{CC} - 0.60		V _{CC}	V
V _{OH}	High-level output voltage	$I_{(OHmax)} = -2 \text{ mA}^{(1)}$	3.0 V	$V_{CC} - 0.25$		V _{CC}	v
		$I_{(OHmax)} = -6 \text{ mA}^{(2)}$	3.0 V	$V_{CC} - 0.60$		V _{CC}	
		$I_{(OLmax)} = 1 \text{ mA}^{(1)}$	2.2 V	V _{SS}		$V_{SS} + 0.25$	
V _{OL}	Low-level output voltage	$I_{(OLmax)} = 3 \text{ mA}^{(2)}$	2.2 V	V _{SS}		$V_{SS} + 0.60$	V
VOL	Low-level output voltage	$I_{(OLmax)} = 2 \text{ mA}^{(1)}$	3.0 V	V _{SS}		V _{SS} + 0.25	v
		$I_{(OLmax)} = 6 \text{ mA}^{(2)}$	5.0 V	V _{SS}		$V_{SS} + 0.60$	
4	Port output frequency (with load) ⁽³⁾	$C_{L} = 20 \text{ pF}, \text{ R}_{L}^{(4)(5)}$	2.2 V	16			MHz
f _{Px.y}	For output frequency (with load)	$C_L = 20 \text{ pr}, R_L C C_L$		16			
4	(2)	ACLK, MCLK, or SMCLK at	2.2 V	16			
f _{Port_CLK}	Clock output frequency ⁽³⁾	configured output port, $C_L = 20 \text{ pF}^{(5)}$	3.0 V	16			MHz
+	Port output rise time, digital only port	C _L = 20 pF	2.2 V		4	15	ns
t _{rise,dig}	pins	0L = 20 pr	3.0 V		3	15	115
+	Port output fall time, digital only port	C ₁ = 20 pF	2.2 V		4	15	ns
t _{fall,dig}	pins	CL = 20 pr	3.0 V		3	15	115
+	Port output rise time, port pins with	C ₁ = 20 pF	2.2 V		6	15	ns
t _{rise,ana}	shared analog functions	CL = 20 pr	3.0 V		4	15	115
+	Port output fall time, port pins with	C = 20 pE	2.2 V		6	15	20
t _{fall,ana}	shared analog functions	C _L = 20 pF	3.0 V		4	15	ns

(1) The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified.


(2) The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified.

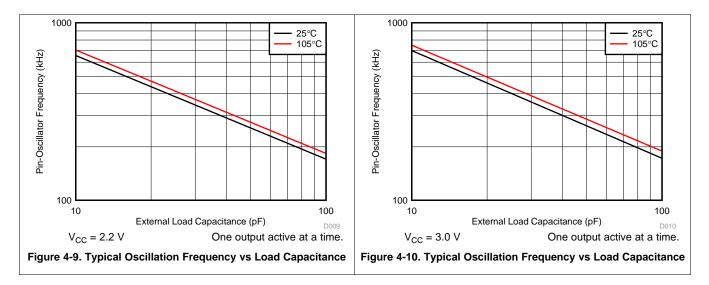
(3) The port can output frequencies at least up to the specified limit, and the port might support higher frequencies.

(4) A resistive divider with 2 x R1 and R1 = 1.6 k Ω between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider. C_L = 20 pF is connected from the output to V_{SS}.

(5) The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

4.11.5.1 Typical Characteristics, Digital Outputs at 3.0 V and 2.2 V

Table 4-13 lists the frequencies of the pin oscillator.


Table 4-13. Pin-Oscillator Frequency, Ports Px

over recommended ranges of supply voltage and operating temperature (unless otherwise noted) (see Figure 4-9 and Figure 4-10)

	PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	UNIT	
fo _{Px.y} Pi		Px.y, $C_L = 10 \text{ pF}^{(1)}$	201		1640			
	Pin-oscillator frequency	Px.y, $C_L = 20 \text{ pF}^{(1)}$	3.0 V		870		kHz	

(1) C_L is the external load capacitance connected from the output to V_{SS} and includes all parasitic effects such as PCB traces.

4.11.5.2 Typical Characteristics, Pin-Oscillator Frequency

4.11.6 Timer_A and Timer_B

Table 4-14 lists the characteristics of the Timer_A.

Table 4-14. Timer_A

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{TA}	Timer_A input clock frequency	Internal: SMCLK or ACLK, External: TACLK, Duty cycle = 50% ±10%	2.2 V, 3.0 V			16	MHz
t _{TA,cap}	Timer_A capture timing	All capture inputs, minimum pulse duration required for capture	2.2 V, 3.0 V	20			ns

Table 4-15 lists the characteristics of the Timer_B.

Table 4-15. Timer_B

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{TB}	Timer_B input clock frequency	Internal: SMCLK or ACLK, External: TBCLK, Duty cycle = 50% ±10%	2.2 V, 3.0 V			16	MHz
t _{TB,cap}	Timer_B capture timing	All capture inputs, minimum pulse duration required for capture	2.2 V, 3.0 V	20			ns

4.11.7 eUSCI

Table 4-16 lists the supported clock frequencies of the eUSCI in UART mode.

Table 4-16. eUSCI (UART Mode) Clock Frequency

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
f _{eUSCI}	eUSCI input clock frequency	Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10%		16	MHz
f _{BITCLK}	BITCLK clock frequency (equals baud rate in MBaud)			4	MHz

Table 4-17 lists the deglitch times of the eUSCI in UART mode.

Table 4-17. eUSCI (UART Mode)

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP MAX	UNIT
tt	t _t UART receive deglitch time ⁽¹⁾	UCGLITx = 0	2.2 V, 3.0 V	5	30	
		UCGLITx = 1		20	90	
		UCGLITx = 2		35	160	ns
		UCGLITx = 3		50	220	

(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. Thus the selected deglitch time can limit the maximum usable baud rate. To ensure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time.

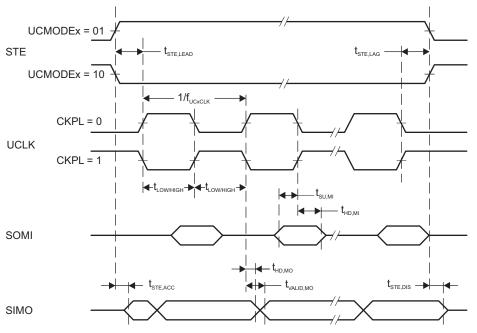
Table 4-18 lists the supported clock frequencies of the eUSCI in SPI master mode.

Table 4-18. eUSCI (SPI Master Mode) Clock Frequency

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT	
t upou el ISCI input clock frequency	Internal: SMCLK or ACLK, Duty cycle = 50% ±10%		16	MHz	

Table 4-19 lists the characteristics of the eUSCI in SPI master mode.


Table 4-19. eUSCI (SPI Master Mode)

over recommended ranges of supply voltage and operating temperature (unless otherwise noted) (see note ⁽¹⁾)

	PARAMETER	TEST CONDITIONS	Vcc	MIN	MAX	UNIT	
t _{STE,LEAD}	STE lead time, STE active to clock	UCSTEM = 1, UCMODEx = 01 or 10		1		UCxCLK	
t _{STE,LAG}	STE lag time, last clock to STE inactive	UCSTEM = 1, UCMODEx = 01 or 10		1		cycles	
t _{STE,ACC}	STE access time, STE active to SIMO data out	UCSTEM = 0, UCMODEx = 01 or 10	2.2 V, 3.0 V		60	ns	
t _{STE,DIS}	STE disable time, STE inactive to SOMI high impedance	UCSTEM = 0, UCMODEx = 01 or 10	2.2 V, 3.0 V		60	ns	
	SOMI input data setup time		2.2 V	35		20	
t _{SU,MI}			3.0 V	35		ns	
			2.2 V	0			
t _{HD,MI}	SOMI input data hold time		3.0 V	0		ns	
	SIMO output data valid time ⁽²⁾	LICI K adapta SIMO valid. C. 20 pF	2.2 V		10		
t _{VALID,MO}		UCLK edge to SIMO valid, $C_L = 20 \text{ pF}$	3.0 V		10	ns	
	SIMO output data hold time $^{(3)}$	0 00 5	2.2 V	0			
t _{HD,MO}		$C_{L} = 20 \text{ pF}$	3.0 V	0		ns	

 f_{UCXCLK} = 1 / 2t_{LO/HI} with t_{LO/HI} = max(t_{VALID,MO(eUSCI}) + t_{SU,SI(Slave}), t_{SU,MI(eUSCI}) + t_{VALID,SO(Slave})) For the slave parameters t_{SU,SI(Slave}) and t_{VALID,SO(Slave}), see the SPI parameters of the attached slave.
 Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams in Figure 4-11 and Figure 4-12.

Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data (3) on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 4-11 and Figure 4-12.

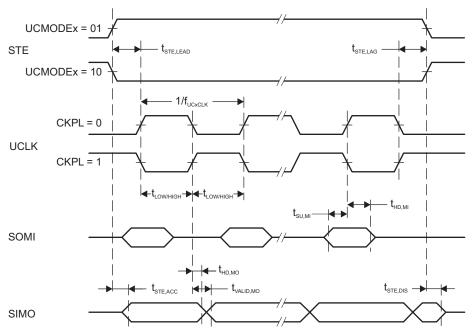


Figure 4-12. SPI Master Mode, CKPH = 1

Table 4-20 lists the characteristics of the eUSCI in SPI slave mode.

Table 4-20. eUSCI (SPI Slave Mode)

over recommended ranges of supply voltage and operating temperature (unless otherwise noted) (see Note ⁽¹⁾)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
t _{STE,LEAD}	STE lead time, STE active to clock		2.2 V	45		20
			3.0 V	40		ns
+	t _{STE,LAG} STE lag time, last clock to STE inactive		2.2 V	0		ns
^I STE,LAG			3.0 V	0		
+	STE access time. STE active to SOMI date out		2.2 V		45	20
t _{STE,ACC} STE access time, STE active to SOMI data out		3.0 V		40	ns	
	STE disable time, STE inactive to SOMI high impedance		2.2 V		40	
t _{STE,DIS}			3.0 V		35	ns
			2.2 V	4		ns
t _{SU,SI}	SIMO input data setup time		3.0 V	4		
			2.2 V	7		ns
t _{HD,SI}	HD,SI SIMO input data hold time		3.0 V	7		
i	contraction to the contraction of (2)	UCLK edge to SOMI valid,	2.2 V		35	
t _{VALID,SO} SOMI output data valid time ⁽²⁾	$C_L = 20 \text{ pF}$	3.0 V		35	ns	
	SOMI sutnut data hald time ⁽³⁾	0 00 5	2.2 V	0		20
t _{HD,SO}	$_{D,SO}$ SOMI output data hold time ⁽³⁾ $C_{L} =$	C _L = 20 pF	3.0 V	0		ns

(1)

 $f_{UCxCLK} = 1/2 t_{LO/HI} \text{ with } t_{LO/HI} \ge max(t_{VALID,MO(Master)} + t_{SU,SI(eUSCI)}, t_{SU,MI(Master)} + t_{VALID,SO(eUSCI)})$ For the master parameters $t_{SU,MI(Master)}$ and $t_{VALID,MO(Master)}$, see the SPI parameters of the attached master. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams (2) in Figure 4-13 and Figure 4-14.

Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 4-13 (3) and Figure 4-14.

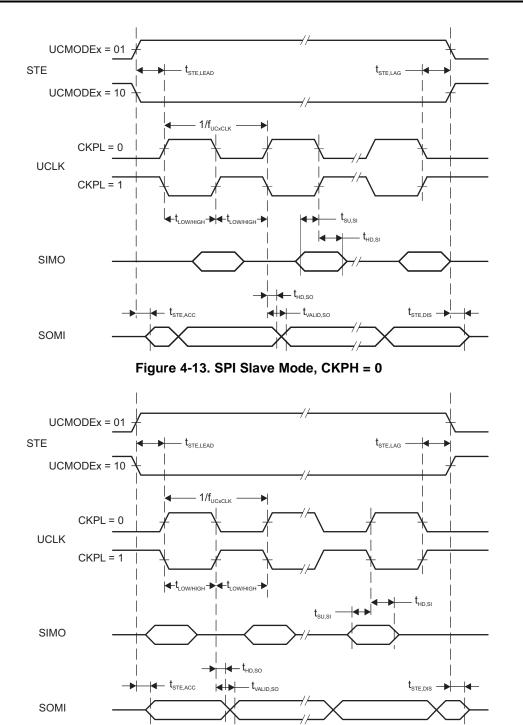


Table 4-21 lists the characteristics of the eUSCI in I²C mode.

Table 4-21. eUSCI (I²C Mode)

over recommended ranges of supply voltage and operating temperature (unless otherwise noted) (see Figure 4-15)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT	
f _{eUSCI}	eUSCI input clock frequency	Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10%				16	MHz	
f _{SCL}	SCL clock frequency		2.2 V, 3.0 V	0		400	kHz	
	Held time (repeated) START	f _{SCL} = 100 kHz	0.0.1/ 0.0.1/	4.0				
t _{HD,STA}	Hold time (repeated) START	f _{SCL} > 100 kHz	2.2 V, 3.0 V	0.6			μs	
+	Setup time for a repeated START	f _{SCL} = 100 kHz	– 2.2 V, 3.0 V	4.7			μs	
t _{SU,STA}	Setup time for a repeated START	f _{SCL} > 100 kHz	2.2 V, 3.0 V	0.6				
t _{HD,DAT}	Data hold time		2.2 V, 3.0 V	0			ns	
t _{SU,DAT}	Data setup time		2.2 V, 3.0 V	100			ns	
	Setup time for STOP	f _{SCL} = 100 kHz	– 2.2 V, 3.0 V	4.0			μs	
t _{SU,STO}		f _{SCL} > 100 kHz		0.6				
	Bus free time between a STOP and	f _{SCL} = 100 kHz		4.7			μs	
t _{BUF}	START condition	f _{SCL} > 100 kHz		1.3				
		UCGLITx = 0		50		250	ns	
	Pulse duration of spikes suppressed by	UCGLITx = 1		25		125		
t _{SP}	input filter	UCGLITx = 2	2.2 V, 3.0 V	12.5		62.5		
		UCGLITx = 3		6.3		31.5		
		UCCLTOx = 1	2.2 V, 3.0 V		27			
t _{TIMEOUT}	Clock low time-out	UCCLTOx = 2			30		ms	
		UCCLTOx = 3			33			

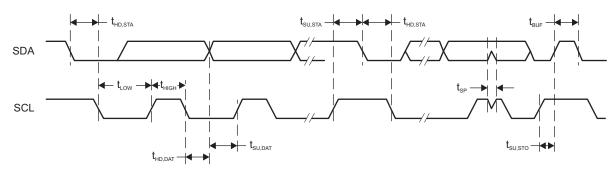


Figure 4-15. I²C Mode Timing

4.11.8 ADC

Table 4-22 lists the input requirements of the ADC.

Table 4-22. 12-Bit ADC, Power Supply and Input Range Conditions

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	NOM	MAX	UNIT
V(Ax)	Analog input voltage range ⁽¹⁾	All ADC12 analog input pins Ax		0		AVCC	V
I(ADC12 B) Or continue our plu our protection of		$f_{ADC12CLK} = MODCLK, ADC12ON = 1,$	3.0 V		145	190	
single- ended mode	Operating supply current into AVCC plus DVCC terminals ⁽²⁾ ⁽³⁾	ADC12PWRMD = 0, ADC12DIF = 0, REFON = 0, ADC12SHTx = 0, ADC12DIV = 0	2.2 V		140	185	μA
I(ADC12_B)		$ \begin{array}{l} f_{ADC12CLK} = MODCLK, \ ADC12ON = 1, \\ ADC12PWRMD = 0, \ ADC12DIF = 1, \\ REFON = 0, \ ADC12SHTx = 0, \\ ADC12DIV = 0 \end{array} $	3.0 V		175	235	
differential mode	Operating supply current into AVCC plus DVCC terminals ⁽²⁾ ⁽³⁾		2.2 V		170	230	μA
CI	Input capacitance	Only one terminal Ax can be selected at one time	2.2 V		10	15	pF
RI	Input MUX ON resistance	$0 V \leq V(Ax) \leq AVCC$	>2 V		0.5	4	kΩ
			<2 V		1	10	kΩ

The analog input voltage range must be within the selected reference voltage range V_{R+} to V_{R-} for valid conversion results. The internal reference supply current is not included in current consumption parameter $I_{(ADC12_B)}$. Approximately 60% (typical) of the total current into the AVCC and DVCC terminals is from AVCC. (1)

(2) (3)

Table 4-23 lists the timing parameters of the ADC.

Table 4-23. 12-Bit ADC, Timing Parameters

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
f _{ADC12CLK}	Frequency for specified performance	For specified performance of A with ADC12PWRMD = 0. If ADC12PWRMD = 1, the mat shown here.		0.45		5.4	MHz
f _{ADC12CLK}	Frequency for reduced performance	Linearity parameters have red	nearity parameters have reduced performance		32.768		kHz
f _{ADC12OSC}	Internal oscillator ⁽¹⁾	ADC12DIV = 0, $f_{ADC12CLK} = f_{AI}$	DC12OSC from MODCLK	4	4.8	5.4	MHz
t	Conversion time	REFON = 0, Internal oscillator $f_{ADC12CLK} = f_{ADC12OSC}$ from MC		2.6		3.5	110
^t CONVERT	Conversion time	External $f_{ADC12CLK}$ from ACLK, MCLK, or SMCLK, ADC12SSEL $\neq 0$ See		See (2)		μs	
t _{ADC12ON}	Turnon settling time of the ADC	See ⁽³⁾				100	ns
t _{ADC120FF}	Time ADC must be off before it can be turned on again	t _{ADC12OFF} must be met to make holds.	e sure that $t_{ADC12ON}$ time	100			ns
t _{Sample}	Sampling time	R_{S} = 400 Ω, R_{I} = 4 kΩ, C_{I} = 15 pF, C_{pext} = 8 pF ⁽⁴⁾	All pulse sample mode (ADC12SHP = 1) and extended sample mode (ADC12SHP = 0) with buffered reference (ADC12VRSEL = 0x1, 0x3, 0x5, 0x7, 0x9, 0xB, 0xD, 0xF)	1			μs
			Extended sample mode (ADC12SHP = 0) with unbuffered reference (ADC12VRSEL= 0x0, 0x2, 0x4, 0x6, 0xC, 0xE)	See ⁽⁵⁾			μs

The ADC12OSC is sourced directly from MODOSC inside the UCS. (1)

(2)

 $14 \times 1 / f_{ADC12CLK}$. If ADC12WINC = 1, then $15 \times 1 / f_{ADC12CLK}$ The condition is that the error in a conversion started after $t_{ADC12ON}$ is less than ±0.5 LSB. The reference and input signal are already (3) settled.

Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB: $t_{sample} = ln(2^{n+2}) \times (R_S + R_I) \times (C_I + C_{pext})$, $R_S < 10 \text{ k}\Omega$, where n = ADC resolution = 12, R_S = external source resistance, C_{pext} = external parasitic capacitance. (4)

(5) 6 × 1 / f_{ADC12CLK}

Table 4-24 lists the linearity parameters of the ADC when using an external reference.

Table 4-24. 12-Bit ADC, Linearity Parameters With External Reference⁽¹⁾

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Resolution	Number of no missing code output-code bits		12			bits
EI	Integral linearity error (INL) for differential input	$1.2 \text{ V} \leq \text{V}_{\text{R+}} - \text{V}_{\text{R-}} \leq \text{AV}_{\text{CC}}$			±1.8	LSB
EI	Integral linearity error (INL) for single ended inputs	$1.2 \text{ V} \leq \text{V}_{\text{R+}} - \text{V}_{\text{R-}} \leq \text{AV}_{\text{CC}}$			±2.2	LSB
ED	Differential linearity error (DNL)		-0.99		+1.0	LSB
Eo	Offset error ⁽²⁾ (3)	ADC12VRSEL = $0x2$ or $0x4$ without TLV calibration, TLV calibration data can be used to improve the parameter ⁽⁴⁾		±0.5	±1.5	mV
E _{G,ext}	Gain error	With external voltage reference without internal buffer (ADC12VRSEL = 0x2 or 0x4) without TLV calibration, TLV calibration data can be used to improve the parameter ⁽⁴⁾ , $V_{R+} = 2.5 V$, $V_{R-} = AVSS$		±0.8	±2.5	LSB
		With external voltage reference with internal buffer (ADC12VRSEL = 0x3), $V_{R+} = 2.5 V$, $V_{R-} = AVSS$		±1	±20	
E _{T,ext}	Total unadjusted error	With external voltage reference without internal buffer (ADC12VRSEL = 0x2 or 0x4) without TLV calibration, TLV calibration data can be used to improve the parameter ⁽⁴⁾ , $V_{R+} = 2.5 V$, $V_{R-} = AVSS$		±1.4	±3.5	LSB
		With external voltage reference with internal buffer (ADC12VRSEL = 0x3), $V_{R+} = 2.5 V$, $V_{R-} = AVSS$		±1.4	±21.0	

(1) See Table 4-26 and Table 4-32 for more information on internal reference performance, and see Designing With the MSP430FR59xx and MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal or external reference.

(2) Offset is measured as the input voltage (at which ADC output transitions from 0 to 1) minus 0.5 LSB.

(3) Offset increases as I_R drop increases when V_{R-} is AVSS.

(4) For details, see the device descriptor in the *MSP430FR58xx*, *MSP430FR59xx*, *MSP430FR68xx*, and *MSP430FR69xx* Family User's Guide.

Table 4-25 lists the dynamic performance characteristics of the ADC with differential inputs and an external reference.

Table 4-25. 12-Bit ADC, Dynamic Performance for Differential Inputs With External Reference⁽¹⁾

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SNR	Signal-to-noise	$V_{R+} = 2.5 V, V_{R-} = AVSS$		71		dB
ENOB	Effective number of bits ⁽²⁾	$V_{R+} = 2.5 V, V_{R-} = AVSS$		11.2		bits

(1) See Table 4-26 and Table 4-32 for more information on internal reference performance, and see Designing With the MSP430FR59xx and MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal or external reference.

(2) ENOB = (SINAD - 1.76) / 6.02

Table 4-26 lists the dynamic performance characteristics of the ADC with differential inputs and an internal reference.

Table 4-26. 12-Bit ADC, Dynamic Performance for Differential Inputs With Internal Reference⁽¹⁾

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ENOB	Effective number of bits ⁽²⁾	$V_{R+} = 2.5 V, V_{R-} = AVSS$		10.7		Bits

(1) See Table 4-32 for more information on internal reference performance, and see Designing With the MSP430FR59xx and

 $\frac{MSP430FR58xx ADC}{ENOB}$ for details on optimizing ADC performance for your application with the choice of internal or external reference. (2) ENOB = (SINAD - 1.76) / 6.02

Table 4-27 lists the dynamic performance characteristics of the ADC with single-ended inputs and an external reference.

Table 4-27. 12-Bit ADC, Dynamic Performance for Single-Ended Inputs With External Reference⁽¹⁾

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SNR	Signal-to-noise	$V_{R+} = 2.5 V, V_{R-} = AVSS$		68		dB
ENOB	Effective number of bits ⁽²⁾	V _{R+} = 2.5 V, V _{R-} = AVSS		10.7		bits

 See Table 4-28 and Table 4-32 for more information on internal reference performance, and see Designing With the MSP430FR59xx and MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal or external reference.

(2) ENOB = (SINAD - 1.76) / 6.02

Table 4-28 lists the dynamic performance characteristics of the ADC with single-ended inputs and an internal reference.

Table 4-28. 12-Bit ADC, Dynamic Performance for Single-Ended Inputs With Internal Reference⁽¹⁾

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
ENOB	Effective number of bits ⁽²⁾	V _{R+} = 2.5 V, V _{R-} = AVSS	1	10.4	bits

(1) See Table 4-32 for more information on internal reference performance, and see Designing With the MSP430FR59xx and

 $\frac{MSP430FR58xx}{ADC}$ for details on optimizing ADC performance for your application with the choice of internal or external reference. (2) ENOB = (SINAD - 1.76) / 6.02

Table 4-29 lists the dynamic performance characteristics of the ADC using a 32.678-kHz clock.

Table 4-29. 12-Bit ADC, Dynamic Performance With 32.768-kHz Clock

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		UNIT
ENOB Effective number of bits ⁽¹⁾	Reduced performance with $f_{ADC12CLK}$ from ACLK LFXT 32.768 kHz, V_{R+} = 2.5 V, V_{R-} = AVSS	10	bits

(1) ENOB = (SINAD - 1.76) / 6.02

Table 4-30 lists the characteristics of the temperature sensor and built-in $V_{1/2}$ of the ADC.

Table 4-30. 12-Bit ADC, Temperature Sensor and Built-In V_{1/2}

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{SENSOR}	See ^{(1) (2)} (also see Figure 4-16)	ADC12ON = 1, ADC12TCMAP = 1, $T_A = 0^{\circ}C$		700		mV
TC _{SENSOR}	See ⁽²⁾	ADC12ON = 1, ADC12TCMAP = 1		2.5		mV/°C
t _{SENSOR(sample)}	Sample time required if ADCTCMAP = 1 and channel (MAX $-$ 1) is selected ⁽³⁾	ADC12ON = 1, ADC12TCMAP = 1, Error of conversion result \leq 1 LSB	30			μs
V _{1/2}	AVCC voltage divider for ADC12BATMAP = 1 on MAX input channel	ADC12ON = 1, ADC12BATMAP = 1	47.5%	50%	52.5%	
I _{V 1/2}	Current for battery monitor during sample time	ADC12ON = 1, ADC12BATMAP = 1		38	63	μA
t _{V 1/2} (sample)	Sample time required if ADC12BATMAP = 1 and channel MAX is selected ^{(4)}	ADC12ON = 1, ADC12BATMAP = 1	1.7			μs

(1) The temperature sensor offset can be as much as ±30°C. TI recommends a single-point calibration to minimize the offset error of the built-in temperature sensor.

(2) The device descriptor structure contains calibration values for 30°C ±3°C and 105°C ±3°C for each available reference voltage level. The sensor voltage can be computed as V_{SENSE} = TC_{SENSOR} × (Temperature, °C) + V_{SENSOR}, where TC_{SENSOR} and V_{SENSOR} can be computed from the calibration values for higher accuracy.

(3) The typical equivalent impedance of the sensor is 250 kΩ. The sample time required includes the sensor-on time t_{SENSOR(on)}.

(4) The on-time $t_{V1/2(on)}$ is included in the sampling time $t_{V1/2(sample)}$; no additional on time is needed.

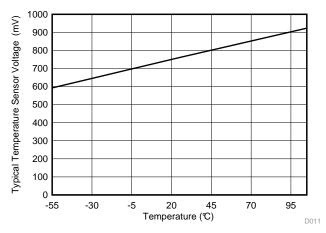


Figure 4-16. Typical Temperature Sensor Voltage

Table 4-31 lists the external reference requirements for the ADC.

Table 4-31. 12-Bit ADC, External Reference⁽¹⁾

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
V _{R+}	Positive external reference voltage input VeREF+ or VeREF- based on ADC12VRSEL bit	$V_{R+} > V_{R-}$	1.2	AV _{CC}	V
V _{R-}	Negative external reference voltage input VeREF+ or VeREF- based on ADC12VRSEL bit	$V_{R+} > V_{R-}$	0	1.2	V
$V_{R+} - V_{R-}$	Differential external reference voltage input	$V_{R+} > V_{R-}$	1.2	AV _{CC}	V
I _{VeREF+} , I _{VeREF-}	Static input current, singled-ended input mode	$\begin{array}{l} 1.2 \ V \leq V_{eREF+} \leq V_{AVCC}, \ V_{eREF-} = 0 \ V \\ f_{ADC12CLK} = 5 \ MHz, \ ADC12SHTx = 1h, \\ ADC12DIF = 0, \ ADC12PWRMD = 0 \end{array}$		±10	
		$\begin{array}{l} 1.2 \ V \leq V_{eREF+} \leq V_{AVCC} \ , \ V_{eREF-} = 0 \ V \\ f_{ADC12CLK} = 5 \ MHz, \ ADC12SHTx = 8h, \\ ADC12DIF = 0, \ ADC12PWRMD = 01 \end{array}$		±2.5	μA
I _{VeREF+} ,		$\begin{array}{l} 1.2 \ V \leq V_{eREF+} \leq V_{AVCC}, \ V_{eREF-} = 0 \ V \\ f_{ADC12CLK} = 5 \ MHz, \ ADC12SHTx = 1h, \\ ADC12DIF = 1, \ ADC12PWRMD = 0 \end{array}$		±20	۵
I _{VeREF} -	Static input current, differential input mode	$\begin{array}{l} 1.2 \ V \leq V_{eREF+} \leq V_{AVCC} \ , \ V_{eREF-} = 0 \ V \\ f_{ADC12CLK} = 5 \ MHz, \ ADC12SHTx = 8h, \\ ADC12DIF = 1, \ ADC12PWRMD = 1 \end{array}$		μA	
I _{VeREF+}	Peak input current with single-ended input	$0 \text{ V} \leq \text{V}_{\text{eREF+}} \leq \text{V}_{\text{AVCC}}, \text{ ADC12DIF} = 0$		1.5	mA
I _{VeREF+}	Peak input current with differential input	$0 \text{ V} \leq \text{V}_{\text{eREF+}} \leq \text{V}_{\text{AVCC}}, \text{ ADC12DIF} = 1$		3	mA
C _{VeREF+/-}	Capacitance at VeREF+ or VeREF- terminal	See ⁽²⁾	10		μF

(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, C_I, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.

(2) Connect two decoupling capacitors, 10 µF and 470 nF, to VeREF to decouple the dynamic current required for an external reference source if it is used for the ADC12_B. Also see the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide.

4.11.9 Reference

Table 4-32 lists the characteristics of the built-in voltage reference.

Table 4-32. REF, Built-In Reference

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	UNIT
		REFVSEL = {2} for 2.5 V, REFON = 1	2.7 V		2.5	±1.5%	
V _{REF+}	Positive built-in reference voltage output	REFVSEL = {1} for 2.0 V, REFON = 1	2.2 V		2.0	±1.5%	V
	vollage oulput	REFVSEL = {0} for 1.2 V, REFON = 1	1.8 V		1.2	±1.8%	
Noise	RMS noise at VREF ⁽¹⁾	From 0.1 Hz to 10 Hz, REFVSEL = {0}			110		μV
V _{OS_BUF_INT}	VREF ADC BUF_INT buffer offset ⁽²⁾	$T_A = 25^{\circ}C$, ADC ON, REFVSEL = {0}, REFON = 1, REFOUT = 0		-12		12	mV
V _{OS_BUF_EXT}	VREF ADC BUF_EXT buffer offset ⁽²⁾	$T_A = 25^{\circ}C$, REFVSEL = {0} , REFOUT = 1, REFON = 1 or ADC ON		-12		12	mV
	AVCC minimum voltage,	REFVSEL = {0} for 1.2 V		1.8			
AV _{CC(min)}	Positive built-in reference	REFVSEL = {1} for 2.0 V		2.2			V
	active	REFVSEL = {2} for 2.5 V		2.7			
I _{REF+}	Operating supply current into AVCC terminal ⁽³⁾	REFON = 1	3.0 V		8	15	μA
		ADC ON, REFOUT = 0, REFVSEL = {0, 1, 2}, ADC12PWRMD = 0,	3.0 V		225	355	
IREF+_ADC_BUF		ADC ON, REFOUT = 1, REFVSEL = {0, 1, 2}, ADC12PWRMD = 0	3.0 V		1030	1680	
	Operating supply current into AVCC terminal ⁽³⁾	ADC ON, REFOUT = 0, REFVSEL = {0, 1, 2}, ADC12PWRMD = 1	3.0 V		120	240	μA
		ADC ON, REFOUT = 1, REFVSEL = {0, 1, 2}, ADC12PWRMD = 1	3.0 V		545	895	
		ADC OFF, REFON = 1, REFOUT = 1, REFVSEL = {0, 1, 2}	3.0 V		1085	1780	
I _{O(VREF+)}	VREF maximum load current, VREF+ terminal	REFVSEL = {0, 1, 2}, AVCC = AVCC(min) for each reference level, REFON = REFOUT = 1		-1000		10	μA
∆Vout/∆lo (VREF+)	Load-current regulation, VREF+ terminal	$\begin{array}{l} REFVSEL=\{0,1,2\},\\ I_{O(VREF+)}=+10\;\muA\;\text{or}\;-1000\;\muA,\\ AV_{CC}=AV_{CC(min)}\;\text{for each reference level},\\ REFON=REFOUT=1 \end{array}$				2500	µV/mA
C _{VREF+/-}	Capacitance at VREF+ and VREF- terminals	REFON = REFOUT = 1		0		100	pF
TC _{REF+}	Temperature coefficient of built-in reference	REFVSEL = {0, 1, 2}, REFON = REFOUT = 1, T _A = -55° C to 105° C ⁽⁴⁾			18	50	ppm/K
PSRR_DC	Power supply rejection ratio (DC)	$AV_{CC} = AV_{CC(min)}$ to $AV_{CC(max)}$, $T_A = 25^{\circ}C$, REFVSEL = {0, 1, 2}, REFON = REFOUT = 1			120	400	μV/V
PSRR_AC	Power supply rejection ratio (AC)	dAV _{CC} = 0.1 V at 1 kHz			3.0		mV/V
t _{SETTLE}	Settling time of reference voltage ⁽⁵⁾	$AV_{CC} = AV_{CC (min)}$ to $AV_{CC(max)}$, REFVSEL = {0, 1, 2}, REFON = 0 \rightarrow 1			75	80	μs

(1) Internal reference noise affects ADC performance when ADC uses internal reference. See <u>Designing With the MSP430FR59xx and MSP430FR58xx ADC</u> for details on optimizing ADC performance for your application with the choice of internal versus external reference.

(2) Buffer offset affects ADC gain error and thus total unadjusted error.

(3) The internal reference current is supplied through terminal AVCC.

(4) Calculated using the box method: (MAX(-55°C to 105°C) – MIN(-55°C to 105°C)) / MIN(-55°C to 105°C)/(105°C – (-55°C)).

(5) The condition is that the error in a conversion started after t_{REFON} is less than ±0.5 LSB.

4.11.10 Comparator

Table 4-33 lists the characteristics of the comparator.

Table 4-33. Comparator_E

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT	
		CEPWRMD = 00, CEON = 1, CERSx = 00 (fast)			11	20		
	Comparator operating supply	CEPWRMD = 01, CEON = 1, CERSx = 00 (medium)	2.2 V,		9	17		
AVCC_COMP	reference resistor ladder	CEPWRMD = 10, CEON = 1, CERSx = 00 (slow), $T_A = 30^{\circ}C$	3.0 V			0.5	μA	
		CEPWRMD = 10, CEON = 1, CERSx = 00 (slow), $T_A = 85^{\circ}C$				1.3		
	Quiescent current of resistor ladder into AVCC, including	$CEREFLx = 01, CERSx = 10, REFON = 0, \\CEON = 0, CEREFACC = 0$	2.2 V,		12	15		
AVCC_REF	REF module current	CEREFLx = 01, CERSx = 10, REFON = 0, CEON = 0, CEREFACC = 1	3.0 V		5	7	μA	
		CERSx = 11, CEREFLx = 01, CEREFACC = 0	1.8 V	1.17	1.2	1.23		
		CERSx = 11, CEREFLx = 10, CEREFACC = 0	2.2 V	1.92	2.0	2.08		
	Defense on the sector of	CERSx = 11, CEREFLx = 11, CEREFACC = 0	2.7 V	2.40	2.5	2.60	N	
V _{REF}	Reference voltage level	CERSx = 11, CEREFLx = 01, CEREFACC = 1	1.8 V	1.10	1.2	1.245	V	
		CERSx = 11, CEREFLx = 10, CEREFACC = 1	2.2 V	1.90	2.0	2.08		
		CERSx = 11, CEREFLx = 11, CEREFACC = 1	2.7 V	2.35	2.5	2.60		
V _{IC}	Common-mode input range			0		V _{CC} -1	V	
		CEPWRMD = 00		-32		32		
V _{OFFSET} Input offset voltage	Input offset voltage	CEPWRMD = 01		-32		32	mV	
		CEPWRMD = 10		-30		30		
C _{IN} Input capacitance		CEPWRMD = 00 or CEPWRMD = 01			9		_	
	Input capacitance	CEPWRMD = 10			9		pF	
_		On (switch closed)			1	3	kΩ	
R _{SIN}	Series input resistance	Off (switch open)		50			MΩ	
		CEPWRMD = 00, CEF = 0, Overdrive ≥ 20 mV			260	400		
t _{PD}	Propagation delay, response time	CEPWRMD = 01, CEF = 0, Overdrive ≥ 20 mV			350	530	ns	
	ume	CEPWRMD = 10, CEF = 0, Overdrive ≥ 20 mV				16	μs	
		CEPWRMD = 00 or 01, CEF = 1, Overdrive \geq 20 mV, CEFDLY = 00			700	1200	ns	
	Propagation delay with filter	CEPWRMD = 00 or 01, CEF = 1, Overdrive ≥ 20 mV, CEFDLY = 01			1.0	2.0		
tPD,filter	active	CEPWRMD = 00 or 01, CEF = 1, Overdrive \ge 20 mV, CEFDLY = 10			2.0	3.7	μs	
		CEPWRMD = 00 or 01, CEF = 1, Overdrive \ge 20 mV, CEFDLY = 11			4.0	7.2		
		CEON = 0 → 1, VIN+, VIN- from pins, Overdrive ≥ 20 mV, CEPWRMD = 00			0.9	2.0		
t _{EN_CMP}	Comparator enable time	$\begin{array}{l} CEON = 0 \rightarrow 1, VIN+, VIN- from pins, \\ Overdrive \geq 20 mV, CEPWRMD = 01 \end{array}$			0.9	2.0	μs	
		CEON = 0 → 1, VIN+, VIN- from pins, Overdrive ≥ 20 mV, CEPWRMD = 10			15	100		
t _{en_cmp_vref}	Comparator and reference ladder and reference voltage enable time	$\begin{array}{l} \mbox{CEON} = 0 \rightarrow 1, \mbox{CEREFLX} = 10, \mbox{CERSx} = 10 \mbox{ or } 11, \\ \mbox{CEREF0} = \mbox{CEREF1} = 0 \mbox{xOF}, \\ \mbox{Overdrive} \geq 20 \mbox{ mV} \end{array}$			350	1500	μs	
V _{CE_REF}	Reference voltage for a given tap	VIN = reference into resistor ladder, n = 0 to 31		VIN × (n + 0.5) / 32	VIN × (n + 1) / 32	VIN × (n + 1.5) / 32	V	

4.11.11 FRAM

Table 4-34 lists the characteristics of the FRAM.

Table 4-34. FRAM

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
	Read and write endurance		10 ¹⁴		cycles
		T _J = 25°C	100		
t _{Retention} Data rete	Data retention duration	$T_{\rm J} = 70^{\circ} C$	40		years
		$T_{\rm J} = 105^{\circ}{\rm C}$	2.5		
I _{WRITE}	Current to write into FRAM			I _{READ} ⁽¹⁾	nA
I _{ERASE}	Erase current			n/a ⁽²⁾	nA
t _{WRITE}	Write time			t _{READ} ⁽³⁾	ns
+	Read time	NWAITS $x = 0$		1 / f _{SYSTEM} ⁽⁴⁾	
t _{READ}	Read lime	NWAITSx = 1		2 / f _{SYSTEM} ⁽⁴⁾	ns

(1) Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read current I_{READ} is included in the active mode current consumption numbers I_{AM,FRAM}.

(2) FRAM does not require a special erase sequence.

(3) Writing into FRAM is as fast as reading.

(4) The maximum read (and write) speed is specified by f_{SYSTEM} using the appropriate wait state settings (NWAITSx).

4.12 Emulation and Debug

Table 4-35 lists the characteristics of the JTAG and Spy-Bi-Wire interface.

Table 4-35. JTAG and Spy-Bi-Wire Interface

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
I _{JTAG}	Supply current adder when JTAG active (but not clocked)	2.2 V, 3.0 V		40	100	μA
f _{SBW}	Spy-Bi-Wire input frequency	2.2 V, 3.0 V	0		10	MHz
t _{SBW,Low}	Spy-Bi-Wire low clock pulse duration	2.2 V, 3.0 V	0.04		15	μS
t _{SBW, En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock $edge)^{(1)}$	2.2 V, 3.0 V			110	μS
t _{SBW,Rst}	Spy-Bi-Wire return to normal operation time		15		100	μS
		2.2 V	0		16	MHz
f _{TCK}	TCK input frequency, 4-wire JTAG ⁽²⁾	3.0 V	0		16	MHz
R _{internal}	Internal pulldown resistance on TEST	2.2 V, 3.0 V	20	35	50	kΩ
f _{TCLK}	TCLK/MCLK frequency during JTAG access, no FRAM access (limited by f_{SYSTEM})				16	MHz
t _{TCLK,Low/High}	TCLK low or high clock pulse duration, no FRAM access				25	ns
f _{TCLK,FRAM}	TCLK/MCLK frequency during JTAG access, including FRAM access (limited by $\rm f_{SYSTEM}$ with no FRAM wait states)				4	MHz
t _{TCLK,FRAM,Low/High}	TCLK low or high clock pulse duration, including FRAM accesses				100	ns

(1) Tools that access the Spy-Bi-Wire and BSL interfaces must wait for the t_{SBW,En} time after the first transition of the TEST/SBWTCK pin (low to high), before the second transition of the pin (high to low) during the entry sequence.

(2) f_{TCK} may be restricted to meet the timing requirements of the module selected.

5 Detailed Description

5.1 Overview

The Texas Instruments MSP430FR5969-SP ultra-low-power microcontroller includes several different sets of peripherals. The architecture, combined with seven low-power modes is optimized for distributed telemetry applications. The devices features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency.

The MSP430FR5969-SP microcontroller comprises up to five 16-bit timers, Comparator, universal serial communication interfaces (eUSCI) supporting UART, SPI, and I²C, hardware multiplier, AES accelerator, DMA, real-time clock module with alarm capabilities, up to 40 I/O pins, and an high-performance 12-bit analog-to-digital converter (ADC).

5.2 CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data.

5.3 Operating Modes

The MSP430FR5969-SP MCU has one active mode and seven software-selectable low-power modes of operation (see Table 5-1). An interrupt event can wake up the device from a low-power mode (LPM0 to LPM4), service the request, and restore back to the low-power mode on return from the interrupt program. Low-power modes LPM3.5 and LPM4.5 disable the core supply to minimize power consumption.

MODE	A	м	LPM0	LPM1	LPM2	LPM3	LPM4	LPM3.5	LPI	M4.5
	ACTIVE	ACTIVE, FRAM OFF ⁽¹⁾	CPU Off ⁽²⁾	CPU OFF	STANDBY	STANDBY	OFF	RTC ONLY	SHUTDOWN WITH SVS	SHUTDOWN WITHOUT SVS
Maximum system clock	16	MHz	16 MHz	16 MHz	50 kHz	50 kHz	0 ⁽³⁾	50 kHz	C	(3)
Typical current consumption, $T_A = 25^{\circ}C$	103 µA/MHz	65 μA/MHz	70 µA at 1 MHz	35 µA at 1 MHz	0.7 µA	0.4 µA	0.3 µA	0.25 µA	0.2 µA	0.02 µA
Typical wake-up time	N	/A	instant	6 µs	6 µs	7 µs	7 µs	250 µs	250 µs	1000 µs
Wake-up events	N	/A	all	all	LF I/O Comp	LF I/O Comp	I/O Comp	RTC I/O	I/O	
CPU	C	n	off	off	off	off	off	reset	re	set
FRAM	on	off ⁽¹⁾	standby (or off ⁽¹⁾)	off	off	off	off	off	off	
Peripherals in high-frequency state ⁽⁴⁾	y	es	yes	yes	no	no	no	reset	reset	
Peripherals in low-frequency state ⁽⁴⁾	y	es	yes	yes	yes	yes ⁽⁵⁾	no	RTC	re	set
Peripherals in unclocked state ⁽⁴⁾	y	es	yes	yes	yes	yes ⁽⁵⁾	yes ⁽⁵⁾	reset	re	set
MCLK	o (16 M	n Hz _{MAX})	off	off	off	off	off	off	C	off
SMCLK		nal ⁽⁶⁾ Hz _{MAX})	optional ⁽⁶⁾ (16 MHz _{MAX})	optional ⁽⁶⁾ (16 MHz _{MAX})	off	off	off	off	off	
ACLK	o (50 kł	n Hz _{MAX})	on (50 kHz _{MAX})	on (50 kHz _{MAX})	on (50 kHz _{MAX})	on (50 kHz _{MAX})	off	off	off	
External clock		onal Hz _{MAX})	optional (16 MHz _{MAX})	optional (16 MHz _{MAX})	optional (50 kHz _{MAX})	optional (50 kHz _{MAX})	optional (50 kHz _{MAX})	off	off	
Full retention	y	es	yes	yes	yes	yes	yes	no	no	

Table 5-1. Operating Modes

(1) FRAM disabled in FRAM controller

(2) Disabling the FRAM through the FRAM controller allows the application to lower the LPM current consumption but the wake-up time increases as soon as FRAM is accessed (for example, to fetch an interrupt vector). For a wakeup that does not involve the FRAM (for example, DMA transfer to RAM), the wakeup is not delayed.

(3) All clocks disabled

(4) See Table 5-2 for a detailed description of peripherals in high-frequency, low-frequency, or unclocked state.

(5) See Section 5.3.1, which describes the use of peripherals in LPM3 and LPM4.

(6) Controlled by SMCLKOFF.

48 Detailed Description

www.ti.com

Table 5-1. Operating Modes (continued)

MODE	AM		LPM0	LPM1	LPM2	LPM3	LPM4	LPM3.5	LPI	M4.5
	ACTIVE	ACTIVE, FRAM OFF ⁽¹⁾	CPU Off ⁽²⁾	CPU OFF	STANDBY	STANDBY	OFF	RTC ONLY	SHUTDOWN WITH SVS	SHUTDOWN WITHOUT SVS
SVS	alw	ays	always	always	optional ⁽⁷⁾	optional ⁽⁷⁾	optional ⁽⁷⁾	optional ⁽⁷⁾	on ⁽⁸⁾	off ⁽⁹⁾
Brownout	alw	ays	always	always	always	always	always	always	alw	vays

(7) Activated SVS (SVSHE = 1) results in higher current consumption. SVS is not included in typical current consumption.
 (8) SVSHE = 1

(9) SVSHE = 0

5.3.1 Peripherals in Low-Power Modes

Peripherals can be in different states that impact the achievable power modes of the device. The states depend on the operational modes of the peripherals. The states are:

- A peripheral is in a "high frequency state" if it requires or uses a clock with a "high" frequency of more than 50 kHz.
- A peripheral is in a "low frequency state" if it requires or uses a clock with a "low" frequency of 50 kHz or less.
- A peripheral is in an "unclocked state" if it does not require nor use an internal clock.

If the CPU requests a power mode that does not support the current state of all active peripherals, the device cannot enter the requested power mode but does enter a power mode that still supports the current state of the peripherals, unless an external clock is used. If an external clock is used, the application must ensure the correct frequency range for the requested power mode.

PERIPHERAL	IN HIGH-FREQUENCY STATE ⁽¹⁾	IN LOW-FREQUENCY STATE ⁽²⁾	IN UNCLOCKED STATE ⁽³⁾
WDT	Clocked by SMCLK	Clocked by ACLK	Not applicable
DMA ⁽⁴⁾	Not applicable	Not applicable	Waiting for a trigger
RTC_B	Not applicable	Clocked by LFXT	Not applicable
Timer_A, TAx	Clocked by SMCLK or clocked by external clock >50 kHz	Clocked by ACLK or clocked by external clock ≤50 kHz	Clocked by external clock ≤50 kHz
Timer_B, TBx	Clocked by SMCLK or clocked by external clock >50 kHz	Clocked by ACLK or clocked by external clock ≤50 kHz	Clocked by external clock ≤50 kHz
eUSCI_Ax in UART mode	Clocked by SMCLK	Clocked by ACLK	Waiting for first edge of START bit
eUSCI_Ax in SPI master mode	Clocked by SMCLK	Clocked by ACLK	Not applicable
eUSCI_Ax in SPI slave mode	Clocked by external clock >50 kHz	Clocked by external clock ≤50 kHz	Clocked by external clock ≤50 kHz
eUSCI_Bx in I ² C master mode	Clocked by SMCLK or clocked by external clock >50 kHz	Clocked by ACLK or clocked by external clock ≤50 kHz	Not applicable
eUSCI_Bx in I ² C slave mode	Clocked by external clock >50 kHz	Clocked by external clock ≤50 kHz	Waiting for START condition or clocked by external clock ≤50 kHz
eUSCI_Bx in SPI master mode	Clocked by SMCLK	Clocked by ACLK	Not applicable
eUSCI_Bx in SPI slave mode	Clocked by external clock >50 kHz	Clocked by external clock ≤50 kHz	Clocked by external clock ≤50 kHz
ADC12_B	Clocked by SMCLK or by MODOSC	Clocked by ACLK	Waiting for a trigger
REF_A	Not applicable	Not applicable	Always
COMP_E	Not applicable	Not applicable	Always
CRC ⁽⁵⁾	Not applicable	Not applicable	Not applicable
MPY ⁽⁵⁾	Not applicable	Not applicable	Not applicable
AES ⁽⁵⁾	Not applicable	Not applicable	Not applicable

Table 5-2. Peripheral States

(1) Peripherals are in a state that requires or uses a clock with a "high" frequency of more than 50 kHz.

(2) Peripherals are in a state that requires or uses a clock with a "low" frequency of 50 kHz or less.

(3) Peripherals are in a state that does not require or does not use an internal clock.

(4) The DMA always transfers data in active mode but can wait for a trigger in any low power mode. A DMA trigger during a low power mode will cause a temporary transition into active mode for the time of the transfer.

(5) Operates only during active mode and will eventually delay the transition into a low power mode until its operation is completed.

5.3.1.1 Idle Currents of Peripherals in LPM3 and LPM4

Most peripherals can be activated to be operational in LPM3 if clocked by ACLK. Some modules are operational in LPM4, because they do not require a clock to operate (for example, the comparator). Activating a peripheral in LPM3 or LPM4 increases the current consumption due to its active supply current contribution but also due to an additional idle current. To limit the idle current adder, certain peripherals are grouped together. To achieve optimal current consumption, use modules within one group and limit the number of groups with active modules. Table 5-3 lists the grouping of the peripherals. Modules not listed in this table are either already included in the standard LPM3 current consumption or cannot be used in LPM3 or LPM4.

The idle current adder is very small at room temperature (25°C) but increases at high temperatures (85°C), See the I_{IDLE} current parameters in Section 4.7 for details.

Group A	Group B
Timer TA1	Timer TA0
Timer TA2	Timer TA3
Timer TB0	Comparator
eUSCI_A0	ADC12_B
eUSCI_A1	REF_A
eUSCI_B0	

Table	5-3.	Peri	oheral	Groups
IUNIO	•••		priorai	Ol Oupo

5.4 Interrupt Vector Table and Signatures

The interrupt vectors, the power-up start address and signatures are in the address range 0FFFFh to 0FF80h. Figure 5-1 summarizes the content of this address range.

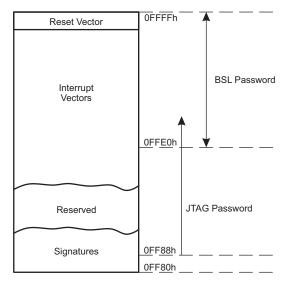


Figure 5-1. Interrupt Vectors, Signatures and Passwords

The power-up start address or reset vector is at 0FFFFh to 0FFFEh. It contains a 16-bit address that points to the start address of the application program.

The interrupt vectors start at 0FFFDh and extend to lower addresses. Each vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 5-4 lists the device specific interrupt vector locations.

The vectors programmed into the address range from 0FFFFh to 0FFE0h are used as BSL password (if enabled by the corresponding signature).

The signatures are located at 0FF80h extending to higher addresses. Signatures are evaluated during device start-up. Table 5-5 lists the device specific signature locations.

A JTAG password can be programmed starting from address 0FF88h and extending to higher addresses. The password can extend into the interrupt vector locations using the interrupt vector addresses as additional bits for the password. The length of the JTAG password depends on the JTAG signature.

See the System Resets, Interrupts, and Operating Modes, System Control Module (SYS) chapter in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide for details.

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
System Reset Power up, Brownout, Supply Supervisor External Reset RST Watchdog Time-out (Watchdog mode) WDT, FRCTL MPU, CS, PMM Password Violation FRAM uncorrectable bit error detection MPU segment violation FRAM access time error Software POR, BOR	SVSHIFG PMMRSTIFG WDTFG WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW UBDIFG MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG, MPUSEG3IFG ACCTEIFG PMMPORIFG, PMMBORIFG (SYSRSTIV) ^{(1) (2)}	Reset	OFFFEh	highest
System NMI Vacant Memory Access JTAG Mailbox FRAM bit error detection MPU segment violation	VMAIFG JMBNIFG, JMBOUTIFG CBDIFG, UBDIFG MPUSEGIIFG, MPUSEG2IFG, MPUSEG3IFG (SYSSNIV) ^{(1) (3)}	(Non)maskable	0FFFCh	
User NMI External NMI Oscillator Fault	NMIIFG, OFIFG (SYSUNIV) ^{(1) (3)}	(Non)maskable	0FFFAh	
Comparator_E	CEIFG, CEIIFG (CEIV) ⁽¹⁾	Maskable	0FFF8h	
ТВО	TB0CCR0.CCIFG	Maskable	0FFF6h	
тво	TB0CCR1.CCIFG TB0CCR6.CCIFG, TB0CTL.TBIFG (TB0IV) ⁽¹⁾	Maskable	0FFF4h	
Watchdog Timer (Interval Timer Mode)	WDTIFG	Maskable	0FFF2h	
eUSCI_A0 Receive or Transmit	UCA0IFG: UCRXIFG, UCTXIFG (SPI mode) UCA0IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG, UCTXIFG (UART mode) (UCA0IV) ⁽¹⁾	Maskable	0FFF0h	
eUSCI_B0 Receive or Transmit	UCB0IFG: UCRXIFG, UCTXIFG (SPI mode) UCB0IFG: UCALIFG, UCNACKIFG, UCSTTIFG, UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1, UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3, UCTXIFG3, UCCNTIFG, UCBIT9IFG (I ² C mode) (UCB0IV) ⁽¹⁾	Maskable	OFFEEh	
ADC12_B	ADC12IFG0 to ADC12IFG31 ADC12LOIFG, ADC12INIFG, ADC12HIIFG, ADC12RDYIFG, ADC21OVIFG, ADC12TOVIFG (ADC12IV) ⁽¹⁾	Maskable	0FFECh	
TA0	TA0CCR0.CCIFG	Maskable	0FFEAh	
TAO	TA0CCR1.CCIFG, TA0CCR2.CCIFG, TA0CTL.TAIFG (TA0IV) ⁽¹⁾	Maskable	0FFE8h	

Table 5-4. Interrupt Sources, Flags, and Vectors

(1) Multiple source flags

(3) (Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable cannot disable it.

52 Detailed Description

⁽²⁾ A reset is generated if the CPU tries to fetch instructions from within peripheral space

www.ti.com

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
eUSCI_A1 Receive or Transmit	UCA1IFG: UCRXIFG, UCTXIFG (SPI mode) UCA1IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG, UCTXIFG (UART mode) (UCA1IV) ⁽¹⁾	Maskable	0FFE6h	
DMA	DMA0CTL.DMAIFG, DMA1CTL.DMAIFG, DMA2CTL.DMAIFG (DMAIV) ⁽¹⁾	Maskable	0FFE4h	
TA1	TA1CCR0.CCIFG	Maskable	0FFE2h	
TA1	TA1CCR1.CCIFG, TA1CCR2.CCIFG, TA1CTL.TAIFG (TA1IV) ⁽¹⁾	Maskable	0FFE0h	
I/O Port P1	P1IFG.0 to P1IFG.7 (P1IV) ⁽¹⁾	Maskable	0FFDEh	
TA2	TA2CCR0.CCIFG	Maskable	0FFDCh	
TA2	TA2CCR1.CCIFG TA2CTL.TAIFG (TA2IV) ⁽¹⁾	Maskable	0FFDAh	
I/O Port P2	P2IFG.0 to P2IFG.7 (P2IV) ⁽¹⁾	Maskable	0FFD8h	
TA3	TA3CCR0.CCIFG	Maskable	0FFD6h	
TA3	TA3CCR1.CCIFG TA3CTL.TAIFG (TA3IV) ⁽¹⁾	Maskable	0FFD4h	
I/O Port P3	P3IFG.0 to P3IFG.7 (P3IV) ⁽¹⁾	Maskable	0FFD2h	
I/O Port P4	P4IFG.0 to P4IFG.2 (P4IV) ⁽¹⁾	Maskable	0FFD0h	
RTC_B	RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV) ⁽¹⁾	Maskable	0FFCEh	
AES	AESRDYIFG	Maskable	0FFCCh	lowest

Table 5-4. Interrupt Sources, Flags, and Vectors (continued)

Table 5-5. Signatures

SIGNATURE	WORD ADDRESS
IP Encapsulation Signature 2	0FF8Ah
IP Encapsulation Signature 1 ⁽¹⁾	0FF88h
BSL Signature 2	0FF86h
BSL Signature 1	0FF84h
JTAG Signature 2	0FF82h
JTAG Signature 1	0FF80h

(1) Must not contain 0AAAAh if used as JTAG password and IP encapsulation functionality is not desired.

5.5 Memory Organization

Table 5-6 summarizes the memory map for all device variants.

Table 5-6.	Memory	Organization ⁽¹⁾
------------	--------	-----------------------------

		MSP430FR5969-SP
Memory (FRAM) Main: interrupt vectors and signatures Main: code memory	Total Size	63KB 00FFFFh–00FF80h 013FFFh–004400h
RAM		2KB 0023FFh-001C00h
Device Descriptor Info (TLV) (FRAM)		256 B 001AFFh-001A00h
	Info A	128 B 0019FFh–001980h
Information memory (FRAM)	Info B	128 B 00197Fh–001900h
	Info C	128 B 0018FFh–001880h
	Info D	128 B 00187Fh–001800h
	BSL 3	512 B 0017FFh–001600h
Bootloader (BSL) memory (ROM)	BSL 2	512 B 0015FFh–001400h
	BSL 1	512 B 0013FFh–001200h
	BSL 0	512 B 0011FFh–001000h
Peripherals	Size	4KB 000FFFh–0h

(1) All address space not listed is considered vacant memory.

5.6 Bootloader (BSL)

The BSL enables users to program the FRAM or RAM using a UART serial interface (FRxxxx devices). Access to the device memory through the BSL is protected by an user-defined password. Table 5-7 list the BSL pins requirements. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For a complete description of the features of the BSL and its implementation, see the *MSP430 Programming With the Bootloader (BSL)*.

DEVICE SIGNAL	BSL FUNCTION	
RST/NMI/SBWTDIO	Entry sequence signal	
TEST/SBWTCK	Entry sequence signal	
P2.0	Devices with UART BSL (FRxxxx): Data transmit	
P2.1	Devices with UART BSL (FRxxxx): Data receive	
VCC	Power supply	
VSS	Ground supply	

Table 5-7. BSL Pin	Requirements and Functions
--------------------	-----------------------------------

5.7 JTAG Operation

5.7.1 JTAG Standard Interface

The MSP430 supports the standard JTAG interface which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. Table 5-8 lists the JTAG pin requirements. For further details on interfacing to development tools and device programmers, see the *MSP430 Hardware Tools User's Guide*. For a complete description of the features of the JTAG interface and its implementation, see *MSP430 Programming With the JTAG Interface*.

DEVICE SIGNAL	DIRECTION	FUNCTION
PJ.3/TCK	IN	JTAG clock input
PJ.2/TMS	IN	JTAG state control
PJ.1/TDI/TCLK	IN	JTAG data input, TCLK input
PJ.0/TDO	OUT	JTAG data output
TEST/SBWTCK	IN	Enable JTAG pins
RST/NMI/SBWTDIO	IN	External reset
VCC		Power supply
VSS		Ground supply

Table 5-8. JTAG Pin Requirements and Functions

5.7.2 Spy-Bi-Wire Interface

In addition to the standard JTAG interface, the MSP430 supports the 2-wire Spy-Bi-Wire interface. Spy-Bi-Wire interface with MSP430 development tools and device programmers. Table 5-9 lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device programmers, see the *MSP430 Hardware Tools User's Guide*. For a complete description of the features of the JTAG interface and its implementation, see *MSP430 Programming With the JTAG Interface*.

DEVICE SIGNAL	DIRECTION	FUNCTION	
TEST/SBWTCK	IN	Spy-Bi-Wire clock input	
RST/NMI/SBWTDIO	IN, OUT	Spy-Bi-Wire data input and output	
VCC		Power supply	
VSS		Ground supply	

Table 5-9. Spy-Bi-Wire Pin Requirements and Functions

5.8 FRAM

The FRAM can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. Features of the FRAM include:

- Ultra-low-power ultra-fast-write nonvolatile memory
- Byte and word access capability
- Programmable wait state generation
- Error correction coding (ECC)

Wait States

NOTE

For MCLK frequencies > 8 MHz, wait states must be configured following the flow described in the *Wait State Control* section of the *FRAM Controller (FRCTRL)* chapter in the *MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide.*

For important software design information regarding FRAM including but not limited to partitioning the memory layout according to application-specific code, constant, and data space requirements, the use of FRAM to optimize application energy consumption, and the use of the Memory Protection Unit (MPU) to maximize application robustness by protecting the program code against unintended write accesses, see *MSP430TM FRAM Technology – How To and Best Practices*.

5.9 Memory Protection Unit Including IP Encapsulation

The FRAM can be protected from inadvertent CPU execution, read access, or write access by the MPU. Features of the MPU include:

- IP encapsulation with programmable boundaries in steps of 1KB (prevents reads from "outside"; for example, JTAG or non-IP software).
- Main memory partitioning is programmable up to three segments in steps of 1KB.
- Each segment's access rights can be individually selected (main and information memory).
- Access violation flags with interrupt capability for easy servicing of access violations.

5.10 Peripherals

Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be handled using all instructions. For complete module descriptions, see the *MSP430FR58xx*, *MSP430FR59xx*, *MSP430FR69xx* Family User's Guide.

5.10.1 Digital I/O

Up to four 8-bit I/O ports are implemented:

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Programmable pullup or pulldown on all ports.
- Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for all ports.
- Read and write access to port control registers is supported by all instructions.
- Ports can be accessed byte-wise or word-wise in pairs.
- No cross-currents during start-up.

NOTE

Configuration of Digital I/Os After BOR Reset

To prevent any cross currents during start-up of the device, all port pins are high-impedance with Schmitt triggers, and their module functions disabled. To enable the I/O functionality after a BOR reset, the ports must be configured first and then the LOCKLPM5 bit must be cleared. For details, see the *Configuration After Reset* section of the *Digital I/O* chapter in the *MSP430FR58xx*, *MSP430FR59xx*, *MSP430FR68xx*, *MSP430FR69xx Family User's Guide*.

5.10.2 Oscillator and Clock System (CS)

The clock system includes support for a 32-kHz watch-crystal oscillator (XT1), an internal very-low-power low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator XT2. The clock system module is designed to meet the requirements of both low system cost and low power consumption. A fail-safe mechanism exists for all crystal sources. The clock system module provides the following clock signals:

- Auxiliary clock (ACLK). ACLK can be sourced from a 32-kHz watch crystal (LFXT1), the internal low-frequency oscillator (VLO), or a digital external low-frequency (<50 kHz) clock source.
- Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced from a high-frequency crystal (HFXT2), the internal digitally controlled oscillator DCO, a 32-kHz watch crystal (LFXT1), the internal low-frequency oscillator (VLO), or a digital external clock source.
- Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources made available to MCLK.

5.10.3 Power-Management Module (PMM)

The primary functions of the PMM are:

- Supply regulated voltages to the core logic
- Supervise voltages that are connected to the device (at DVCC pins)
- · Give reset signals to the device during power on and power off

5.10.4 Hardware Multiplier (MPY)

The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed multiplication, unsigned multiplication, signed multiply-and-accumulate, and unsigned multiply-and-accumulate operations.

5.10.5 Real-Time Clock (RTC_B) (Only MSP430FR596x and MSP430FR594x)

The RTC_B module contains an integrated real-time clock (RTC). The RTC integrates an internal calendar that compensates for months with less than 31 days and includes leap year correction. The RTC_B also supports flexible alarm functions and offset-calibration hardware. RTC operation is available in LPM3.5 modes to minimize power consumption.

5.10.6 Watchdog Timer (WDT_A)

The primary function of the WDT_A module is to perform a controlled system restart if a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. Table 5-10 lists the clock sources for the WDT_A module.

WDTSSEL	NORMAL OPERATION (WATCHDOG AND INTERVAL TIMER MODE)
00	SMCLK
01	ACLK
10	VLOCLK
11	LFMODCLK

Table	5-10.	WDT_	_ A	Clocks
-------	-------	------	------------	--------

5.10.7 System Module (SYS)

The SYS module manages many of the system functions within the device. These system functions include power on reset (POR) and power up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators, bootloader (BSL) entry mechanisms, and configuration management (device descriptors). The SYS module also includes a data exchange mechanism through JTAG called a JTAG mailbox that can be used in the application. Table 5-11 lists the SYS module interrupt vector registers.

www.ti.com	

INTERRUPT VECTOR REGISTER	ADDRESS	INTERRUPT EVENT	VALUE	PRIORITY
		No interrupt pending	00h	
		Brownout (BOR)	02h	Highest
		RSTIFG RST/NMI (BOR)	04h	
		PMMSWBOR software BOR (BOR)	06h	
		LPMx.5 wakeup (BOR)	08h	
		Security violation (BOR)	0Ah	
		Reserved	0Ch	
		SVSHIFG SVSH event (BOR)	0Eh	
		Reserved	10h	
		Reserved	12h	
		PMMSWPOR software POR (POR)	14h	
		WDTIFG watchdog time-out (PUC)	16h	
		WDTPW password violation (PUC)	18h	
SYSRSTIV, System Reset	019Eh	FRCTLPW password violation (PUC)	1Ah	
		Uncorrectable FRAM bit error detection (PUC)	1Ch	
		Peripheral area fetch (PUC)	1Eh	
		PMMPW PMM password violation (PUC)	20h	
		MPUPW MPU password violation (PUC)	22h	
		CSPW CS password violation (PUC)	24h	
		MPUSEGPIFG encapsulated IP memory segment violation (PUC)	26h	
		MPUSEGIIFG information memory segment violation (PUC)	28h	
		MPUSEG1IFG segment 1 memory violation (PUC)	2Ah	
		MPUSEG2IFG segment 2 memory violation (PUC)	2Ch	
		MPUSEG3IFG segment 3 memory violation (PUC)	2Eh	
		ACCTEIFG access time error (PUC) ⁽¹⁾	30h	
		Reserved	32h to 3Eh	Lowest
		No interrupt pending	00h	
		Reserved	02h	Highest
		Uncorrectable FRAM bit error detection	04h	
		Reserved	06h	
		MPUSEGPIFG encapsulated IP memory segment violation	08h	
		MPUSEGIIFG information memory segment violation	0Ah	
		MPUSEG1IFG segment 1 memory violation	0Ch	
SYSSNIV, System NMI	019Ch	MPUSEG2IFG segment 2 memory violation	0Eh	
		MPUSEG3IFG segment 3 memory violation	10h	
		VMAIFG vacant memory access	12h	
		JMBINIFG JTAG mailbox input	14h	
		JMBOUTIFG JTAG mailbox output	16h	
		Correctable FRAM bit error detection	18h	
		Reserved	1Ah to 1Eh	Lowest

Table 5-11. System Module Interrupt Vector Registers

(1) Indicates incorrect wait state settings.

TEXAS INSTRUMENTS

www.ti.com

INTERRUPT VECTOR REGISTER	ADDRESS	INTERRUPT EVENT	VALUE	PRIORITY
		No interrupt pending	00h	
SYSUNIV, User NMI 019Ah	NMIIFG NMI pin	02h	Highest	
		OFIFG oscillator fault	04h	
	019Ah	Reserved	06h	
		Reserved	08h	
		Reserved	0Ah to 1Eh	Lowest

Table 5-11. System Module Interrupt Vector Registers (continued)
--

5.10.8 DMA Controller

The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12_B conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to wake to move data to or from a peripheral. Table 5-12 lists the available triggers for the DMA.

TRIGGER	CHANNEL 0	CHANNEL 1	CHANNEL 2
0	DMAREQ	DMAREQ	DMAREQ
1	TA0CCR0 CCIFG	TA0CCR0 CCIFG	TA0CCR0 CCIFG
2	TA0CCR2 CCIFG	TA0CCR2 CCIFG	TA0CCR2 CCIFG
3	TA1CCR0 CCIFG	TA1CCR0 CCIFG	TA1CCR0 CCIFG
4	TA1CCR2 CCIFG	TA1CCR2 CCIFG	TA1CCR2 CCIFG
5	TA2CCR0 CCIFG	TA2CCR0 CCIFG	TA2CCR0 CCIFG
6	TA3CCR0 CCIFG	TA3CCR0 CCIFG	TA3CCR0 CCIFG
7	TB0CCR0 CCIFG	TB0CCR0 CCIFG	TB0CCR0 CCIFG
8	TB0CCR2 CCIFG	TB0CCR2 CCIFG	TB0CCR2 CCIFG
9	Reserved	Reserved	Reserved
10	Reserved	Reserved	Reserved
11	AES Trigger 0	AES Trigger 0	AES Trigger 0
12	AES Trigger 1	AES Trigger 1	AES Trigger 1
13	AES Trigger 2	AES Trigger 2	AES Trigger 2
14	UCA0RXIFG	UCA0RXIFG	UCA0RXIFG
15	UCA0TXIFG	UCA0TXIFG	UCA0TXIFG
16	UCA1RXIFG	UCA1RXIFG	UCA1RXIFG
17	UCA1TXIFG	UCA1TXIFG	UCA1TXIFG
18	UCB0RXIFG (SPI) UCB0RXIFG0 (I ² C)	UCB0RXIFG (SPI) UCB0RXIFG0 (I ² C)	UCB0RXIFG (SPI) UCB0RXIFG0 (I ² C)
19	UCB0TXIFG (SPI) UCB0TXIFG0 (I ² C)	UCB0TXIFG (SPI) UCB0TXIFG0 (I ² C)	UCB0TXIFG (SPI) UCB0TXIFG0 (I ² C)
20	UCB0RXIFG1 (I ² C)	UCB0RXIFG1 (I ² C)	UCB0RXIFG1 (I ² C)
21	UCB0TXIFG1 (I ² C)	UCB0TXIFG1 (I ² C)	UCB0TXIFG1 (I ² C)
22	UCB0RXIFG2 (I ² C)	UCB0RXIFG2 (I ² C)	UCB0RXIFG2 (I ² C)
23	UCB0TXIFG2 (I ² C)	UCB0TXIFG2 (I ² C)	UCB0TXIFG2 (I ² C)
24	UCB0RXIFG3 (I ² C)	UCB0RXIFG3 (I ² C)	UCB0RXIFG3 (I ² C)
25	UCB0TXIFG3 (I ² C)	UCB0TXIFG3 (I ² C)	UCB0TXIFG3 (I ² C)
26	ADC12 end of conversion	ADC12 end of conversion	ADC12 end of conversion
27	Reserved	Reserved	Reserved

Table 5-12. DMA Trigger Assignments⁽¹⁾

(1) If a reserved trigger source is selected, no trigger is generated.

Copyright © 2017-2018, Texas Instruments Incorporated

TRIGGER	CHANNEL 0	CHANNEL 1	CHANNEL 2		
28	Reserved	Reserved	Reserved		
29	MPY ready	MPY ready	MPY ready		
30	DMA2IFG	DMA0IFG	DMA1IFG		
31	DMAE0	DMAE0	DMAE0		

Table 5-12. DMA Trigger Assignments⁽¹⁾ (continued)

5.10.9 Enhanced Universal Serial Communication Interface (eUSCI)

The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous communication protocols such as SPI (3 or 4 pin) and I²C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA.

The eUSCI_An module provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA.

The eUSCI_Bn module provides support for SPI (3 or 4 pin) and I²C.

Two eUSCI_A modules and one eUSCI_B module are implemented.

5.10.10 TA0, TA1

TA0 and TA1 are 16-bit timers and counters (Timer_A type) with three capture/compare registers each. TA0 and TA can support multiple captures or compares, PWM outputs, and interval timing (see Table 5-13 and Table 5-14). TA0 and TA have extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

INPUT PORT PIN	DEVICE INPUT SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL	OUTPUT PORT PIN
P1.2	TA0CLK	TACLK				
	ACLK (internal)	ACLK	Timer	N/A	N/A	
	SMCLK (internal)	SMCLK	Timer	N/A	IN/A	
P1.2	TAOCLK	INCLK				
P1.6	TA0.0	CCI0A				P1.6
P2.3	TA0.0	CCI0B	0000	740	T AO O	P2.3
	DVSS	GND	CCR0	TA0	TA0.0	
	DVCC	V _{CC}				
P1.0	TA0.1	CCI1A			TA0.1	P1.0
	COUT (internal)	CCI1B	CCR1	TA1		ADC12(internal) ADC12SHSx = {1}
	DVSS	GND				
	DVCC	V _{CC}				
P1.1	TA0.2	CCI2A				P1.1
	ACLK (internal)	CCI2B	0000	CR2 TA2	T40 T400	
	DVSS	GND	UUR2		TA0.2	
	DVCC	V _{CC}				

Table 5-13. TA0 Signal Connections

Table 5-14. TA1 Signal Connections

INPUT PORT PIN	DEVICE INPUT SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL	OUTPUT PORT PIN
P1.1	TA1CLK	TACLK				
	ACLK (internal)	ACLK	Timer	N/A	N/A	
	SMCLK (internal)	SMCLK	Timer	IN/A	N/A	
P1.1	TA1CLK	INCLK				
P1.7	TA1.0	CCI0A				P1.7
P2.4	TA1.0	CCI0B	0000	TA0	TAA O	P2.4
	DVSS	GND	CCR0		TA1.0	
	DVCC	V _{CC}				
P1.2	TA1.1	CCI1A	CCR1			P1.2
	COUT (internal)	CCI1B		TA1	TA1.1	ADC12(internal) ADC12SHSx = {4}
	DVSS	GND				
	DVCC	V _{CC}				
P1.3	TA1.2	CCI2A				P1.3
	ACLK (internal)	CCI2B	0000		TA2 TA1.2	
	DVSS	GND	CCR2	TAZ		
	DVCC	V _{CC}				

5.10.11 TA2, TA3

TA2 and TA3 are 16-bit timers and counters (Timer_A type) with two capture/compare registers each and with internal connections only. TA2 and TA3 can support multiple captures or compares, PWM outputs, and interval timing (see Table 5-15 and Table 5-16). TA2 and TA3 have extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

DEVICE INPUT SIGNAL	MODULE INPUT NAME	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL
COUT (internal)	TACLK			
ACLK (internal)	ACLK	Timer	N/A	
SMCLK (internal)	SMCLK			
TA3 CCR0 output (internal)	CCI0A		TAO	TA3 CCI0A input
ACLK (internal)	CCI0B	CCR0		
DVSS	GND			
DVCC	V _{CC}			
COUT (internal)	CCI1B			
DVSS	GND	CCR1	TA1	
DVCC	V _{CC}			

Table 5-15. TA2 Signal Connections

Table 5-16. TA3 Signal Connections

DEVICE INPUT SIGNAL	MODULE INPUT NAME	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL
COUT (internal)	TACLK			
ACLK (internal)	ACLK	Timer	N/A	
SMCLK (internal)	SMCLK			
TA2 CCR0 output (internal)	CCI0A			TA2 CCI0A input
ACLK (internal)	CCI0B	CCR0	TA0	
DVSS	GND			
DVCC	V _{CC}			
COUT (internal)	CCI1B			
DVSS	GND	CCR1	TA1	
DVCC	V _{CC}			

5.10.12 TB0

TB0 is a 16-bit timer and counter (Timer_B type) with seven capture/compare registers. TB0 can support multiple captures or compares, PWM outputs, and interval timing (see Table 5-17). TB0 has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

INPUT PORT PIN	DEVICE INPUT SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL	OUTPUT PORT PIN
P2.0	TB0CLK	TBCLK				
	ACLK (internal)	ACLK	Timer	N/A	N/A	
	SMCLK (internal)	SMCLK	TIMEI	IN/A	IN/A	
P2.0	TB0CLK	INCLK				
P2.1	TB0.0	CCI0A				P2.1
P2.5	TB0.0	CCI0B				P2.5
	DVSS	GND	CCR0	TB0	TB0.0	ADC12 (internal) ADC12SHSx = {2}
	DVCC	V _{CC}				
P1.4	TB0.1	CCI1A				P1.4
	COUT (internal)	CCI1B				P2.6
	DVSS	GND	CCR1	TB1	TB0.1	ADC12 (internal) ADC12SHSx = {3}
	DVCC	V _{CC}				
P1.5	TB0.2	CCI2A	CCR2 TB2		TB2 TB0.2	P1.5
	ACLK (internal)	CCI2B		TP2		P2.2
	DVSS	GND		TDZ	100.2	
	DVCC	V _{CC}				
P3.4	TB0.3	CCI3A			твз тво.з	P3.4
P1.6	TB0.3	CCI3B	CCR3	TP2		P1.6
	DVSS	GND	CCR3	165		
	DVCC	V _{CC}				
P3.5	TB0.4	CCI4A				P3.5
P1.7	TB0.4	CCI4B	CCR4	TB4	TB0.4	P1.7
	DVSS	GND	CCR4	104	160.4	
	DVCC	V _{CC}				
P3.6	TB0.5	CCI5A				P3.6
P4.4	TB0.5	CCI5B	CCR5	TRS	TB5 TB0.5	P4.4
	DVSS	GND	UURD	IB5		
	DVCC	V _{CC}				
P3.7	TB0.6	CCI6A				P3.7
P2.0	TB0.6	CCI6B	CCR6	ТВ6	TB0.6	P2.0
	DVSS	GND	CCRO	IDU	100.0	
	DVCC	V _{CC}				

5.10.13 ADC12_B

The ADC12_B module supports fast 12-bit analog-to-digital conversions with differential and single-ended inputs. The module implements a 12-bit SAR core, sample select control, reference generator, and a conversion result buffer. A window comparator with lower and upper limits allows CPU-independent result monitoring with three window comparator interrupt flags.

 Table 5-18 lists the external trigger sources.

ADC1	2SHSx	CONNECTED TRIGGER
BINARY	DECIMAL	SOURCE
000	0	Software (ADC12SC)
001	1	TA0 CCR1 output
010	2	TB0 CCR0 output
011	3	TB0 CCR1 output
100	4	TA1 CCR1 output
101	5	TA2 CCR1 output
110	6	TA3 CCR1 output
111	7	Reserved (DVSS)

Table 5-18. ADC12_B Trigger Signal Connections

 Table 5-19 lists the available multiplexing between internal and external analog inputs.

CONTROL BIT IN ADC12CTL3 REGISTER	EXTERNAL ADC INPUT (CONTROL BIT = 0)	INTERNAL ADC INPUT (CONTROL BIT = 1)
ADC12BATMAP	A31	Battery monitor
ADC12TCMAP	A30	Temperature sensor
ADC12CH0MAP	A29	N/A ⁽¹⁾
ADC12CH1MAP	A28	N/A ⁽¹⁾
ADC12CH2MAP	A27	N/A ⁽¹⁾
ADC12CH3MAP	A26	N/A ⁽¹⁾

Table 5-19. ADC12_B External and Internal Signal Mapping

(1) N/A = No internal signal is available on this device.

5.10.14 Comparator_E

The primary function of the Comparator_E module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals.

5.10.15 CRC16

The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking. The CRC16 module signature is based on the CRC-CCITT standard.

5.10.16 AES256 Accelerator

The AES accelerator module performs encryption and decryption of 128-bit data with 128-, 192-, or 256bit keys according to the Advanced Encryption Standard (AES) (FIPS PUB 197) in hardware.

5.10.17 True Random Seed

The Device Descriptor (TLV) (see Section 5.12) contains a 128-bit true random seed that can be used to implement a deterministic random number generator.

5.10.18 Shared Reference (REF)

The REF module generates all of the critical reference voltages that can be used by the various analog peripherals in the device.

5.10.19 Embedded Emulation

5.10.19.1 Embedded Emulation Module (EEM)

The EEM supports real-time in-system debugging. The S version of the EEM has the following features:

- Three hardware triggers or breakpoints on memory access
- One hardware trigger or breakpoint on CPU register write access
- Up to four hardware triggers that can be combined to form complex triggers or breakpoints
- One cycle counter
- Clock control on module level

5.10.19.2 EnergyTrace++ Technology

The devices implement circuitry to support EnergyTrace++ technology. The EnergyTrace++ technology allows you to observe information about the internal states of the microcontroller. These states include the CPU Program Counter (PC), the ON or OFF status of the peripherals and the system clocks (regardless of the clock source), and the low-power mode currently in use. These states can always be read by a debug tool, even when the microcontroller sleeps in LPMx.5 modes.

The activity of the following modules can be observed:

- MPY is calculating.
- WDT is counting.
- RTC is counting.
- ADC: a sequence, sample, or conversion is active.
- REF: REFBG or REFGEN active and BG in static mode.
- COMP is on.
- AES is encrypting or decrypting.
- eUSCI_A0 is transferring (receiving or transmitting) data.
- eUSCI_A1 is transferring (receiving or transmitting) data.
- eUSCI_B0 is transferring (receiving or transmitting) data.
- TB0 is counting.
- TA0 is counting.
- TA1 is counting.
- TA2 is counting.
- TA3 is counting.

5.10.20 Peripheral File Map

Table 5-20 lists the base address for each peripheral. For complete module register descriptions, see the *MSP430FR58xx*, *MSP430FR59xx*, *MSP430FR68xx*, *MSP430FR69xx Family User's Guide*.

MODULE NAME	BASE ADDRESS	OFFSET ADDRESS RANGE
Special Functions (see Table 5-21)	0100h	000h–01Fh
PMM (see Table 5-22)	0120h	000h–01Fh
FRAM Control (see Table 5-23)	0140h	000h–00Fh
CRC16 (see Table 5-24)	0150h	000h–007h
Watchdog (see Table 5-25)	015Ch	000h–001h
CS (see Table 5-26)	0160h	000h–00Fh
SYS (see Table 5-27)	0180h	000h–01Fh
Shared Reference (see Table 5-28)	01B0h	000h–001h
Port P1, P2 (see Table 5-29)	0200h	000h–01Fh
Port P3, P4 (see Table 5-30)	0220h	000h–01Fh
Port PJ (see Table 5-31)	0320h	000h–01Fh
TA0 (see Table 5-32)	0340h	000h–02Fh
TA1 (see Table 5-33)	0380h	000h-02Fh
TB0 (see Table 5-34)	03C0h	000h-02Fh
TA2 (see Table 5-35)	0400h	000h-02Fh
TA3 (see Table 5-36)	0440h	000h–02Fh
Real-Time Clock (RTC_B) (see Table 5-37)	04A0h	000h–01Fh
32-Bit Hardware Multiplier (see Table 5-38)	04C0h	000h-02Fh
DMA General Control (see Table 5-39)	0500h	000h–00Fh
DMA Channel 0 (see Table 5-39)	0510h	000h–00Fh
DMA Channel 1 (see Table 5-39)	0520h	000h–00Fh
DMA Channel 2 (see Table 5-39)	0530h	000h–00Fh
MPU Control (see Table 5-40)	05A0h	000h-00Fh
eUSCI_A0 (see Table 5-41)	05C0h	000h–01Fh
eUSCI_A1 (see Table 5-42)	05E0h	000h–01Fh
eUSCI_B0 (see Table 5-43)	0640h	000h–02Fh
ADC12_B (see Table 5-44)	0800h	000h–09Fh
Comparator_E (see Table 5-45)	08C0h	000h-00Fh
AES (see Table 5-46)	09C0h	000h-00Fh

Table 5-20. Peripherals

TEXAS INSTRUMENTS www.ti.com

Table 5-21. Special Function Registers (Base Address: 0100h)

REGISTER DESCRIPTION	REGISTER	OFFSET
SFR interrupt enable	SFRIE1	00h
SFR interrupt flag	SFRIFG1	02h
SFR reset pin control	SFRRPCR	04h

Table 5-22. PMM Registers (Base Address: 0120h)

REGISTER DESCRIPTION	REGISTER	OFFSET
PMM control 0	PMMCTL0	00h
PMM interrupt flags	PMMIFG	0Ah
PM5 control 0	PM5CTL0	10h

Table 5-23. FRAM Control Registers (Base Address: 0140h)

REGISTER DESCRIPTION	REGISTER	OFFSET
FRAM control 0	FRCTL0	00h
General control 0	GCCTL0	04h
General control 1	GCCTL1	06h

Table 5-24. CRC16 Registers (Base Address: 0150h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CRC data input	CRC16DI	00h
CRC data input reverse byte	CRCDIRB	02h
CRC initialization and result	CRCINIRES	04h
CRC result reverse byte	CRCRESR	06h

Table 5-25. Watchdog Registers (Base Address: 015Ch)

REGISTER DESCRIPTION	REGISTER	OFFSET
Watchdog timer control	WDTCTL	00h

Table 5-26. CS Registers (Base Address: 0160h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CS control 0	CSCTL0	00h
CS control 1	CSCTL1	02h
CS control 2	CSCTL2	04h
CS control 3	CSCTL3	06h
CS control 4	CSCTL4	08h
CS control 5	CSCTL5	0Ah
CS control 6	CSCTL6	0Ch

Table 5-27. SYS Registers (Base Address: 0180h)

REGISTER DESCRIPTION	REGISTER	OFFSET
System control	SYSCTL	00h
JTAG mailbox control	SYSJMBC	06h
JTAG mailbox input 0	SYSJMBI0	08h
JTAG mailbox input 1	SYSJMBI1	0Ah
JTAG mailbox output 0	SYSJMBO0	0Ch
JTAG mailbox output 1	SYSJMBO1	0Eh

Copyright © 2017–2018, Texas Instruments Incorporated

REGISTER DESCRIPTION	REGISTER	OFFSET
User NMI vector generator	SYSUNIV	1Ah
System NMI vector generator	SYSSNIV	1Ch
Reset vector generator	SYSRSTIV	1Eh

Table 5-27. SYS Registers (Base Address: 0180h) (continued)

Table 5-28. Shared Reference Registers (Base Address: 01B0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Shared reference control	REFCTL	00h

Table 5-29. Port P1, P2 Registers (Base Address: 0200h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P1 input	P1IN	00h
Port P1 output	P1OUT	02h
Port P1 direction	P1DIR	04h
Port P1 resistor enable	P1REN	06h
Port P1 selection 0	P1SEL0	0Ah
Port P1 selection 1	P1SEL1	0Ch
Port P1 interrupt vector word	P1IV	0Eh
Port P1 complement selection	P1SELC	16h
Port P1 interrupt edge select	P1IES	18h
Port P1 interrupt enable	P1IE	1Ah
Port P1 interrupt flag	P1IFG	1Ch
Port P2 input	P2IN	01h
Port P2 output	P2OUT	03h
Port P2 direction	P2DIR	05h
Port P2 resistor enable	P2REN	07h
Port P2 selection 0	P2SEL0	0Bh
Port P2 selection 1	P2SEL1	0Dh
Port P2 complement selection	P2SELC	17h
Port P2 interrupt vector word	P2IV	1Eh
Port P2 interrupt edge select	P2IES	19h
Port P2 interrupt enable	P2IE	1Bh
Port P2 interrupt flag	P2IFG	1Dh

Table 5-30. Port P3, P4 Registers (Base Address: 0220h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P3 input	P3IN	00h
Port P3 output	P3OUT	02h
Port P3 direction	P3DIR	04h
Port P3 resistor enable	P3REN	06h
Port P3 selection 0	P3SEL0	0Ah
Port P3 selection 1	P3SEL1	0Ch
Port P3 interrupt vector word	P3IV	0Eh
Port P3 complement selection	P3SELC	16h
Port P3 interrupt edge select	P3IES	18h
Port P3 interrupt enable	P3IE	1Ah
Port P3 interrupt flag	P3IFG	1Ch

Copyright © 2017–2018, Texas Instruments Incorporated

Table 5-30.	Port P3, P4	Registers	(Base Address:	0220h)	(continued)
		Registers	Dust Audices.	022011)	(continucu)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P4 input	P4IN	01h
Port P4 output	P4OUT	03h
Port P4 direction	P4DIR	05h
Port P4 resistor enable	P4REN	07h
Port P4 selection 0	P4SEL0	0Bh
Port P4 selection 1	P4SEL1	0Dh
Port P4 complement selection	P4SELC	17h
Port P4 interrupt vector word	P4IV	1Eh
Port P4 interrupt edge select	P4IES	19h
Port P4 interrupt enable	P4IE	1Bh
Port P4 interrupt flag	P4IFG	1Dh

Table 5-31. Port J Registers (Base Address: 0320h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port PJ input	PJIN	00h
Port PJ output	PJOUT	02h
Port PJ direction	PJDIR	04h
Port PJ resistor enable	PJREN	06h
Port PJ selection 0	PJSEL0	0Ah
Port PJ selection 1	PJSEL1	0Ch
Port PJ complement selection	PJSELC	16h

Table 5-32. TA0 Registers (Base Address: 0340h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA0 control	TA0CTL	00h
Capture/compare control 0	TA0CCTL0	02h
Capture/compare control 1	TA0CCTL1	04h
Capture/compare control 2	TA0CCTL2	06h
Capture/compare control 3	TA0CCTL3	08h
Capture/compare control 4	TA0CCTL4	0Ah
TA0 counter	TAOR	10h
Capture/compare 0	TA0CCR0	12h
Capture/compare 1	TA0CCR1	14h
Capture/compare 2	TA0CCR2	16h
Capture/compare 3	TA0CCR3	18h
Capture/compare 4	TA0CCR4	1Ah
TA0 expansion 0	TA0EX0	20h
TA0 interrupt vector	ΤΑΟΙν	2Eh

Table 5-33. TA1 Registers (Base Address: 0380h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA1 control	TA1CTL	00h
Capture/compare control 0	TA1CCTL0	02h
Capture/compare control 1	TA1CCTL1	04h
Capture/compare control 2	TA1CCTL2	06h
TA1 counter	TA1R	10h

www.ti.com

STRUMENTS

REGISTER DESCRIPTION	REGISTER	OFFSET
Capture/compare 0	TA1CCR0	12h
Capture/compare 1	TA1CCR1	14h
Capture/compare 2	TA1CCR2	16h
TA1 expansion 0	TA1EX0	20h
TA1 interrupt vector	TA1IV	2Eh

Table 5-33. TA1 Registers (Base Address: 0380h) (continued)

Table 5-34. TB0 Registers (Base Address: 03C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB0 control	TB0CTL	00h
Capture/compare control 0	TB0CCTL0	02h
Capture/compare control 1	TB0CCTL1	04h
Capture/compare control 2	TB0CCTL2	06h
Capture/compare control 3	TB0CCTL3	08h
Capture/compare control 4	TB0CCTL4	0Ah
Capture/compare control 5	TB0CCTL5	0Ch
Capture/compare control 6	TB0CCTL6	0Eh
TB0 counter	TB0R	10h
Capture/compare 0	TB0CCR0	12h
Capture/compare 1	TB0CCR1	14h
Capture/compare 2	TB0CCR2	16h
Capture/compare 3	TB0CCR3	18h
Capture/compare 4	TB0CCR4	1Ah
Capture/compare 5	TB0CCR5	1Ch
Capture/compare 6	TB0CCR6	1Eh
TB0 expansion 0	TB0EX0	20h
TB0 interrupt vector	TB0IV	2Eh

Table 5-35. TA2 Registers (Base Address: 0400h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA2 control	TA2CTL	00h
Capture/compare control 0	TA2CCTL0	02h
Capture/compare control 1	TA2CCTL1	04h
TA2 counter	TA2R	10h
Capture/compare 0	TA2CCR0	12h
Capture/compare 1	TA2CCR1	14h
TA2 expansion 0	TA2EX0	20h
TA2 interrupt vector	TA2IV	2Eh

Table 5-36. TA3 Registers (Base Address: 0440h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA3 control	TA3CTL	00h
Capture/compare control 0	TA3CCTL0	02h
Capture/compare control 1	TA3CCTL1	04h
TA3 counter	TA3R	10h
Capture/compare 0	TA3CCR0	12h
Capture/compare 1	TA3CCR1	14h

Copyright © 2017–2018, Texas Instruments Incorporated

Texas Instruments

Table 5-36. TA3 Registers (B	Base Address: 0440h) (continued)
------------------------------	----------------------------------

REGISTER DESCRIPTION	REGISTER	OFFSET
TA3 expansion 0	TA3EX0	20h
TA3 interrupt vector	TA3IV	2Eh

Table 5-37. RTC_B Real-Time Clock Registers (Base Address: 04A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RTC control 0	RTCCTL0	00h
RTC control 1	RTCCTL1	01h
RTC control 2	RTCCTL2	02h
RTC control 3	RTCCTL3	03h
RTC prescaler 0 control	RTCPS0CTL	08h
RTC prescaler 1 control	RTCPS1CTL	0Ah
RTC prescaler 0	RTCPS0	0Ch
RTC prescaler 1	RTCPS1	0Dh
RTC interrupt vector word	RTCIV	0Eh
RTC seconds	RTCSEC/RTCNT1	10h
RTC minutes	RTCMIN/RTCNT2	11h
RTC hours	RTCHOUR/RTCNT3	12h
RTC day of week	RTCDOW/RTCNT4	13h
RTC days	RTCDAY	14h
RTC month	RTCMON	15h
RTC year low	RTCYEARL	16h
RTC year high	RTCYEARH	17h
RTC alarm minutes	RTCAMIN	18h
RTC alarm hours	RTCAHOUR	19h
RTC alarm day of week	RTCADOW	1Ah
RTC alarm days	RTCADAY	1Bh
Binary-to-BCD conversion	BIN2BCD	1Ch
BCD-to-binary conversion	BCD2BIN	1Eh

Table 5-38. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
16-bit operand 1 – multiply	MPY	00h
16-bit operand 1 – signed multiply	MPYS	02h
16-bit operand 1 – multiply accumulate	MAC	04h
16-bit operand 1 – signed multiply accumulate	MACS	06h
16-bit operand 2	OP2	08h
16 × 16 result low word	RESLO	0Ah
16 × 16 result high word	RESHI	0Ch
16 x 16 sum extension	SUMEXT	0Eh
32-bit operand 1 – multiply low word	MPY32L	10h
32-bit operand 1 – multiply high word	MPY32H	12h
32-bit operand 1 – signed multiply low word	MPYS32L	14h
32-bit operand 1 – signed multiply high word	MPYS32H	16h
32-bit operand 1 – multiply accumulate low word	MAC32L	18h
32-bit operand 1 – multiply accumulate high word	MAC32H	1Ah
32-bit operand 1 – signed multiply accumulate low word	MACS32L	1Ch
32-bit operand 1 – signed multiply accumulate high word	MACS32H	1Eh

REGISTER DESCRIPTION	REGISTER	OFFSET
32-bit operand 2 – low word	OP2L	20h
32-bit operand 2 – high word	OP2H	22h
32 × 32 result 0 – least significant word	RES0	24h
32 × 32 result 1	RES1	26h
32 × 32 result 2	RES2	28h
32 × 32 result 3 – most significant word	RES3	2Ah
MPY32 control 0	MPY32CTL0	2Ch

Table 5-38. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) (continued)

Table 5-39. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)

REGISTER DESCRIPTION	REGISTER	OFFSET
DMA channel 0 control	DMA0CTL	00h
DMA channel 0 source address low	DMA0SAL	02h
DMA channel 0 source address high	DMA0SAH	04h
DMA channel 0 destination address low	DMA0DAL	06h
DMA channel 0 destination address high	DMA0DAH	08h
DMA channel 0 transfer size	DMA0SZ	0Ah
DMA channel 1 control	DMA1CTL	00h
DMA channel 1 source address low	DMA1SAL	02h
DMA channel 1 source address high	DMA1SAH	04h
DMA channel 1 destination address low	DMA1DAL	06h
DMA channel 1 destination address high	DMA1DAH	08h
DMA channel 1 transfer size	DMA1SZ	0Ah
DMA channel 2 control	DMA2CTL	00h
DMA channel 2 source address low	DMA2SAL	02h
DMA channel 2 source address high	DMA2SAH	04h
DMA channel 2 destination address low	DMA2DAL	06h
DMA channel 2 destination address high	DMA2DAH	08h
DMA channel 2 transfer size	DMA2SZ	0Ah
DMA module control 0	DMACTL0	00h
DMA module control 1	DMACTL1	02h
DMA module control 2	DMACTL2	04h
DMA module control 3	DMACTL3	06h
DMA module control 4	DMACTL4	08h
DMA interrupt vector	DMAIV	0Eh

Table 5-40. MPU Control Registers (Base Address: 05A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
MPU control 0	MPUCTL0	00h
MPU control 1	MPUCTL1	02h
MPU segmentation border 2	MPUSEGB2	04h
MPU segmentation border 1	MPUSEGB1	06h
MPU access management	MPUSAM	08h
MPU IP control 0	MPUIPC0	0Ah
MPU IP encapsulation segment border 2	MPUIPSEGB2	0Ch
MPU IP encapsulation segment border 1	MPUIPSEGB1	0Eh

Table 5-41. eUSCI_A0 Registers (Base Address: 05C	;0h)
---	------

REGISTER DESCRIPTION	REGISTER	OFFSET
eUSCI_A control word 0	UCA0CTLW0	00h
eUSCI _A control word 1	UCA0CTLW1	02h
eUSCI_A baud rate 0	UCA0BR0	06h
eUSCI_A baud rate 1	UCA0BR1	07h
eUSCI_A modulation control	UCA0MCTLW	08h
eUSCI_A status word	UCA0STATW	0Ah
eUSCI_A receive buffer	UCA0RXBUF	0Ch
eUSCI_A transmit buffer	UCA0TXBUF	0Eh
eUSCI_A LIN control	UCA0ABCTL	10h
eUSCI_A IrDA transmit control	UCA0IRTCTL	12h
eUSCI_A IrDA receive control	UCA0IRRCTL	13h
eUSCI_A interrupt enable	UCA0IE	1Ah
eUSCI_A interrupt flags	UCA0IFG	1Ch
eUSCI_A interrupt vector word	UCA0IV	1Eh

Table 5-42. eUSCI_A1 Registers (Base Address:05E0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
eUSCI_A control word 0	UCA1CTLW0	00h
eUSCI _A control word 1	UCA1CTLW1	02h
eUSCI_A baud rate 0	UCA1BR0	06h
eUSCI_A baud rate 1	UCA1BR1	07h
eUSCI_A modulation control	UCA1MCTLW	08h
eUSCI_A status word	UCA1STATW	0Ah
eUSCI_A receive buffer	UCA1RXBUF	0Ch
eUSCI_A transmit buffer	UCA1TXBUF	0Eh
eUSCI_A LIN control	UCA1ABCTL	10h
eUSCI_A IrDA transmit control	UCA1IRTCTL	12h
eUSCI_A IrDA receive control	UCA1IRRCTL	13h
eUSCI_A interrupt enable	UCA1IE	1Ah
eUSCI_A interrupt flags	UCA1IFG	1Ch
eUSCI_A interrupt vector word	UCA1IV	1Eh

Table 5-43. eUSCI_B0 Registers (Base Address: 0640h)

REGISTER DESCRIPTION	REGISTER	OFFSET
eUSCI_B control word 0	UCB0CTLW0	00h
eUSCI_B control word 1	UCB0CTLW1	02h
eUSCI_B bit rate 0	UCB0BR0	06h
eUSCI_B bit rate 1	UCB0BR1	07h
eUSCI_B status word	UCB0STATW	08h
eUSCI_B byte counter threshold	UCB0TBCNT	0Ah
eUSCI_B receive buffer	UCBORXBUF	0Ch
eUSCI_B transmit buffer	UCB0TXBUF	0Eh
eUSCI_B I2C own address 0	UCB0I2COA0	14h
eUSCI_B I2C own address 1	UCB0I2COA1	16h
eUSCI_B I2C own address 2	UCB0I2COA2	18h
eUSCI_B I2C own address 3	UCB0I2COA3	1Ah
eUSCI_B received address	UCB0ADDRX	1Ch

www.ti.com

EXAS

STRUMENTS

REGISTER DESCRIPTION	REGISTER	OFFSET
eUSCI_B address mask	UCB0ADDMASK	1Eh
eUSCI I2C slave address	UCB0I2CSA	20h
eUSCI interrupt enable	UCB0IE	2Ah
eUSCI interrupt flags	UCB0IFG	2Ch
eUSCI interrupt vector word	UCB0IV	2Eh

Table 5-43. eUSCI_B0 Registers (Base Address: 0640h) (continued)

Table 5-44. ADC12_B Registers (Base Address: 0800h)

REGISTER DESCRIPTION	REGISTER	OFFSET
ADC12_B control 0	ADC12CTL0	00h
ADC12_B control 1	ADC12CTL1	02h
ADC12_B control 2	ADC12CTL2	04h
ADC12_B control 3	ADC12CTL3	06h
ADC12_B window comparator low threshold	ADC12LO	08h
ADC12_B window comparator high threshold	ADC12HI	0Ah
ADC12_B interrupt flag 0	ADC12IFGR0	0Ch
ADC12_B interrupt flag 1	ADC12IFGR1	0Eh
ADC12_B interrupt flag 2	ADC12IFGR2	10h
ADC12_B interrupt enable 0	ADC12IER0	12h
ADC12_B interrupt enable 1	ADC12IER1	14h
ADC12_B interrupt enable 2	ADC12IER2	16h
ADC12_B interrupt vector	ADC12IV	18h
ADC12_B memory control 0	ADC12MCTL0	20h
ADC12_B memory control 1	ADC12MCTL1	22h
ADC12_B memory control 2	ADC12MCTL2	24h
ADC12_B memory control 3	ADC12MCTL3	26h
ADC12_B memory control 4	ADC12MCTL4	28h
ADC12_B memory control 5	ADC12MCTL5	2Ah
ADC12_B memory control 6	ADC12MCTL6	2Ch
ADC12_B memory control 7	ADC12MCTL7	2Eh
ADC12_B memory control 8	ADC12MCTL8	30h
ADC12_B memory control 9	ADC12MCTL9	32h
ADC12_B memory control 10	ADC12MCTL10	34h
ADC12_B memory control 11	ADC12MCTL11	36h
ADC12_B memory control 12	ADC12MCTL12	38h
ADC12_B memory control 13	ADC12MCTL13	3Ah
ADC12_B memory control 14	ADC12MCTL14	3Ch
ADC12_B memory control 15	ADC12MCTL15	3Eh
ADC12_B memory control 16	ADC12MCTL16	40h
ADC12_B memory control 17	ADC12MCTL17	42h
ADC12_B memory control 18	ADC12MCTL18	44h
ADC12_B memory control 19	ADC12MCTL19	46h
ADC12_B memory control 20	ADC12MCTL20	48h
ADC12_B memory control 21	ADC12MCTL21	4Ah
ADC12_B memory control 22	ADC12MCTL22	4Ch
ADC12_B memory control 23	ADC12MCTL23	4Eh
ADC12_B memory control 24	ADC12MCTL24	50h
ADC12_B memory control 25	ADC12MCTL25	52h

REGISTER DESCRIPTION	REGISTER	OFFSET
ADC12_B memory control 26	ADC12MCTL26	54h
ADC12_B memory control 27	ADC12MCTL27	56h
ADC12_B memory control 28	ADC12MCTL28	58h
ADC12_B memory control 29	ADC12MCTL29	5Ah
ADC12_B memory control 30	ADC12MCTL30	5Ch
ADC12_B memory control 31	ADC12MCTL31	5Eh
ADC12_B memory 0	ADC12MEM0	60h
ADC12_B memory 1	ADC12MEM1	62h
ADC12_B memory 2	ADC12MEM2	64h
ADC12_B memory 3	ADC12MEM2	66h
ADC12_B memory 4	ADC12MEM3	68h
ADC12_B memory 5	ADC12MEM4	6Ah
ADC12_B memory 6	ADC12MEM6	6Ch
ADC12_B memory 7	ADC12MEM7	6Eh
ADC12_B memory 8	ADC12MEM8	70h
ADC12_B memory 9	ADC12MEM9	72h
ADC12_B memory 10	ADC12MEM10	74h
ADC12_B memory 11	ADC12MEM11	76h
ADC12_B memory 12	ADC12MEM12	78h
ADC12_B memory 13	ADC12MEM13	7Ah
ADC12_B memory 14	ADC12MEM14	7Ch
ADC12_B memory 15	ADC12MEM15	7Eh
ADC12_B memory 16	ADC12MEM16	80h
ADC12_B memory 17	ADC12MEM17	82h
ADC12_B memory 18	ADC12MEM18	84h
ADC12_B memory 19	ADC12MEM19	86h
ADC12_B memory 20	ADC12MEM20	88h
ADC12_B memory 21	ADC12MEM21	8Ah
ADC12_B memory 22	ADC12MEM22	8Ch
ADC12_B memory 23	ADC12MEM23	8Eh
ADC12_B memory 24	ADC12MEM24	90h
ADC12_B memory 25	ADC12MEM25	92h
ADC12_B memory 26	ADC12MEM26	94h
ADC12_B memory 27	ADC12MEM27	96h
ADC12_B memory 28	ADC12MEM28	98h
ADC12_B memory 29	ADC12MEM29	9Ah
ADC12_B memory 30	ADC12MEM30	9Ch
ADC12_B memory 31	ADC12MEM31	9Eh

Table 5-44. ADC12_B Registers (Base Address: 0800h) (continued)

Table 5-45. Comparator_E Registers (Base Address: 08C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Comparator_E control 0	CECTL0	00h
Comparator_E control 1	CECTL1	02h
Comparator_E control 2	CECTL2	04h
Comparator_E control 3	CECTL3	06h
Comparator_E interrupt	CEINT	0Ch
Comparator_E interrupt vector word	CEIV	0Eh

76 Detailed Description

	ſ	1
REGISTER DESCRIPTION	REGISTER	OFFSET
AES accelerator control 0	AESACTL0	00h
AES accelerator control 1	AESACTL1	02h
AES accelerator status	AESASTAT	04h
AES accelerator key	AESAKEY	06h
AES accelerator data in	AESADIN	008h
AES accelerator data out	AESADOUT	00Ah
AES accelerator XORed data in	AESAXDIN	00Ch
AES accelerator XORed data in (no trigger)	AESAXIN	00Eh

Table 5-46. AES Accelerator Registers (Base Address: 09C0h)

5.11 Input and Output Diagrams

5.11.1 Port P1 (P1.0 to P1.2) Input/Output With Schmitt Trigger

Figure 5-2 shows the port diagram. Table 5-47 summarizes the selection of the pin function.

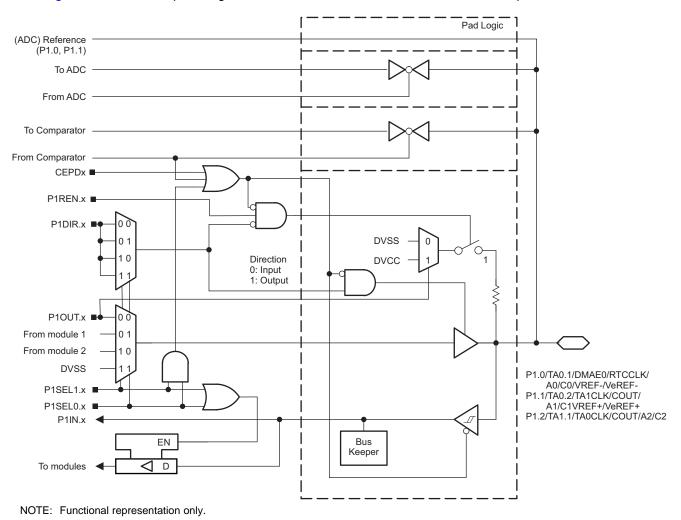


Figure 5-2. Port P1 (P1.0 to P1.2) Diagram

www.ti.com

		FUNCTION	CONTRO	ITROL BITS AND SIGNALS ⁽¹⁾		
PIN NAME (P1.x)	x	FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x	
		P1.0 (I/O)	I: 0; O: 1	0	0	
		TA0.CCI1A	0	0	1	
P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/	0	TA0.1	1	0	I	
VREF-/VeREF-	0	DMAE0	0	- 1	0	
		RTCCLK ⁽²⁾⁽³⁾	1		0	
		A0, C0, VREF-, VeREF- ⁽⁴⁾⁽⁵⁾	Х	1	1	
		P1.1 (I/O)	I: 0; O: 1	0	0	
		TA0.CCI2A	0	0	1	
P1.1/TA0.2/TA1CLK/COUT/A1/C1/	1	TA0.2	1		I	
VREF+/VeREF+	1	TA1CLK	0	- 1	0	
		COUT ⁽⁶⁾	1		0	
		A1, C1, VREF+, VeREF+ ⁽⁴⁾⁽⁵⁾	Х	1	1	
		P1.2 (I/O)	I: 0; O: 1	0	0	
P1.2/TA1.1/TA0CLK/COUT/A2/C2		TA1.CCI1A	0	0	1	
	2	TA1.1	1	0	I	
	2	TAOCLK	0		0	
		COUT ⁽⁷⁾	1	1	0	
		A2, C2 ⁽⁴⁾⁽⁵⁾	Х	1	1	

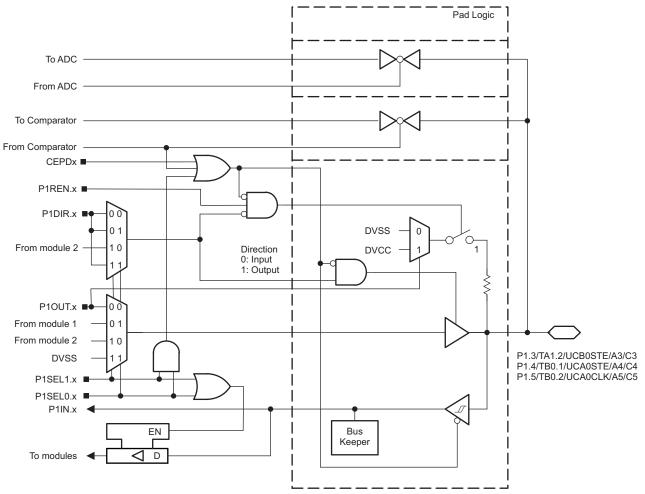
Table 5-47. Port P1 (P1.0 to P1.2) Pin Functions

(1) X = Don't care

(2) Not available on MSP430FR5x5x devices

(3) Do not use this pin as RTCCLK output if the DMAE0 functionality is used on any other pin. Select an alternative RTCCLK output pin.

(4) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.


(5) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.

(6) Do not use this pin as COUT output if the TA1CLK functionality is used on any other pin. Select an alternative COUT output pin.

(7) Do not use this pin as COUT output if the TAOCLK functionality is used on any other pin. Select an alternative COUT output pin.

5.11.2 Port P1 (P1.3 to P1.5) Input/Output With Schmitt Trigger

Figure 5-3 shows the port diagram. Table 5-48 summarizes the selection of the pin function.

NOTE: Functional representation only.

Figure 5-3. Port P1 (P1.3 to P1.5) Diagram

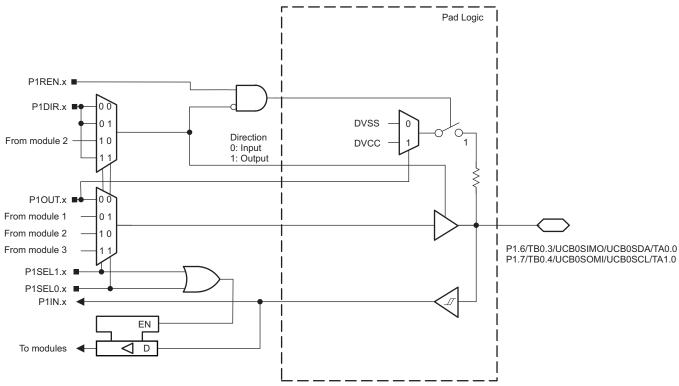
www.ti.com

		FUNCTION	CONTRO	ROL BITS AND SIGNALS ⁽¹⁾		
PIN NAME (P1.x)	x	FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x	
		P1.3 (I/O)	I: 0; O: 1	0	0	
		TA1.CCI2A	0	0	1	
P1.3/TA1.2/UCB0STE/A3/C3	3	TA1.2	1	0	1	
		UCB0STE	X ⁽²⁾	1	0	
		A3, C3 ⁽³⁾⁽⁴⁾	Х	1	1	
		P1.4 (I/O)	I: 0; O: 1	0	0	
		TB0.CCI1A	0	0	1	
P1.4/TB0.1/UCA0STE/A4/C4	4	TB0.1	1	0		
		UCA0STE	X ⁽⁵⁾	1	0	
		A4, C4 ⁽³⁾⁽⁴⁾	Х	1	1	
		P1.5(I/O)	I: 0; O: 1	0	0	
		TB0.CCI2A	0	0		
P1.5/TB0.2/UCA0CLK/A5/C5	5	TB0.2	1	0	1	
		UCA0CLK	X ⁽⁵⁾	1	0	
		A5, C5 ⁽³⁾⁽⁴⁾	Х	1	1	

Table 5-48. Port P1 (P1.3 to P1.5) Pin Functions

(1) X = Don't care

(2) Direction controlled by eUSCI_B0 module.


(3) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.
 (4) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when

(4) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.

(5) Direction controlled by eUSCI_A0 module.

5.11.3 Port P1 (P1.6 and P1.7) Input/Output With Schmitt Trigger

Figure 5-4 shows the port diagram. Table 5-49 summarizes the selection of the pin function.

NOTE: Functional representation only.

Figure 5-4. Port P1 (P1.6 and P1.7) Diagram

PIN NAME (P1.x)		FUNCTION	CONTROL BITS AND SIGNALS ⁽¹⁾		
	х	FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x
		P1.6 (I/O)	I: 0; O: 1	0	0
		TB0.CCI3B	0	0	1
P1.6/TB0.3/UCB0SIMO/UCB0SDA/ TA0.0	6	ТВ0.3	1	0	I
	0	UCB0SIMO/UCB0SDA	X ⁽²⁾		0
		TA0.CCI0A	0	1	4
		TA0.0	1		I
		P1.7 (I/O)	I: 0; O: 1	0	0
P1.7/TB0.4/UCB0SOMI/UCB0SCL/ TA1.0		TB0.CCI4B	0	0	1
	-	TB0.4	1	0	
	7	UCB0SOMI/UCB0SCL	X ⁽³⁾	1	0
		TA1.CCI0A	0		
		TA1.0	1	1	1


(1) X = Don't care

(2) Direction controlled by eUSCI_B0 module.

(3) Direction controlled by eUSCI_A0 module.

5.11.4 Port P2 (P2.0 to P2.2) Input/Output With Schmitt Trigger

Figure 5-5 shows the port diagram. Table 5-50 summarizes the selection of the pin function.

NOTE: Functional representation only.

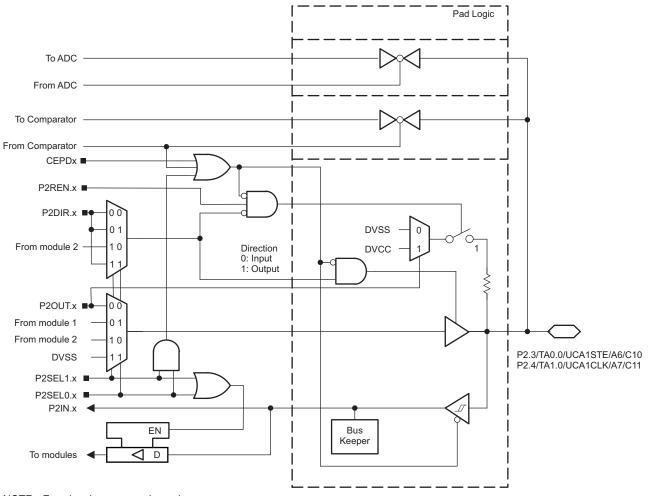
Figure 5-5. Port P2 (P2.0 to P2.2) Diagram

Table 5-50. Port P2 (P2.0 to P2.2	2) Pin Functions
-----------------------------------	------------------

	x	FUNCTION	CONTROL BITS AND SIGNALS ⁽¹⁾		
PIN NAME (P2.x)		FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x
		P2.0 (I/O)	I: 0; O: 1	0	0
P2.0/TB0.6/UCA0TXD/UCA0SIMO/ TB0CLK/ACLK	0	TB0.CCI6B	0	0	1
		TB0.6	1		I
		UCA0TXD/UCA0SIMO	X ⁽²⁾	1	0
		TB0CLK	0	1	4
		ACLK ⁽³⁾	1		I
P2.1/TB0.0/UCA0RXD/UCA0SOMI/ TB0.0		P2.1 (I/O)	I: 0; O: 1	0	0
		TB0.CCI0A	0	~	1
		ТВ0.0	1	Х	1
		UCA0RXD/UCA0SOMI	X ⁽²⁾	1	0

(1) X = Don't care

(2) Direction controlled by eUSCI_A0 module.


(3) Do not use this pin as ACLK output if the TB0CLK functionality is used on any other pin. Select an alternative ACLK output pin.

PIN NAME (P2.x)		FUNCTION	CONTROL BITS AND SIGNALS ⁽¹⁾			
	X	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x	
		P2.2 (I/O)	I: 0; O: 1	0	0	
P2.2/TB0.2/UCB0CLK		N/A	0	0	1	
	2	TB0.2	1			
	2	UCB0CLK	X ⁽⁴⁾	1	0	
		N/A	0	- 1	1	
		Internally tied to DVSS	1		Ĩ	

Table 5-50. Port P2 (P2.0 to P2.2) Pin Functions (continued)

(4) Direction controlled by eUSCI_B0 module.

5.11.5 Port P2 (P2.3 and P2.4) Input/Output With Schmitt Trigger

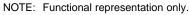
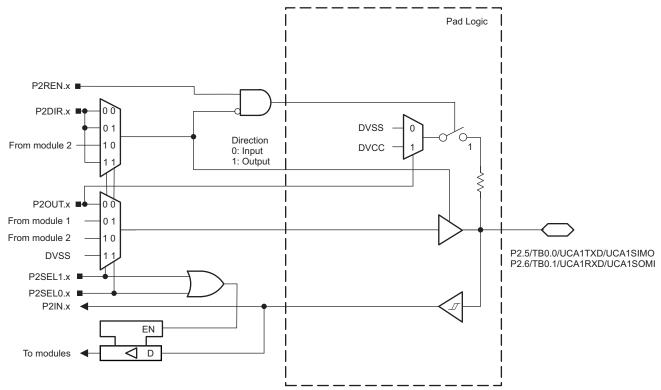


Figure 5-6. Port P2 (P2.3 and P2.4) Diagram

		CONTRO		OL BITS AND SIGNALS ⁽¹⁾		
PIN NAME (P2.x)	x	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x	
P2.3/TA0.0/UCA1STE/A6/C10		P2.3 (I/O)	I: 0; O: 1	0	0	
		TA0.CCI0B	0	- 0	4	
	3	TA0.0	1		I	
		UCA1STE	X ⁽²⁾	1	0	
		A6, C10 ⁽³⁾⁽⁴⁾	Х	1	1	
		P2.4 (I/O)	I: 0; O: 1	0	0	
P2.4/TA1.0/UCA1CLK/A7/C11		TA1.CCI0B	0	0	1	
	4	TA1.0	1	0		
		UCA1CLK	X ⁽²⁾	1	0	
		A7, C11 ⁽³⁾⁽⁴⁾	Х	1	1	

Table 5-51. Port P2 (P2.3 and P2.4) Pin Functions

(1) X = Don't care


(2) Direction controlled by eUSCI_A1 module.

(3) Setting P2SEL1.x and P2SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

(4) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.

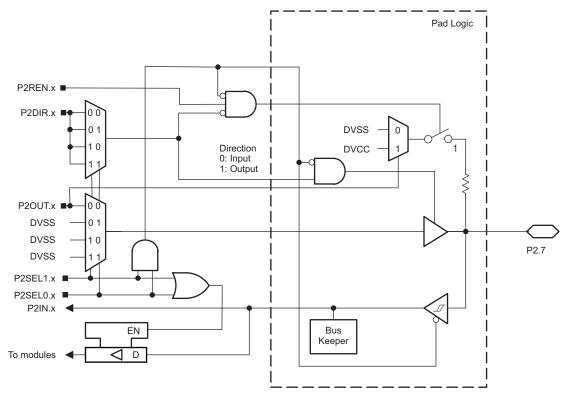
5.11.6 Port P2 (P2.5 and P2.6) Input/Output With Schmitt Trigger

Figure 5-7 shows the port diagram. Table 5-52 summarizes the selection of the pin function.

NOTE: Functional representation only.

Figure 5-7. Port P2 (P2.5 and P2.6) Diagram

Table 5-52. Port P2 (P2.5 and P2.6) Pin Functions


PIN NAME (P2.x)		FUNCTION	L BITS AND SIGNALS ⁽¹⁾		
	x	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x
		P2.5(I/O)	I: 0; O: 1	0	0
		TB0.CCI0B	0	0	4
P2.5/TB0.0/UCA1TXD/UCA1SIMO	5	ТВ0.0	1	0	I I
	Э	UCA1TXD/UCA1SIMO	X ⁽²⁾		0
		N/A	0	- 1	1
		Internally tied to DVSS	1		
P2.6/TB0.1/UCA1RXD/UCA1SOMI		P2.6(I/O)	I: 0; O: 1	0	0
		N/A	0	- 0	1
	6	TB0.1	1	0	
	0	UCA1RXD/UCA1SOMI	X ⁽²⁾	1	0
		N/A	0	- 1	1
		Internally tied to DVSS	1		I

(1) X = Don't care

(2) Direction controlled by eUSCI_A1 module.

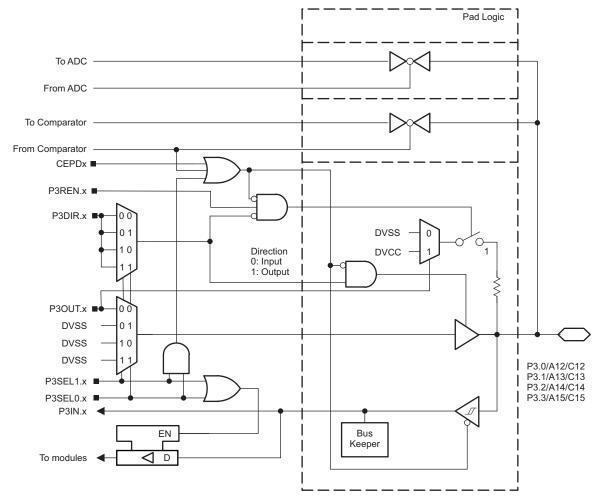
5.11.7 Port P2 (P2.7) Input/Output With Schmitt Trigger

Figure 5-8 shows the port diagram. Table 5-53 summarizes the selection of the pin function.

NOTE: Functional representation only.

Figure 5-8. Port P2 (P2.7) Diagram

Table 5-53	Port P2	(P2.7) Pin	Functions
------------	---------	------------	-----------


PIN NAME (P2.x) x		FUNCTION	CONTROL BITS AND SIGNALS ⁽¹⁾			
PIN NAME (P2.X)	X	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x	
		P2.7(I/O)	I: 0; O: 1	0	0	
		N/A	0	0	1	
P2.7	7	Internally tied to DVSS	1	0	I	
		N/A	0	4	×	
		Internally tied to DVSS	1	I	Х	

(1) X = Don't care

TEXAS INSTRUMENTS www.ti.com

5.11.8 Port P3 (P3.0 to P3.3) Input/Output With Schmitt Trigger

Figure 5-9 shows the port diagram. Table 5-54 summarizes the selection of the pin function.

CONTROL BITS AND SIGNALS⁽¹⁾ PIN NAME (P3.x) х FUNCTION P3DIR.x P3SEL1.x P3SEL0.x P3.0 (I/O) I: 0; O: 1 0 0 0 N/A 0 1 Internally tied to DVSS 1 P3.0/A12/C12 0 N/A 0 1 0 Internally tied to DVSS 1 A12/C12⁽²⁾⁽³⁾ Х 1 1 P3.1 (I/O) I: 0; O: 1 0 0 0 N/A 0 1 Internally tied to DVSS 1 P3.1/A13/C13 1 0 N/A 1 0 Internally tied to DVSS 1 A13/C13⁽²⁾⁽³⁾ Х 1 1 I: 0; O: 1 P3.2 (I/O) 0 0 N/A 0 0 1 Internally tied to DVSS 1 P3.2/A14/C14 2 N/A 0 1 0 Internally tied to DVSS 1 A14/C14⁽²⁾⁽³⁾ Х 1 1 P3.3 (I/O) I: 0; O: 1 0 0 N/A 0 0 1 Internally tied to DVSS 1 P3.3/A15/C15 3 N/A 0 0 1 Internally tied to DVSS 1 A15/C15⁽²⁾⁽³⁾ Х 1 1

Table 5-54. Port P3 (P3.0 to P3.3) Pin Functions

X = Don't care(1)

Setting P3SEL1.x and P3SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when (2)applying analog signals.

Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when (3)applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.

5.11.9 Port P3 (P3.4 to P3.7) Input/Output With Schmitt Trigger

Figure 5-10 shows the port diagram. Table 5-55 summarizes the selection of the pin function.

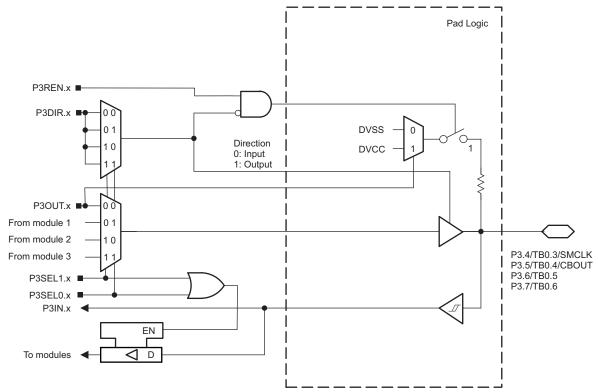
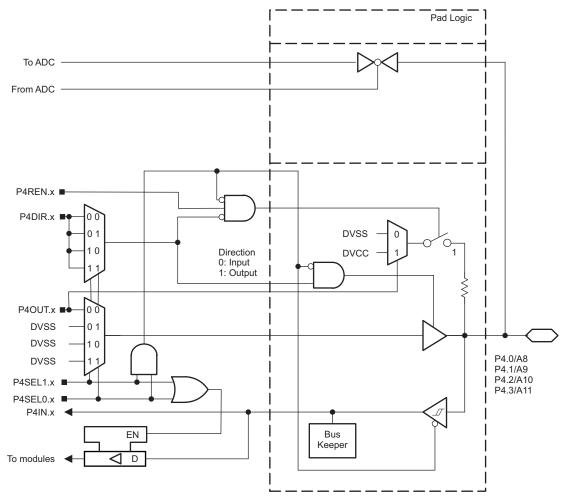
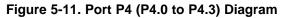


Figure 5-10. Port P3 (P3.4 to P3.7) Diagram


		FUNCTION	CONTRO	L BITS AND SIG	GNALS ⁽¹⁾
PIN NAME (P3.x)	x	FUNCTION	P3DIR.x	P3SEL1.x	P3SEL0.x
		P3.4 (I/O)	I: 0; O: 1	0	0
		TB0.CCI3A	0	0	1
P3.4/TB0.3/SMCLK	4	TB0.3	1	0	I
		N/A	0	1	х
		SMCLK	1	I	^
		P3.5 (I/O)	I: 0; O: 1	0	0
		TB0.CCI4A	0	0	1
P3.5/TB0.4/COUT	5	TB0.4	1	0	I
		N/A	0	1	х
		COUT	1	I	^
		P3.6 (I/O)	I: 0; O: 1	0	0
		TB0.CCI5A	0	0	1
P3.6/TB0.5	6	TB0.5	1	0	I
		N/A	0	1	х
		Internally tied to DVSS	1	I	^
		P3.7 (I/O)	l: 0; O: 1	0	0
		TB0.CCI6A	0	0	1
P3.7/TB0.6	7	TB0.6	1	0	I
		N/A	0	1	х
		Internally tied to DVSS	1	I	^


Table 5-55. Port P3 (P3.4 to P3.7) Pin Functions

(1) X = Don't care

5.11.10 Port P4 (P4.0 to P4.3) Input/Output With Schmitt Trigger

Figure 5-11 shows the port diagram. Table 5-56 summarizes the selection of the pin function.

CONTROL BITS AND SIGNALS⁽¹⁾ PIN NAME (P4.x) х FUNCTION P4SEL1.x P4DIR.x P4SEL0.x P4.0 (I/O) I: 0; O: 1 0 0 N/A 0 0 1 Internally tied to DVSS 1 P4.0/A8 0 N/A 0 1 0 Internally tied to DVSS 1 A8⁽²⁾ Х 1 1 P4.1 (I/O) I: 0; O: 1 0 0 N/A 0 0 1 Internally tied to DVSS 1 P4.1/A9 1 N/A 0 0 1 Internally tied to DVSS 1 A9⁽²⁾ Х 1 1 P4.2 (I/O) I: 0; O: 1 0 0 N/A 0 0 1 Internally tied to DVSS 1 P4.2/A10 2 N/A 0 1 0 Internally tied to DVSS 1 A10⁽²⁾ Х 1 1 P4.3 (I/O) I: 0; O: 1 0 0 N/A 0 0 1 Internally tied to DVSS 1 P4.3/A11 3 N/A 0 0 1 Internally tied to DVSS 1 A11⁽²⁾ Х 1 1

Table 5-56. Port P4 (P4.0 to P4.3) Pin Functions

X = Don't care (1)

Setting P4SEL1.x and P4SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when (2) applying analog signals.

5.11.11 Port P4 (P4.4 to P4.7) Input/Output With Schmitt Trigger

Figure 5-12 shows the port diagram. Table 5-57 summarizes the selection of the pin function.

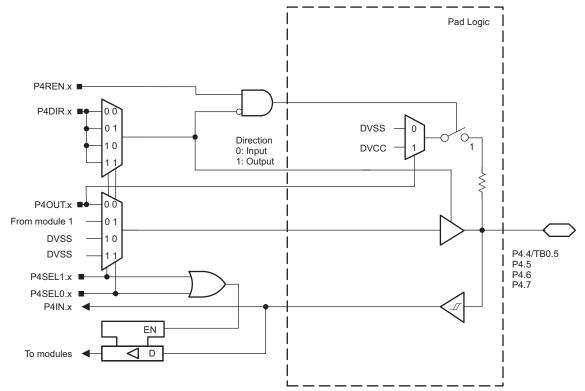


Figure 5-12. Port P4 (P4.4 to P4.7) Diagram

		FUNCTION	CONTRO	DL BITS AND SIG	GNALS ⁽¹⁾
PIN NAME (P4.x)	x	FUNCTION	P4DIR.x	P4SEL1.x	P4SEL0.x
		P4.4 (I/O)	I: 0; O: 1	0	0
		TB0.CCI5B	0	0	1
P4.4/TB0.5	4	TB0.5	1	0	1
		N/A	0	1	х
		Internally tied to DVSS	1	I	^
		P4.5 (I/O)	l: 0; O: 1	0	0
		N/A	0	0	1
P4.5	5	Internally tied to DVSS	1	0	I
		N/A	0	1	х
		Internally tied to DVSS	1	I	^
		P4.6 (I/O)	I: 0; O: 1	0	0
		N/A	0	0	1
P4.6	6	Internally tied to DVSS	1	0	I
		N/A	0	1	х
		Internally tied to DVSS	1	I	^
		P4.7 (I/O)	I: 0; O: 1	0	0
		N/A	0	0	1
P4.7	7	Internally tied to DVSS	1	U	1
		N/A	0	1	х
		Internally tied to DVSS	1	I	~

Table 5-57. Port P4 (P4.4 to P4.7) Pin Functions

(1) X = Don't care

5.11.12 Port PJ, PJ.4 and PJ.5 Input/Output With Schmitt Trigger

Figure 5-13 and Figure 5-14 show the port diagrams. Table 5-58 summarizes the selection of the pin function.

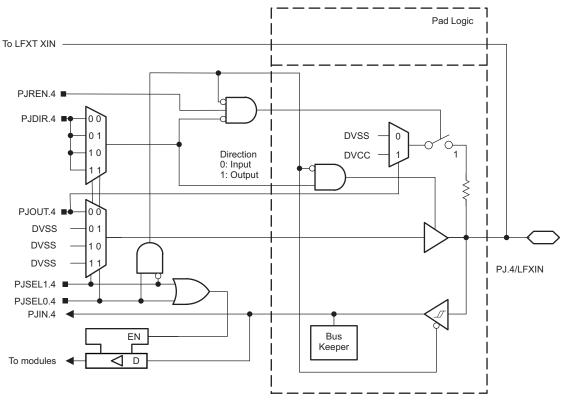


Figure 5-13. Port PJ (PJ.4) Diagram

TEXAS INSTRUMENTS www.ti.com

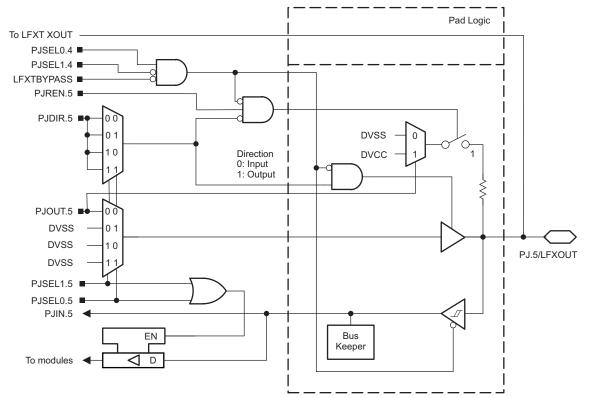


Figure 5-14. Port PJ (PJ.5) Diagram

www.ti.com

				CO	NTROL BITS	AND SIGNAL	S ⁽¹⁾	
PIN NAME (PJ.x)	x	FUNCTION	PJDIR.x	PJSEL1.5	PJSEL0.5	PJSEL1.4	PJSEL0.4	LFXT BYPASS
		PJ.4 (I/O)	I: 0; O: 1	Х	Х	0	0	Х
		N/A	0	x	х	4	х	V
PJ.4/LFXIN	4	Internally tied to DVSS	1	×	X	1	X	Х
		LFXIN crystal mode ⁽²⁾	Х	Х	Х	0	1	0
		LFXIN bypass mode ⁽²⁾	Х	Х	Х	0	1	1
						0	0	0
		PJ.5 (I/O)	I: 0; O: 1	0	0	1	Х	0
						Х	Х	1 ⁽³⁾
						0	0	0
	5	N/A	0	see ⁽⁴⁾	see ⁽⁴⁾	1	Х	0
PJ.5/LFXOUT	5					Х	Х	1 ⁽³⁾
						0	0	0
		Internally tied to DVSS	1	see ⁽⁴⁾	see ⁽⁴⁾	1	Х	0
						Х	Х	1 ⁽³⁾
		LFXOUT crystal mode ⁽²⁾	Х	Х	Х	0	1	0

Table 5-58. Port PJ (PJ.4 and PJ.5) Pin Functions

(1) X = Don't care

If PJSEL1.4 = 0 and PJSEL0.4 = 1, the general-purpose I/O is disabled. When LFXTBYPASS = 0, PJ.4 and PJ.5 are configured for crystal operation and PJSEL1.5 and PJSEL0.5 are don't care. When LFXTBYPASS = 1, PJ.4 is configured for bypass operation and (2) PJ.5 is configured as general-purpose I/O.

(3)

When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O. If PJSEL0.5 = 1 or PJSEL1.5 = 1, the general-purpose I/O functionality is disabled. No input function is available. Configured as output, (4) the pin is actively pulled to zero.

5.11.13 Port PJ (PJ.6 and PJ.7) Input/Output With Schmitt Trigger

Figure 5-15 and Figure 5-16 show the port diagrams. Table 5-59 summarizes the selection of the pin function.

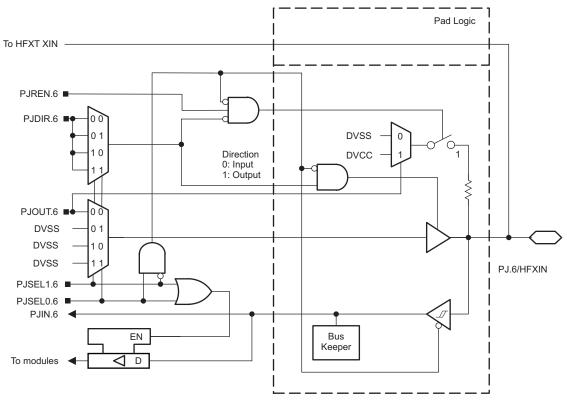


Figure 5-15. Port PJ (PJ.6) Diagram

Pad Logic To HFXT XOUT PJSEL0.6 PJSEL1.6 HFXTBYPASS PJREN.7 PJDIR.7 ■ 00 DVSS 01 0 10 Direction DVCC 0: Input 1: Output 1 . PJOUT.7 00 DVSS 01 DVSS 10 DVSS 1 1 PJ.7/HFXOUT I PJSEL1.7 PJSEL0.7 PJIN.7 Д Bus ΕN Keeper D To modules 1 4

Figure 5-16. Port PJ (PJ.7) Diagram

				CO	NTROL BITS	AND SIGNAL	S ⁽¹⁾	
PIN NAME (PJ.x)	x	FUNCTION	PJDIR.x	PJSEL1.7	PJSEL0.7	PJSEL1.6	PJSEL0.6	HFXT BYPASS
		PJ.6 (I/O)	I: 0; O: 1	Х	Х	0	0	Х
		N/A	0	х	х	1	х	х
PJ.6/HFXIN	6	Internally tied to DVSS	1	~	^	I	^	^
		HFXIN crystal mode ⁽²⁾	Х	Х	Х	0	1	0
		HFXIN bypass mode ⁽²⁾	Х	Х	Х	0	1	1
						0	0	0
		PJ.7 (I/O) ⁽³⁾	l: 0; O: 1	0	0	1	Х	0
						Х	Х	1 ⁽⁴⁾
						0	0	0
	7	N/A	0	see (3)	see (3)	1	Х	0
PJ.7/HFXOUT	1					Х	Х	1 ⁽⁴⁾
						0	0	0
		Internally tied to DVSS	1	see (3)	see (3)		Х	0
						Х	Х	1 ⁽⁴⁾
		HFXOUT crystal mode ⁽²⁾	Х	Х	Х	0	1	0

Table 5-59. Port PJ (PJ.6 and PJ.7) Pin Functions

(1) X = Don't care

(2) Setting PJSEL1.6 = 0 and PJSEL0.6 = 1 causes the general-purpose I/O to be disabled. When HFXTBYPASS = 0, PJ.6 and PJ.7 are configured for crystal operation and PJSEL1.6 and PJSEL0.7 are do not care. When HFXTBYPASS = 1, PJ.6 is configured for bypass operation, and PJ.7 is configured as general-purpose I/O.

(3) With PJSEL0.7 = 1 or PJSEL1.7 = 1 the general-purpose I/O functionality is disabled. No input function is available. When configured as output, the pin is actively pulled to zero.

(4) When PJ.6 is configured in bypass mode, PJ.7 is configured as general-purpose I/O.

5.11.14 Port PJ (PJ.0 to PJ.3) JTAG Pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger

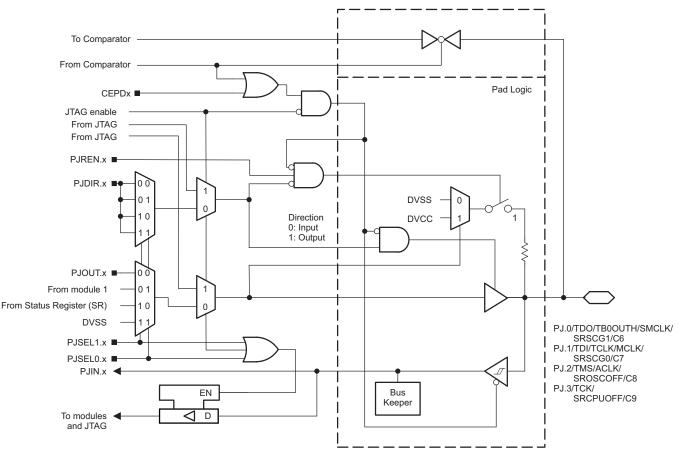
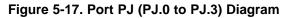



Figure 5-17 shows the port diagram. Table 5-60 summarizes the selection of the pin function.

	x			CONTROL BIT	S/ SIGNALS ⁽¹)
PIN NAME (PJ.x)		FUNCTION	PJDIR.x	PJSEL1.x	PJSEL0.x	CEPDx (Cx)
		PJ.0 (I/O) ⁽²⁾	I: 0; O: 1	0	0	0
		TDO ⁽³⁾	Х	Х	Х	0
		TB0OUTH	0	-		_
		SMCLK ⁽⁴⁾	1	0	1	0
PJ.0/TDO/TB0OUTH/ SMCLK/SRSCG1/C6	0	N/A	0		2	0
SINCLIVORGEDI/CO		CPU Status Register Bit SCG1	1	- 1	0	0
		N/A	0			0
		Internally tied to DVSS	1	- 1	1	0
		C6 ⁽⁵⁾	Х	Х	Х	1
		PJ.1 (I/O) ⁽²⁾	I: 0; O: 1	0	0	0
		TDI/TCLK ^{(3) (6)}	Х	Х	Х	0
		N/A	0	- 0	1	0
		MCLK	1	0	1	0
PJ.1/TDI/TCLK/MCLK/ SRSCG0/C7	1	N/A	0	- 1	0	0
		CPU Status Register Bit SCG0	1	1	0	0
		N/A	0	1	1	0
		Internally tied to DVSS	1	- 1	1	0
		C7 ⁽⁵⁾	Х	Х	Х	1
		PJ.2 (I/O) ⁽²⁾	I: 0; O: 1	0	0	0
		TMS ⁽³⁾ (6)	Х	Х	х	0
		N/A	0	- 0	1	0
		ACLK	1	0	I	0
PJ.2/TMS/ACLK/ SROSCOFF/C8	2	N/A	0	- 1	0	0
		CPU Status Register Bit OSCOFF	1	I	0	0
		N/A	0	- 1	1	0
		Internally tied to DVSS	1	I	I	U
		C8 ⁽⁵⁾	Х	Х	Х	1
		PJ.3 (I/O) ⁽²⁾	I: 0; O: 1	0	0	0
		TCK ⁽³⁾ ⁽⁶⁾	Х	Х	Х	0
		N/A	0	- 0	1	0
		Internally tied to DVSS	1	0	I	U
PJ.3/TCK/SRCPUOFF/C9	3	N/A	0	- 1	0	0
		CPU Status Register Bit CPUOFF	1	I	0	
		N/A	0	- 1	1	0
		Internally tied to DVSS	1	I	1	U
		C9 ⁽⁵⁾	Х	Х	Х	1

Table 5-60. Port PJ (PJ.0 to PJ.3) Pin Functions

(1) X = Don't care(2) Default condition

(3) The pin direction is controlled by the JTAG module. JTAG mode selection is made via the SYS module or by the Spy-Bi-Wire four-wire entry sequence. Neither PJSEL1.x and PJSEL0.x nor CEPDx bits have an effect in these cases.

(4) Do not use this pin as SMCLK output if the TBOOUTH functionality is used on any other pin. Select an alternative SMCLK output pin.
 (5) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.

(6) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.

5.12 Device Descriptor (TLV)

Table 5-61 lists the Device ID for the MSP430FR5969-SP device. Table 5-62 lists the contents of the device descriptor tag-length-value (TLV) structure for MSP430FR5969-SP.

Table 5-61. Device IDs

DEVICE	DEV	ICE ID
DEVICE	01A05h	01A04h
MSP430FR5969-SP	081h	069h

Table 5-62. Device Descriptor⁽¹⁾

	DESCRIPTION		9xx (UART BSL)
			VALUE
	Info length	01A00h	06h
	CRC length	01A01h	06h
nfo Block	CRC value	01A02h	Per unit
	CRC value	01A03h	Per unit
	Device ID	01A04h	See Table 5-61.
	Device ID	01A05h	See Table 5-61.
	Hardware revision	01A06h	Per unit
	Firmware revision	01A07h	Per unit
	Die record tag	01A08h	08h
	Die record length	01A09h	0Ah
		01A0Ah	Per unit
		01A0Bh	Per unit
	Lot/Wafer ID	01A0Ch	Per unit
Die Record		01A0Dh	Per unit
Die Record	Die V pesition	01A0Eh	Per unit
	Die X position	01A0Fh	Per unit
	Die V pesition	01A10h	Per unit
Die Y position	Die Y position	01A11h	Per unit
		01A12h	Per unit
	Test results	01A13h	Per unit

(1) NA = Not applicable, Per unit = content can differ from device to device

		(continued)	
	DESCRIPTION	MSP430FR59xx	(UART BSL)
	DESCRIPTION	ADDRESS	VALUE
	ADC12 calibration tag	01A14h	11h
-	ADC12 calibration length	01A15h	10h
	ADC gain factor ⁽²⁾	01A16h	Per unit
	ADC gain factor	01A17h	Per unit
-	ADC offset ⁽³⁾	01A18h	Per unit
	ADC onset	01A19h	Per unit
-	ADC 1.2-V reference	01A1Ah	Per unit
	Temperature sensor 30°C	01A1Bh	Per unit
ADC12 Calibration	ADC 1.2-V reference	01A1Ch	Per unit
ADC12 Calibration	Temperature sensor 85°C	01A1Dh	Per unit
-	ADC 2.0-V reference	01A1Eh	Per unit
	Temperature sensor 30°C	01A1Fh	Per unit
-	ADC 2.0-V reference	01A20h	Per unit
	Temperature sensor 85°C	01A21h	Per unit
	ADC 2.5-V reference	01A22h	Per unit
	Temperature sensor 30°C	01A23h	Per unit
-	ADC 2.5-V reference	01A24h	Per unit
	Temperature sensor 85°C	01A25h	Per unit
	REF calibration tag	01A26h	12h
	REF calibration length	01A27h	06h
REF Calibration	REF 1.2-V reference	01A28h	Per unit
	KEF 1.2-V reference	01A29h	Per unit
	REF 2.0-V reference	01A2Ah	Per unit
	KEF 2.0-V Telefence	01A2Bh	Per unit
	REF 2.5-V reference	01A2Ch	Per unit
	REF 2.3-V Telefence	01A2Dh	Per unit

Table 5-62. Device	Descriptor ⁽¹⁾ ((continued)
--------------------	-----------------------------	-------------

(2) ADC gain: the gain correction factor is measured at room temperature using a 2.5-V external voltage reference without internal buffer (ADC12VRSEL=0x2, 0x4, or 0xE). Other settings (for example, using internal reference) can result in different correction factors.

(3) ADC offset: the offset correction factor is measured at room temperature using ADC12VRSEL= 0x2 or 0x4, an external reference,

VR+ = external 2.5 V, VR- = AVSS.

	DESCRIPTION	MSP430FR59xx (UART BSL)		
	DESCRIPTION	ADDRESS	VALUE	
	128-bit random number tag	01A2Eh	15h	
	Random number length	01A2Fh	10h	
		01A30h	Per unit	
		01A31h	Per unit	
		01A32h	Per unit	
		01A33h	Per unit	
		01A34h	Per unit	
		01A35h	Per unit	
Dandam Number		01A36h	Per unit	
Random Number	128-bit random number ⁽⁴⁾	01A37h	Per unit	
		01A38h	Per unit	
		01A39h	Per unit	
		01A3Ah	Per unit	
		01A3Bh	Per unit	
		01A3Ch	Per unit	
		01A3Dh	Per unit	
		01A3Eh	Per unit	
		01A3Fh	Per unit	
BSL Configuration	BSL tag	01A40h	1Ch	
	BSL length	01A41h	02h	
	BSL Interface	01A42h	00h	
	BSL interface configuration	01A43h	00h	

Table 5-62. Device Descriptor⁽¹⁾ (continued)

(4) 128-bit random number: The random number is generated during production test using the CryptGenRandom() function from Microsoft[®].

5.13 Identification

5.13.1 Revision Identification

The device revision information is shown as part of the top-side marking on the device package. The device-specific errata sheet describes these markings. For links to the errata sheets for the devices in this data sheet, see Section 7.3.

The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For details on this value, see the "Hardware Revision" entries in Section 5.12.

5.13.2 Device Identification

The device type can be identified from the top-side marking on the device package. The device-specific errata sheet describes these markings. For links to the errata sheets for the devices in this data sheet, see Section 7.3.

A device identification value is also stored in the Device Descriptor structure in the Info Block section. For details on this value, see the "Device ID" entries in Section 5.12.

5.13.3 JTAG Identification

Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in detail in the *MSP430 Programming With the JTAG Interface*.

6 Applications, Implementation, and Layout

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

6.1 Software Best Practices for Radiation Effects Mitigation

Use of any MCU in a radiation environment introduces challenges for understanding radiation effects. The most common approach for characterizing single events effects (SEE) is using a system approach. The system requirements are modeled and implemented in hardware capable of being exposed to heavy ions or protons. The effects on actual system behavior are then characterized, rather than utilizing specific cross sections for the various hardware blocks. It is recommended that this approach be used to fully understand the SEE performance of the MCU in a given end application.

Following are important recommendations that system designers can adopt to mitigate radiation effects:

- The FRAM array is known to be very robust to corruption due to SEE. Accessing the FRAM (read or write) creates possibility of corruption of data due to FRAM controller sensitivity. The probability of SEE can be lowered by minimizing FRAM accesses and operating at lower frequency. A boot time mitigation technique could implement a software code health check. Any detected corruption in critical FRAM could be repaired by utilizing redundant code stored in unused area FRAM.
- Creating error handlers for all critical interrupts is essential for device self-recovery from events.
- Using the MPU to protect code space, look-up tables and interrupt vector tables (IVT) lowers probability of corruption of critical data.
- SRAM will have higher cross section than FRAM. It is recommended to use FRAM in place of SRAM for volatile data.
- Avoid pointer indexing and incrementing near memory space with critical data, such as code and IVT. An event could offset the index resulting in reading/writing to unexpected locations.
- The probability of SEE will be lowered when operating at a higher V_{CC}.

6.2 Device Connection and Layout Fundamentals

This section describes the recommended guidelines when designing with the MSP430. These guidelines ensure that the device has proper connections for powering, programming, debugging, and optimum analog performance.

6.2.1 Power Supply Decoupling and Bulk Capacitors

TI recommends connecting a combination of a 1-μF capacitor and a 100-nF low-ESR ceramic decoupling capacitor to each AVCC and DVCC pin. Higher-value capacitors may be used but can affect supply rail ramp-up time. Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a few millimeters). Additionally, TI recommends separated grounds with a single-point connection for better noise isolation from digital to analog circuits on the board and to achieve high analog accuracy.

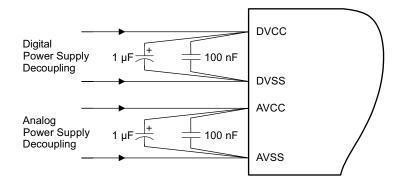


Figure 6-1. Power Supply Decoupling

6.2.2 External Oscillator

The device can support a low-frequency crystal (32 kHz) on the LFXT pins, a high-frequency crystal on the HFXT pins, or both. External bypass capacitors for the crystal oscillator pins are required.

It is also possible to apply digital clock signals to the LFXIN and HFXIN input pins that meet the specifications of the respective oscillator if the appropriate LFXTBYPASS or HFXTBYPASS mode is selected. In this case, the associated LFXOUT and HFXOUT pins can be used for other purposes. If the LFXIN and HFXIN are left unused, they must be terminated according to Section 3.4.

Figure 6-2 shows a typical connection diagram.

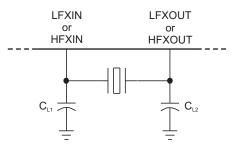
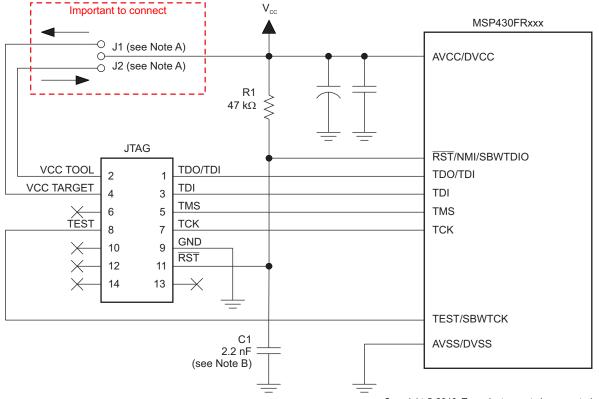


Figure 6-2. Typical Crystal Connection

See *MSP430 32-kHz Crystal Oscillators* for more information on selecting, testing, and designing a crystal oscillator with the MSP430 devices.


6.2.3 JTAG

With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the connections also support the MSP-GANG production programmers, thus providing an easy way to program prototype boards, if desired. Figure 6-3 shows the connections between the 14-pin JTAG connector and the target device required to support in-system programming and debugging for 4-wire JTAG communication. Figure 6-4 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire).

The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are identical. Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-FET430UIF interface modules and MSP-GANG have a VCC sense feature that, if used, requires an alternate connection (pin 4 instead of pin 2). The VCC-sense feature senses the local VCC present on the target board (that is, a battery or other local power supply) and adjusts the output signals accordingly. Figure 6-3 and Figure 6-4 show a jumper block that supports both scenarios of supplying VCC to the target board. If this flexibility is not required, the desired VCC connections may be hard-wired to eliminate the jumper block. Pins 2 and 4 must not be connected at the same time.

109

For additional design information regarding the JTAG interface, see the *MSP430 Hardware Tools User's Guide*.

Copyright © 2016, Texas Instruments Incorporated

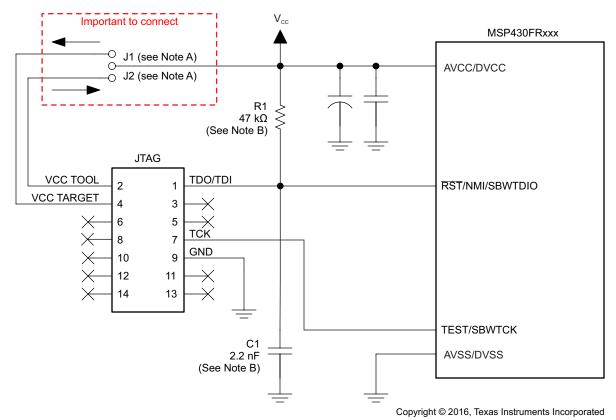

- A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used, make connection J2.
- B. The upper limit for C1 is 2.2 nF when using current TI tools.

Figure 6-3. Signal Connections for 4-Wire JTAG Communication

www.ti.com

SLASEK0A - DECEMBER 2017 - REVISED MARCH 2018

- A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the debug or programming adapter.
- B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with the device. The upper limit for C1 is 2.2 nF when using current TI tools.

Figure 6-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)

6.2.4 Reset

The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function Register (SFR), SFRRPCR.

In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing specifications generates a BOR-type device reset.

Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the external NMI. When an external NMI event occurs, the NMIIFG is set.

The $\overline{\text{RST}}$ /NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not. If the $\overline{\text{RST}}$ /NMI pin is unused, it is required either to select and enable the internal pullup or to connect an external 47-k Ω pullup resistor to the $\overline{\text{RST}}$ /NMI pin with a 2.2-nF pulldown capacitor. The pulldown capacitor should not exceed 2.2 nF when using devices in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like FET interfaces or GANG programmers. If JTAG or Spy-Bi-Wire access is not needed, up to a 10-nF pulldown capacitor may be used.

See the *MSP430FR58xx*, *MSP430FR59xx*, *MSP430FR68xx*, and *MSP430FR69xx* Family User's Guide for more information on the referenced control registers and bits.

6.2.5 Unused Pins

For details on the connection of unused pins, see Section 3.4.

6.2.6 General Layout Recommendations

- Proper grounding and short traces for external crystal to reduce parasitic capacitance. See *MSP430* 32-*kHz Crystal Oscillators* for recommended layout guidelines.
- Proper bypass capacitors on DVCC, AVCC, and reference pins if used.
- Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital switching signals such as PWM or JTAG signals away from the oscillator circuit.
- See *Circuit Board Layout Techniques* for a detailed description of PCB layout considerations. This document is written primarily about op amps, but the guidelines are generally applicable for all mixed-signal applications.
- Proper ESD level protection should be considered to protect the device from unintended high-voltage electrostatic discharge. See *MSP430 System-Level ESD Considerations* for guidelines.

6.2.7 Do's and Don'ts

TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in Section 4.1. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.

6.3 Peripheral- and Interface-Specific Design Information

6.3.1 ADC12_B Peripheral

6.3.1.1 Partial Schematic

Figure 6-5 shows the recommended decoupling circuit when an external voltage reference is used.

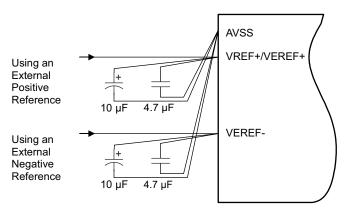


Figure 6-5. ADC12_B Grounding and Noise Considerations

6.3.1.2 Design Requirements

As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should be followed to eliminate ground loops, unwanted parasitic effects, and noise.

Ground loops are formed when return current from the ADC flows through paths that are common with other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset voltages that can add to or subtract from the reference or input voltages of the ADC. The general guidelines in Section 6.2.1 combined with the connections in Section 6.3.1.1 prevent this.

In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital switching or switching power supplies can corrupt the conversion result. TI recommends a noise-free design using separate analog and digital ground planes with a single-point connection to achieve high accuracy.

Figure 6-5 shows the recommended decoupling circuit when an external voltage reference is used. The internal reference module has a maximum drive current as specified in the Reference module's $I_{O(VREF+)}$ specification.

The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage enters the device. In this case, the 10- μ F capacitor is used to buffer the reference pin and filter any low-frequency ripple. A bypass capacitor of 4.7 μ F is used to filter out any high-frequency noise.

6.3.1.3 Detailed Design Procedure

For additional design information, see *Designing With the MSP430FR58xx, FR59xx, FR68xx, and FR69xx ADC*.

6.3.1.4 Layout Guidelines

Component that are shown in the partial schematic (see Figure 6-5) should be placed as close as possible to the respective device pins. Avoid long traces, because they add additional parasitic capacitance, inductance, and resistance on the signal.

Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM), because the high-frequency switching can be coupled into the analog signal.

If differential mode is used for the ADC12_B, the analog differential input signals must be routed closely together to minimize the effect of noise on the resulting signal.

7 Device and Documentation Support

7.1 Getting Started and Next Steps

For more information on the MSP430 family of devices and the tools and libraries that are available to help with your development, visit the Getting Started page.

7.2 Tools and Software

Table 7-1 lists the debug features supported by the MSP430FR59xx microcontrollers. See the *Code Composer Studio for MSP430 User's Guide* for details on the available features.

Table 7-1. Hardware Features

MSP430 ARCHITECTURE	4-WIRE JTAG	2-WIRE JTAG	BREAK- POINTS (N)	RANGE BREAK- POINTS	CLOCK CONTROL	STATE SEQUENCER	TRACE BUFFER	LPMx.5 DEBUGGING SUPPORT	EnergyTrace++ TECHNOLOGY
MSP430Xv2	Yes	Yes	3	Yes	Yes	No	No	Yes	Yes

EnergyTrace[™] technology is supported with Code Composer Studio version 6.0 and newer. EnergyTrace technology requires specialized debugger circuitry, which is supported with the second-generation onboard eZ-FET flash emulation tool and second-generation stand-alone MSP-FET JTAG emulator. See *Advanced Debugging Using the Enhanced Emulation Module (EEM) With Code Composer Studio Version* 6 and *MSP430[™] Advanced Power Optimizations: ULP Advisor[™] and EnergyTrace[™] Technology* for additional information.

Design Kits and Evaluation Modules

MSP430FR5969 LaunchPad[™] Development Kit The MSP-EXP430FR5969 LaunchPad Development Kit is an easy-to-use microcontroller development board for the MSP430FR5969 MCU. It contains everything needed to start developing quickly on the MSP430FRxx FRAM platform, including onboard emulation for programming, debugging, and energy measurements.

48-pin Target Development Board and MSP-FET Programmer Bundle for MSP430FRxx FRAM MCUs

The MSP-FET430U48C is a powerful design kit for quick application development on the MSP microcontroller. It includes a USB debugging interface used to program and debug the MSP MCU in system through the JTAG interface or the pin-saving Spy-Bi-Wire (2-wire JTAG) protocol. The FRAM can be erased and programmed in seconds with only a few keystrokes, and because the MSP FRAM consumes very little power, no external supply is required.

MSP-TS430RGZ48C - 48-pin Target Development Board for MSP430FRxx FRAM MCUs The MSP-TS430RGZ48C is a stand-alone 48-pin ZIF socket target board used to program and debug the MSP430 MCU in system through the JTAG interface or the Spy-Bi-Wire (2-wire JTAG) protocol.

Software

MSP430Ware™ Software MSP430Ware software is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 MCU design resources, MSP430Ware software also includes a high-level API called MSP Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of CCS or as a stand-alone package.

MSP430FR59xx, MSP430FR58xx Code Examples C Code examples are available for every MSP device that configures each of the integrated peripherals for various application needs.

FRAM Embedded Software Utilities for MSP Ultra-Low-Power Microcontrollers The TI FRAM Utilities software is designed to grow as a collection of embedded software utilities that leverage the ultra-low-power and virtually unlimited write endurance of FRAM. The utilities are available for MSP430FRxx FRAM microcontrollers and provide example code to help start application development.

Texas INSTRUMENTS www.ti.com

- **MSP Driver Library** The abstracted API of MSP Driver Library provides easy-to-use function calls that free you from directly manipulating the bits and bytes of the MSP430 hardware. Thorough documentation is delivered through a helpful API Guide, which includes details on each function call and the recognized parameters. Developers can use Driver Library functions to write complete projects with minimal overhead.
- MSP EnergyTrace[™] Technology EnergyTrace technology for MSP430 microcontrollers is an energybased code analysis tool that measures and displays the energy profile of the application and helps to optimize it for ultra-low-power consumption.
- ULP (Ultra-Low Power) Advisor ULP Advisor[™] software is a tool for guiding developers to write more efficient code to fully use the unique ultra-low-power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to help minimize the energy consumption of your application. At build time, ULP Advisor provides notifications and remarks to highlight areas of your code that can be further optimized for lower power.
- IEC60730 Software Package The IEC60730 MSP430 software package was developed to help customers comply with IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use Part 1: General Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters, power tools, e-bikes, and many others. The IEC60730 MSP430 software package can be embedded in customer applications running on MSP430s to help simplify the customer's certification efforts of functional safety-compliant consumer devices to IEC 60730-1:2010 Class B.
- **Fixed Point Math Library for MSP** The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and MSP432 devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably lower than equivalent code written using floating-point math.
- Floating Point Math Library for MSP430 Continuing to innovate in the low-power and low-cost microcontroller space, TI provides MSPMATHLIB. Leveraging the intelligent peripherals of our devices, this floating-point math library of scalar functions that are up to 26 times faster than the standard MSP430 math functions. Mathlib is easy to integrate into your designs. This library is free and is integrated in both Code Composer Studio IDE and IAR Embedded Workbench IDE.

Development Tools

- Code Composer Studio[™] Integrated Development Environment for MSP Microcontrollers Code Composer Studio (CCS) integrated development environment (IDE) supports all MSP microcontroller devices. CCS comprises a suite of embedded software utilities used to develop and debug embedded applications. CCS includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features.
- Command-Line Programmer MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary files (.txt or .hex) directly to the MSP microcontroller without an IDE.
- MSP MCU Programmer and Debugger The MSP-FET is a powerful emulation development tool often called a debug probe which lets users quickly begin application development on MSP low-power MCUs. Creating MCU software usually requires downloading the resulting binary program to the MSP device for validation and debugging.
- MSP-GANG Production Programmer The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight identical MSP430 or MSP432 flash or FRAM devices at the same time. The MSP Gang Programmer connects to a host PC using a standard RS-232 or USB connection and provides flexible programming options that let the user fully customize the process.

7.3 Documentation Support

The following documents describe the MSP430FR59xx MCUs. Copies of these documents are available on the Internet at www.ti.com.

Receiving Notification of Document Updates

To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (for links to product folders, see Section 7.5). In the upper right corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.

User's Guides

MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide Detailed description of all modules and peripherals available in this device family.

MSP430FR57xx, MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Bootloader (BSL)

The bootloader (BSL, formerly known as the bootstrap loader) provides a method to program memory during MSP430 MCU project development and updates. It can be activated by a utility that sends commands using a serial protocol. The BSL lets the user control the activity of the MSP430 and to exchange data using a personal computer or other device.

- MSP430 Programming With the JTAG Interface This document describes the functions that are required to erase, program, and verify the memory module of the MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition, it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This document describes device access using both the standard 4-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW).
- MSP430 Hardware Tools User's Guide This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultralow-power microcontroller. Both available interface types, the parallel port interface and the USB interface, are described.

Application Reports

- MSP430 FRAM Technology How To and Best Practices FRAM is a nonvolatile memory technology that behaves similar to SRAM while enabling a whole host of new applications, but also changing the way firmware should be designed. This application report outlines the how to and best practices of using FRAM technology in MSP430 from an embedded software development perspective. It discusses how to implement a memory layout according to application-specific code, constant, data space requirements, and the use of FRAM to optimize application energy consumption.
- MSP430 32-kHz Crystal Oscillators Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the correct crystal for MSP430 ultralow-power operation. In addition, hints and examples for correct board layout are given. The document also contains detailed information on the possible oscillator tests to ensure stable oscillator operation in mass production.
- MSP430 System-Level ESD Considerations System-Level ESD has become increasingly demanding with silicon technology scaling towards lower voltages and the need for designing cost-effective and ultra-low-power components. This application report addresses three different ESD topics to help board designers and OEMs understand and design robust system-level designs.

7.4 Radiation Information

For more details on radiation information, please visit ti.com/radiation.

7.5 Related Links

Table 7-2 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
MSP430FR5969	Click here	Click here	Click here	Click here	Click here

Table 7-2. Related Links

7.6 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Community

TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

TI Embedded Processors Wiki

Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

7.7 Trademarks

EnergyTrace++, MSP430, EnergyTrace, LaunchPad, MSP430Ware, ULP Advisor, Code Composer Studio, E2E are trademarks of Texas Instruments. Microsoft is a registered trademark of Microsoft Corporation. All other trademarks are the property of their respective owners.

7.8 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

7.9 Export Control Notice

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws.

7.10 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

8 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
M4FR5969SPHPT-MLS	ACTIVE	HTQFP	PHP	48	10	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-55 to 105	FR5969-MLS	Samples
M4FR5969SRGZT-MLS	ACTIVE	VQFN	RGZ	48	1	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-55 to 105	FR5969-MLS	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

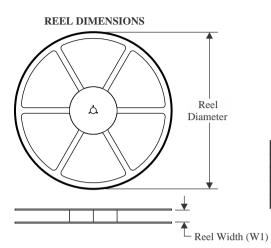
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

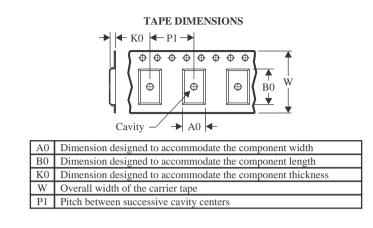
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

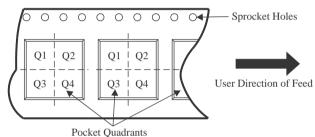
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF MSP430FR5969-SP :

• Catalog : MSP430FR5969

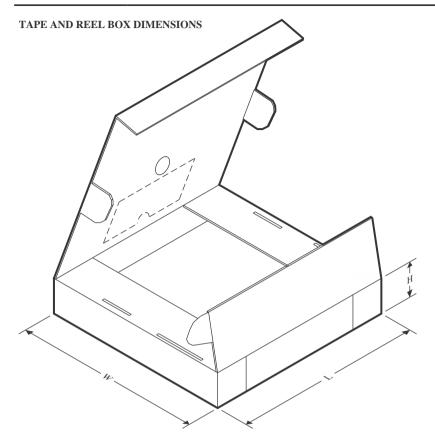

NOTE: Qualified Version Definitions:


Catalog - TI's standard catalog product


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
M4FR5969SRGZT-MLS	VQFN	RGZ	48	1	180.0	16.4	7.3	7.3	1.1	12.0	16.0	Q2

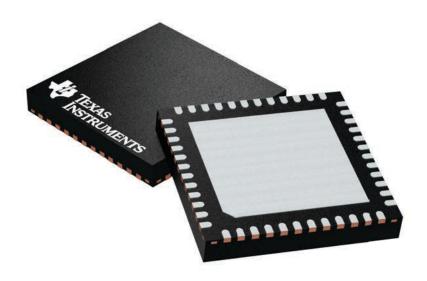
www.ti.com

PACKAGE MATERIALS INFORMATION

24-Feb-2023

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
M4FR5969SRGZT-MLS	VQFN	RGZ	48	1	210.0	185.0	35.0


RGZ 48

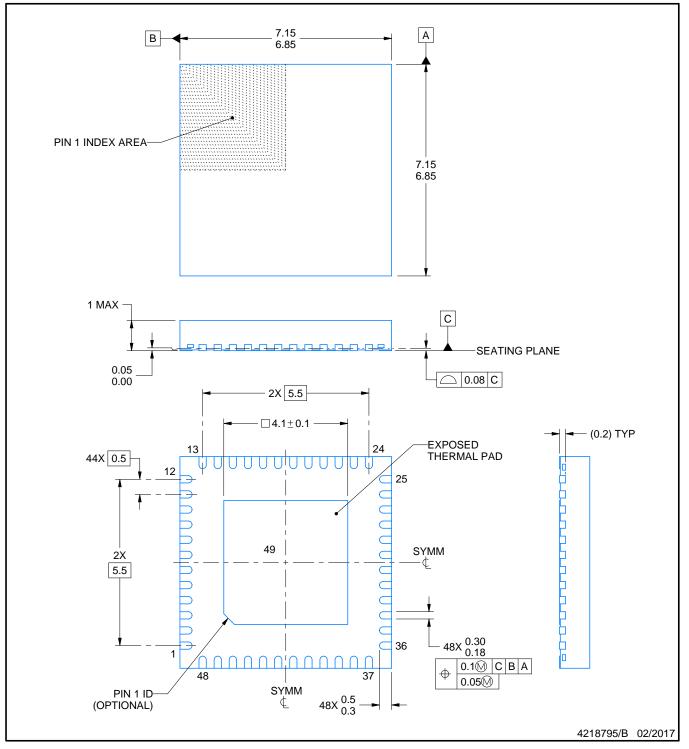
7 x 7, 0.5 mm pitch

GENERIC PACKAGE VIEW

VQFN - 1 mm max height

PLASTIC QUADFLAT PACK- NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


RGZ0048B

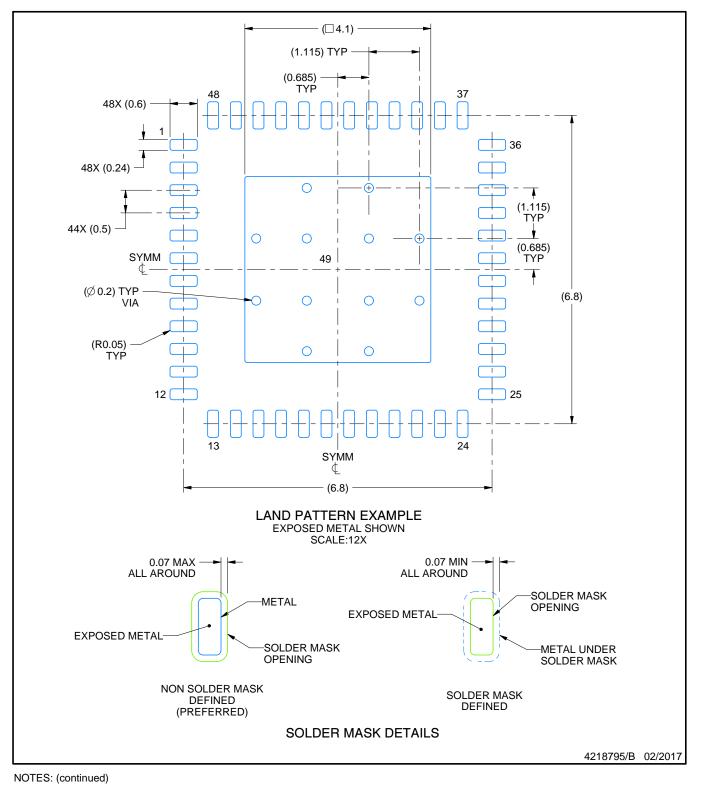
PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



RGZ0048B

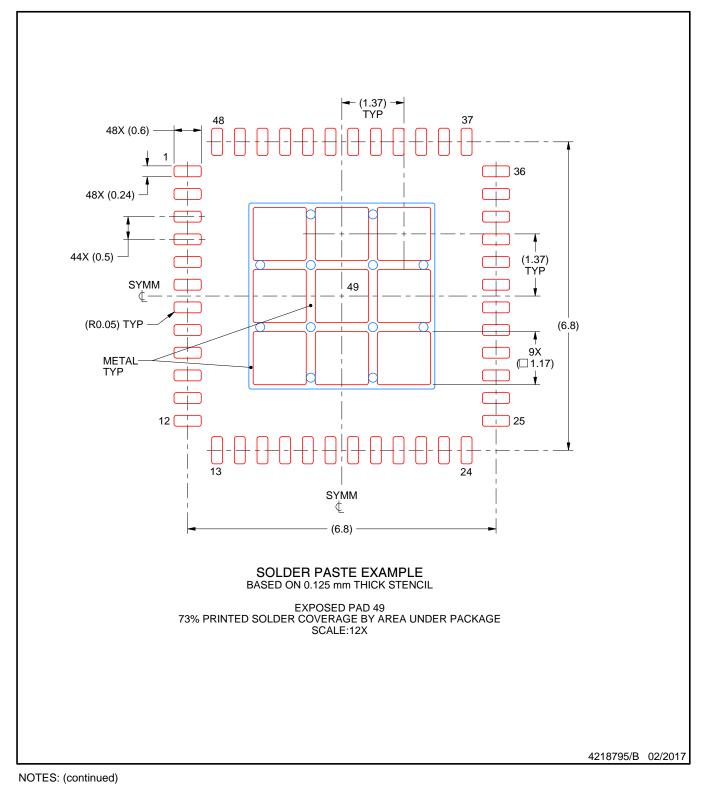
EXAMPLE BOARD LAYOUT

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

 Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



RGZ0048B

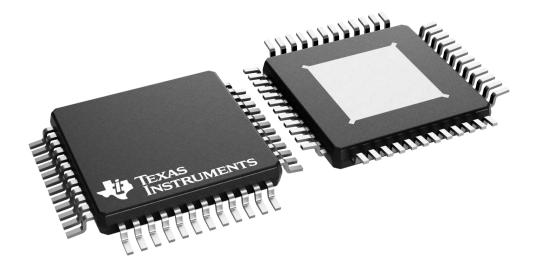
EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

PHP 48

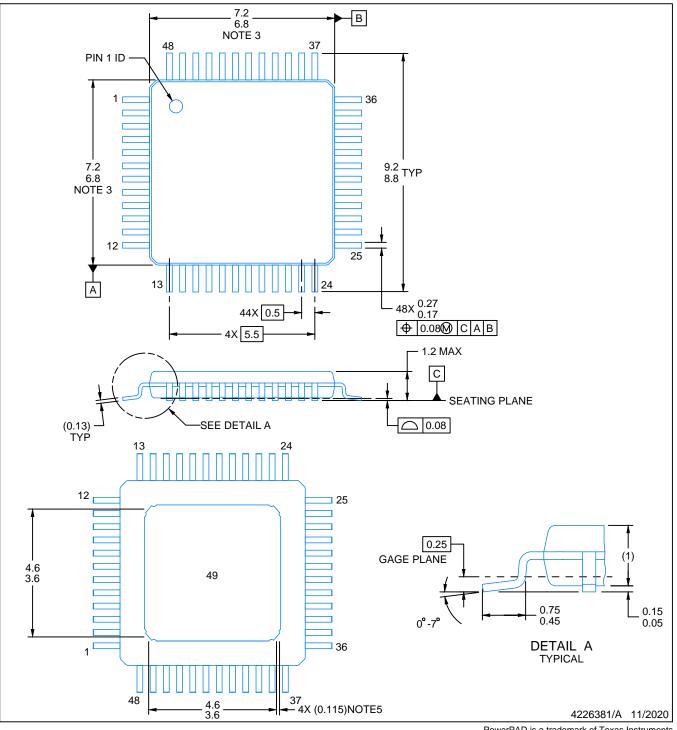

7 x 7, 0.5 mm pitch

GENERIC PACKAGE VIEW

TQFP - 1.2 mm max height

QUAD FLATPACK

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



PACKAGE OUTLINE

PHP0048C

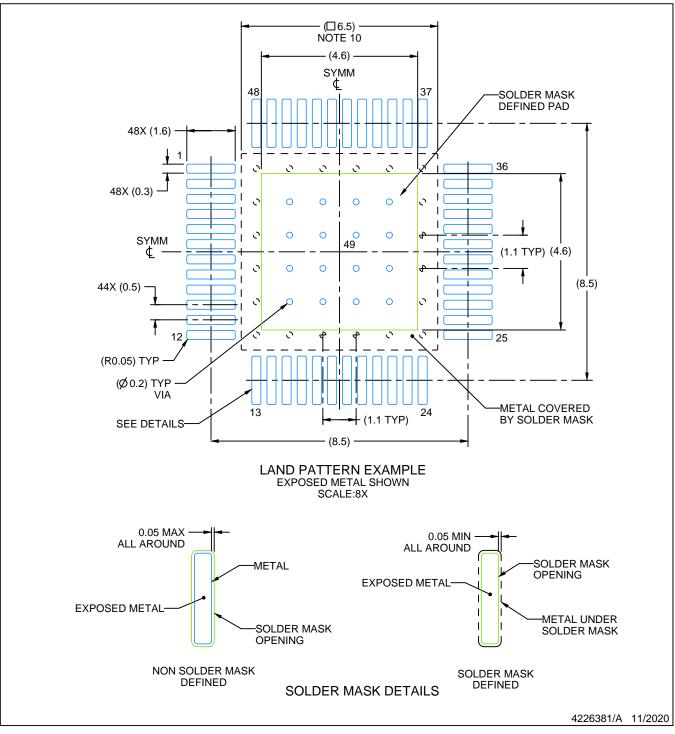
PowerPAD[™] TQFP - 1.2 mm max height

PLASTIC QUAD FLATPACK

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This drawing is not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MS-026.
- 5. Feature may not be present.


PowerPAD is a trademark of Texas Instruments.

PHP0048C

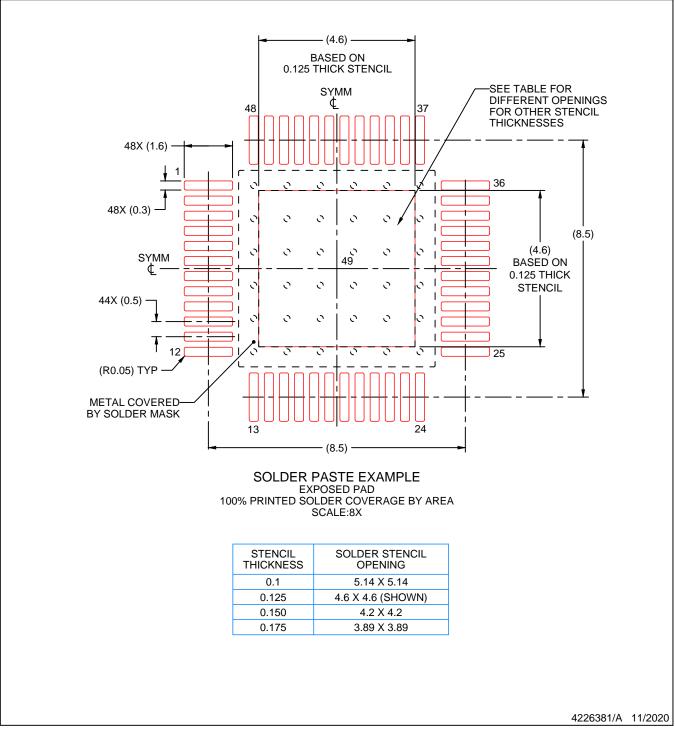
EXAMPLE BOARD LAYOUT

PowerPAD^{$^{\text{TM}}$} **TQFP - 1.2** mm max height

PLASTIC QUAD FLATPACK

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package, Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.
- 10. Size of metal pad may vary due to creepage requirement.



PHP0048C

EXAMPLE STENCIL DESIGN

PowerPAD^{$^{\text{TM}}$} **TQFP - 1.2 mm** max height

PLASTIC QUAD FLATPACK

NOTES: (continued)

11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

12. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated