

SN54AHCT573, SN74AHCT573

SCLS243O - OCTOBER 1995-REVISED SEPTEMBER 2014

SNx4AHCT573 Octal Transparent D-Type Latches With 3-State Outputs

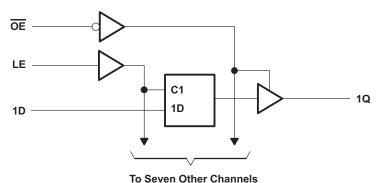
Features

- Inputs are TTL-Voltage Compatible
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- On Products Compliant to MIL-PRF-38535, All Parameters Are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters.
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Servers
- PCs and Notebooks
- **Network Switches**
- Wearable Health and Fitness Devices
- Telecom Infrastructures
- Electronic Points of Sale

3 Description


The SNx4AHCT573 devices are octal transparent Dtype latches. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is low, the Q outputs are latched at the logic levels of the D inputs.

Device Information⁽¹⁾

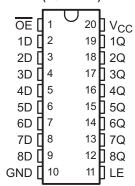
PART NUMBER	PACKAGE	BODY SIZE (NOM)		
	SSOP (20)	7.20 mm × 5.30 mm		
	TVSOP (20)	5.00 mm × 4.40 mm		
SNx4AHCT573	SOIC (20)	12.80 mm × 7.50 mm		
	PDIP (20)	25.40 mm × 6.35 mm		
	TSSOP (20)	6.50 mm × 4.40 mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

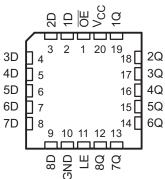
Simplified Schematic

Table of Contents

1	Features 1		9.1 Overview	
2	Applications 1		9.2 Functional Block Diagram	8
3	Description 1		9.3 Feature Description	8
4	Simplified Schematic 1		9.4 Device Functional Modes	
5	Revision History2	10	Application and Implementation	9
6	Pin Configuration and Functions		10.1 Application Information	9
7	Specifications4		10.2 Typical Application	9
'	7.1 Absolute Maximum Ratings	11	Power Supply Recommendations	10
	7.2 Handling Ratings	12	Layout	10
	7.3 Recommended Operating Conditions		12.1 Layout Guidelines	10
	7.4 Thermal Information		12.2 Layout Example	10
	7.5 Electrical Characteristics 5	13	Device and Documentation Support	1 [•]
	7.6 Timing Requirements		13.1 Related Links	1 ¹
	7.7 Switching Characteristics		13.2 Trademarks	1 ¹
	7.8 Operating Characteristics		13.3 Electrostatic Discharge Caution	1º
	7.9 Typical Characteristics		13.4 Glossary	1°
8	Parameter Measurement Information	14	Mechanical, Packaging, and Orderable	
9	Detailed Description 8		Information	1 ⁻


5 Revision History

Changes from Revision N (July 2003) to Revision O	Page
Updated document to new TI data sheet format	1
Deleted Ordering Information table.	1
Added Military Disclaimer to Features list.	
Added Applications	1
Added Pin Functions table	3
Added Handling Ratings table	
 Changed MAX operating temperature to 125°C in Recommended Operating Conditions table 	
Added Thermal Information table	ξ
 Added –40°C to 125°C temperature range for SN74AHCT573 in Electrical Characteristics table 	
 Added –40°C to 125°C temperature range for SN74AHCT573 in Timing Requirements table. 	<u> </u>
Added Typical Characteristics.	6
Added Detailed Description section	8
Added Application and Implementation section	
Added Power Supply Recommendations and Layout sections	10



6 Pin Configuration and Functions

SN54AHCT573 . . . J OR W PACKAGE SN74AHCT573 . . . DB, DGV, DW, N, NS, OR PW PACKAGE (TOP VIEW)

SN54AHCT573 . . . FK PACKAGE (TOP VIEW)

Pin Functions

	PIN		PERMITTION
NO.	NAME	I/O	DESCRIPTION
1	ŌĒ	I	Output Enable
2	1D	1	1D Input
3	2D	Ι	2D Input
4	3D	I	3D Input
5	4D	Ι	4D Input
6	5D	-	5D Input
7	6D	1	6D Input
8	7D	Ι	7D Input
9	8D	Ι	8D Input
10	GND		Ground
11	LE	1	Latch Enable
12	8Q	0	8Q Output
13	7Q	0	7Q Output
14	6Q	0	6Q Output
15	5Q	0	5Q Output
16	4Q	0	4Q Output
17	3Q	0	3Q Output
18	2Q	0	2Q Output
19	1Q	0	1Q Output
20	V _{CC}	_	Power Pin

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	7	٧
VI	Input voltage range ⁽²⁾		-0.5	7	V
Vo	Output voltage range (2)		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-20	mA
I _{OK}	Output clamp current	$V_O < 0$ or $V_O > V_{CC}$		±20	mA
Io	Continuous output current	$V_O = 0$ to V_{CC}		±25	mA
	Continuous current through V _{CC} or GND			±75	mA

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

			MIN	MAX	UNIT	
T _{stg}	Storage temperature rang	e	-65	150	°C	
V	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, a pins (1)		0	2000	\/	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	0	1000	V	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

		SN54AHC	T573	SN74AHC	T573	UNIT
		MIN	MAX	MIN	MAX	UNIT
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
V_{IL}	Low-level input voltage		0.8		0.8	V
V_{I}	Input voltage	0	5.5	0	5.5	V
Vo	Output voltage	0	V_{CC}	0	V_{CC}	V
I _{OH}	High-level output current		-8		-8	mA
I_{OL}	Low-level output current		8		8	mA
$\Delta t/\Delta v$	Input transition rise or fall rate		20		20	ns/V
T _A	Operating free-air temperature	- 55	125	-40	125	°C

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs (SCBA004).

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.4 Thermal Information

		SN74AHCT573							
	THERMAL METRIC ⁽¹⁾	DW	DB	DGV	N	NS	PW	UNIT	
		20 PINS							
$R_{\theta JA}$	Junction-to-ambient thermal resistance	79.4	97.9	117.2	53.3	79.2	103.3		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	45.7	59.6	32.7	40.0	45.7	37.8		
$R_{\theta JB}$	Junction-to-board thermal resistance	46.9	53.1	58.7	34.2	46.8	54.3	°C/W	
ΨЈТ	Junction-to-top characterization parameter	18.7	21.3	1.15	26.4	19.3	2.9	-C/VV	
ΨЈВ	Junction-to-board characterization parameter	46.5	52.7	58.0	34.1	46.4	53.8		
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	n/a	n/a	n/a	n/a	n/a		

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	T _A = 25°C		SN54AHCT573		SN74AHCT573		-40°C to 125°C SN74AHCT573		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	I _{OH} = -50 μA	45.1/	4.4	4.5		4.4		4.4		4.4		
V _{OH}	I _{OH} = −8 mA	4.5 V	3.94			3.8		3.8		3.8		V
V _{OL}	I _{OL} = 50 μA	45.1/			0.1		0.1		0.1		0.1	V
	I _{OL} = 8 mA	4.5 V			0.36		0.44		0.44		0.44	V
I _I	V _I = 5.5 V or GND	0 V to 5.5 V			±0.1		±1 ⁽¹⁾		±1		±2	μΑ
I _{OZ}	V _O = V _{CC} or GND	5.5 V			±0.25		±2.5		±2.5		±2.5	μΑ
I _{cc}	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			4		40		40		40	μΑ
ΔI _{CC} ⁽²⁾	One input at 3.4 V, Other inputs at V _{CC} or GND	5.5 V			1.35		1.5		1.5		1.5	mA
C _i	V _I = V _{CC} or GND	5 V		2.5	10				10		10	pF
C _o	V _O = V _{CC} or GND	5 V		3								pF

7.6 Timing Requirements

over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 2)

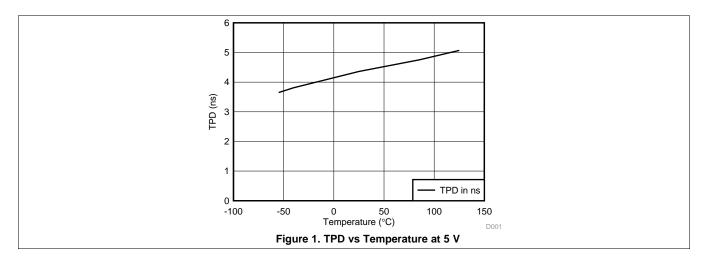
PARAMETER		T _A = 25°C		SN54AHCT573		SN74AHCT573		-40°C to 125°C SN74AHCT573		UNIT
			MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _w	Pulse duration, LE high	5		5		5		5		ns
t_{su}	Setup time, data before LE↓	3.5		3.5		3.5		3.5		ns
t _h	Hold time, data after LE↓	1.5		1.5		1.5		1.5		ns

On products compliant to MIL-PRF-38535, this parameter is not production tested at $V_{CC} = 0 \text{ V}$. This is the increase in supply current for each input at one of the specified TTL voltage levels, rather than 0 V or V_{CC} .

7.7 Switching Characteristics

over recommended operating free-air temperature range, $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	T _A = 25	T _A = 25°C		SN54AHCT573		T573	T _A = -40°C to 125°C SN74AHCT573		UNIT		
	(INPUT)	(OUTPUT)		MIN TY	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
t _{PLH}	D	Q	C _L = 15 pF	4.2(1	⁾ 6 ⁽¹⁾	1 ⁽¹⁾	6.5 ⁽¹⁾	1	6.5	1	7	ns		
t _{PHL}	U	Q	O _L = 15 pr	5.1 ⁽¹	7 ⁽¹⁾	1 ⁽¹⁾	9 ⁽¹⁾	1	9	1	9.5	115		
t _{PLH}			0 45 -5	4.7(1	6.5 ⁽¹⁾	1 ⁽¹⁾	7.5 ⁽¹⁾	1	7.5	1	8			
t _{PHL}	LE	Q	C _L = 15 pF	5.6 ⁽¹	7.5 ⁽¹⁾	1 ⁽¹⁾	9 ⁽¹⁾	1	9	1	9.5	ns		
t _{PZH}	ŌĒ	Q	C 45 pF	4.1 ⁽¹	6.5 ⁽¹⁾	1 ⁽¹⁾	7 ⁽¹⁾	1	7	1	8			
t _{PZL}	OE	OE	OE	Q	C _L = 15 pF	5.5 ⁽¹	7.5 ⁽¹⁾	1 ⁽¹⁾	9 ⁽¹⁾	1	10	1	11	ns
t _{PHZ}	<u> </u>	Q	C 45 pF	5.5 ⁽¹	8(1)	1 ⁽¹⁾	11 ⁽¹⁾	1	11	1	12	ns		
t _{PLZ}	ŌĒ	UE Q	$C_L = 15 pF$	5.4 ⁽¹	8 ⁽¹⁾	1 ⁽¹⁾	9.5 ⁽¹⁾	1	9.5	1	10.5	110		
t _{PLH}	D	Q	C 50 5 5	5.2	2 7	1	7.5	1	7.5	1	8.5			
t _{PHL}	, D	Q	$C_L = 50 \text{ pF}$	6.	8	1	10	1	10	1	10.5	ns		
t _{PLH}	LE	0	0 50-5	5.7	7 7.5	1	8.5	1	8.5	1	9.5			
t _{PHL}	LE	Q	$C_L = 50 \text{ pF}$	6.0	8.5	1	10	1	10	1	10.5	ns		
t _{PZH}	ŌĒ	0	0 50-5	5.	7.5	1	8	1	8	1	9			
t _{PZL}	OE .	Q	$C_L = 50 \text{ pF}$	6.5	8.5	1	11	1	11	1	11.5	ns		
t _{PHZ}	<u> </u>	0	C 50 55	6.7	7 9	1	12	1	12	1	12.5			
t _{PLZ}	ŌĒ	OE	Q	$C_L = 50 \text{ pF}$	6.4	1 9	1	10.5	1	10.5	1	11.5	ns	
t _{sk(o)}			C _L = 50 pF		1.5 ⁽²⁾				1.5			ns		

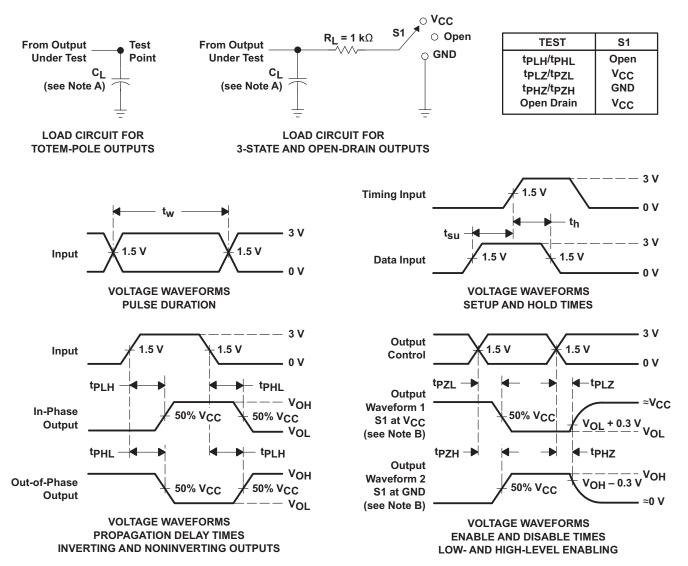

⁽¹⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested.

7.8 Operating Characteristics

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$

	, R				
	PARAMETER	TEST CO	TYP	UNIT	
C_{pd}	Power dissipation capacitance	No load,	f = 1 MHz	16	pF

7.9 Typical Characteristics


Submit Documentation Feedback

Copyright © 1995–2014, Texas Instruments Incorporated

⁽²⁾ On products compliant to MIL-PRF-38535, this parameter does not apply.

8 Parameter Measurement Information

NOTES: A. C_L includes probe and jig capacitance.

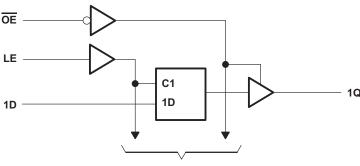
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 3 ns. $t_f \leq$ 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

9 Detailed Description

9.1 Overview


The SNx4AHCT573 devices are octal transparent D-type latches. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is low, the Q outputs are latched at the logic levels of the D inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pull-up components.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

9.2 Functional Block Diagram

To Seven Other Channels

9.3 Feature Description

- TTL inputs
 - Lowered switching threshold allows up translation 3.3 V to 5 V
- Slow edges reduce output ringing

9.4 Device Functional Modes

Table 1. Function Table (Each Latch)

	INPUTS	OUTPUT	
OE	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Χ	Q_0
Н	Χ	Χ	Z

Submit Documentation Feedback

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The SN74AHCT573 is a low-drive CMOS device that can be used for a multitude of bus interface type applications where output ringing is a concern. The low drive and slow edge rates will minimize overshoot and undershoot on the outputs. The input switching levels have been lowered to accommodate TTL inputs of 0.8-V V_{IL} and 2-V V_{IH}. This feature makes the device ideal for translating up from 3.3 V to 5 V. Figure 4 shows this type of translation.

10.2 Typical Application

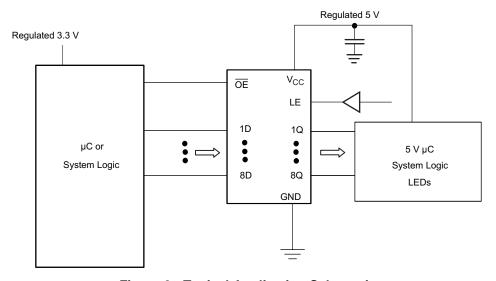


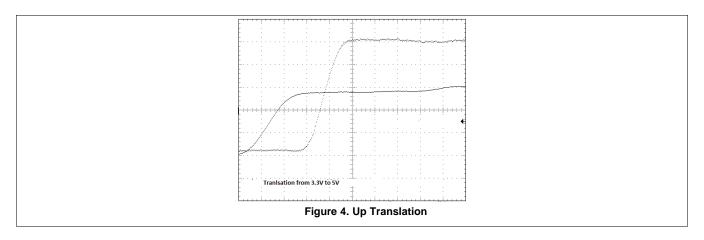
Figure 3. Typical Application Schematic

10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads; therefore, routing and load conditions should be considered to prevent ringing.

10.2.2 Detailed Design Procedure

- 1. Recommended input conditions
 - Rise time and fall time specs: See (Δt/ΔV) in the Recommended Operating Conditions table.
 - Specified High and low levels: See (V_{IH} and V_{IL}) in the *Recommended Operating Conditions* table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}.
- 2. Recommend output conditions


Copyright © 1995-2014, Texas Instruments Incorporated

- Load currents should not exceed 25 mA per output and 75 mA total for the part.
- Outputs should not be pulled above V_{CC}.

Typical Application (continued)

10.2.3 Application Curves

11 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the Recommended Operating Conditions table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μF bypass capacitor is recommended. If there are multiple V_{CC} pins, 0.01 μF or 0.022 μF is recommended for each power pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1 μF and 1 μF are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified in Figure 5 are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} ; whichever makes more sense or is more convenient. It is generally acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the outputs section of the part when asserted. This will not disable the input section of the IO's so they cannot float when disabled.

12.2 Layout Example

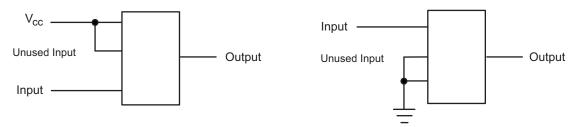


Figure 5. Layout Diagram

0 Submit Documentation Feedback

Copyright © 1995–2014, Texas Instruments Incorporated

13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER SAMPLE & BUY		TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
SN54AHCT573	Click here	Click here	Click here	Click here	Click here	
SN74AHCT573	Click here	Click here	Click here	Click here	Click here	

13.2 Trademarks

All trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

11-May-2023 www.ti.com

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9685501QRA	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9685501QR A SNJ54AHCT573J	Samples
5962-9685501QSA	ACTIVE	CFP	W	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9685501QS A SNJ54AHCT573W	Samples
SN74AHCT573DBR	ACTIVE	SSOP	DB	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HB573	Samples
SN74AHCT573DGVR	ACTIVE	TVSOP	DGV	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HB573	Samples
SN74AHCT573DW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHCT573	Samples
SN74AHCT573DWR	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHCT573	Samples
SN74AHCT573N	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	-40 to 125	SN74AHCT573N	Samples
SN74AHCT573PWR	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	HB573	Samples
SN74AHCT573PWRE4	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HB573	Samples
SN74AHCT573PWRG4	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HB573	Samples
SNJ54AHCT573J	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9685501QR A SNJ54AHCT573J	Samples
SNJ54AHCT573W	ACTIVE	CFP	W	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9685501QS A SNJ54AHCT573W	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

www.ti.com 11-May-2023

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54AHCT573, SN74AHCT573:

Catalog: SN74AHCT573

Military: SN54AHCT573

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

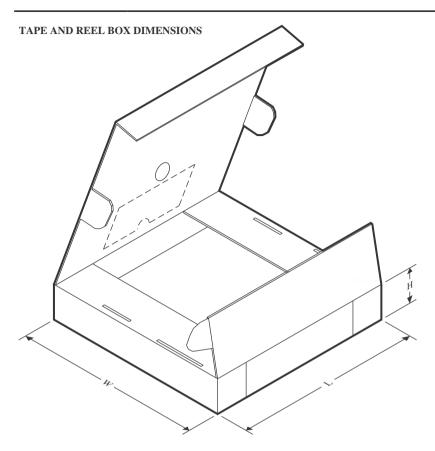
www.ti.com 12-May-2023

TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity A0

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

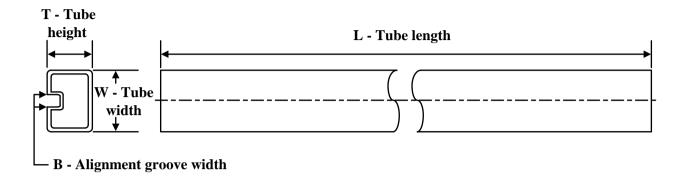
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHCT573DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74AHCT573DGVR	TVSOP	DGV	20	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74AHCT573DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74AHCT573PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74AHCT573PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74AHCT573PWRG4	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

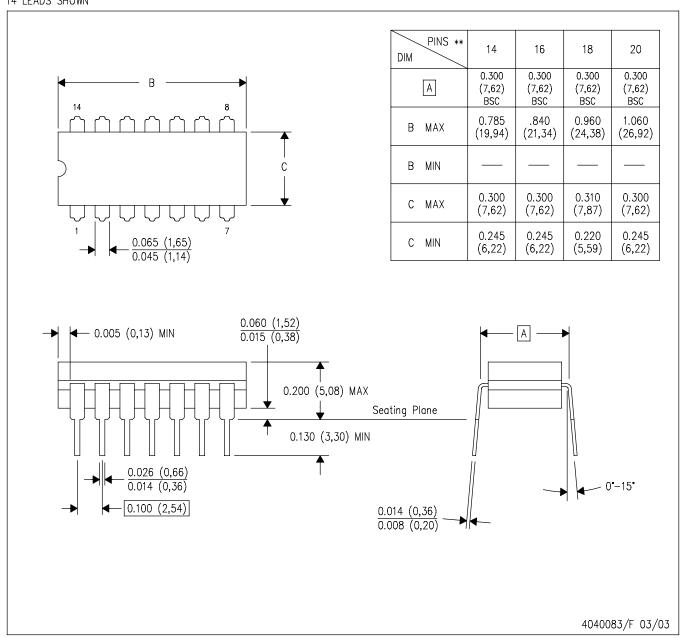
www.ti.com 12-May-2023


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHCT573DBR	SSOP	DB	20	2000	356.0	356.0	35.0
SN74AHCT573DGVR	TVSOP	DGV	20	2000	356.0	356.0	35.0
SN74AHCT573DWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74AHCT573PWR	TSSOP	PW	20	2000	356.0	356.0	35.0
SN74AHCT573PWR	TSSOP	PW	20	2000	364.0	364.0	27.0
SN74AHCT573PWRG4	TSSOP	PW	20	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

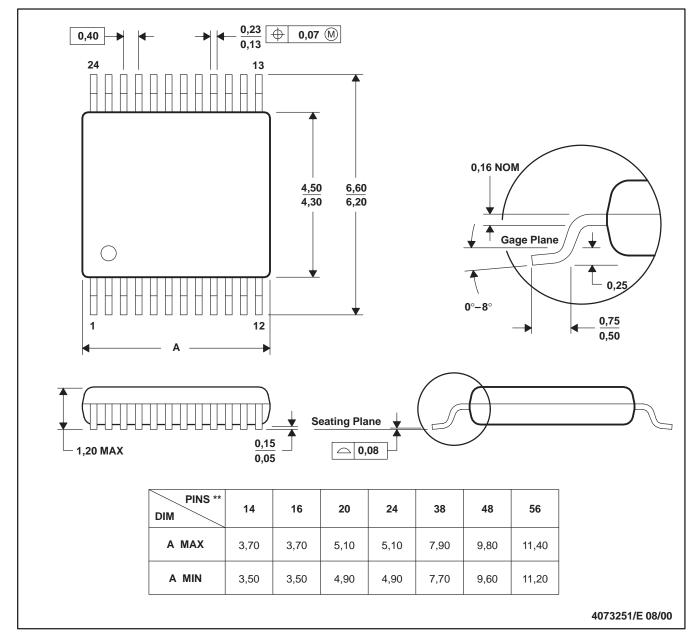
www.ti.com 12-May-2023


TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-9685501QSA	W	CFP	20	1	506.98	26.16	6220	NA
SN74AHCT573DW	DW	SOIC	20	25	507	12.83	5080	6.6
SN74AHCT573N	N	PDIP	20	20	506	13.97	11230	4.32
SNJ54AHCT573W	W	CFP	20	1	506.98	26.16	6220	NA

14 LEADS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

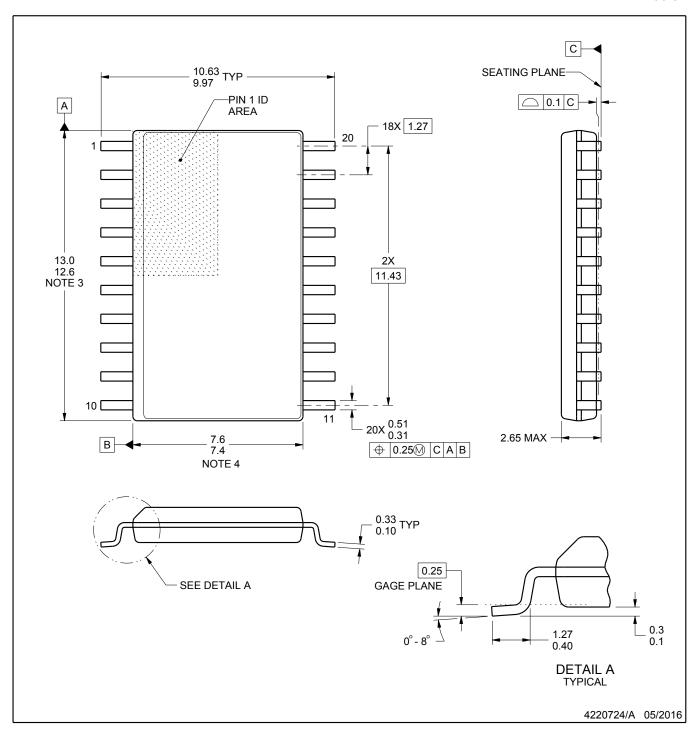
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

N (R-PDIP-T**)

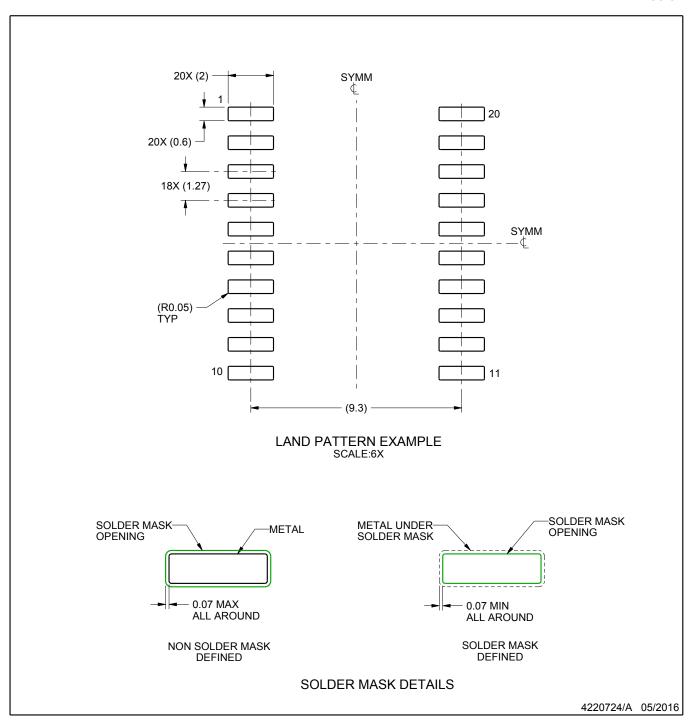
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

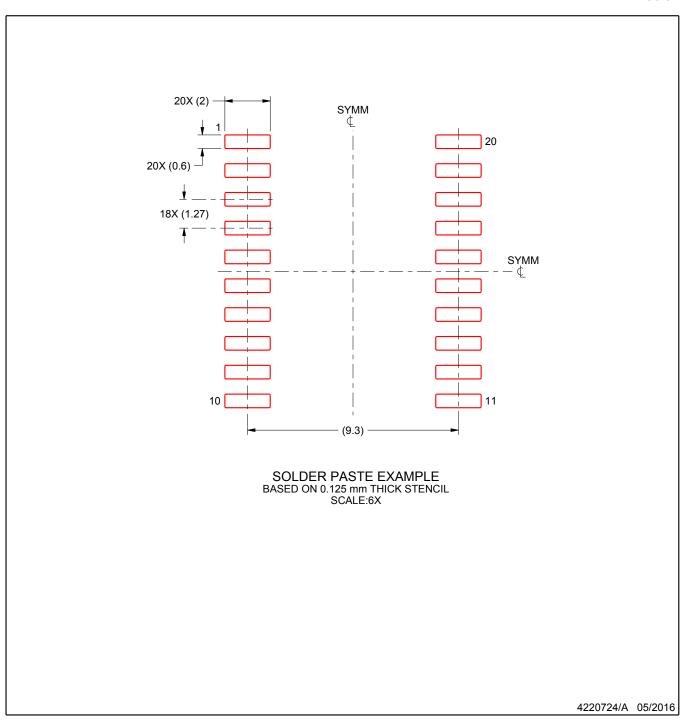
SOIC


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

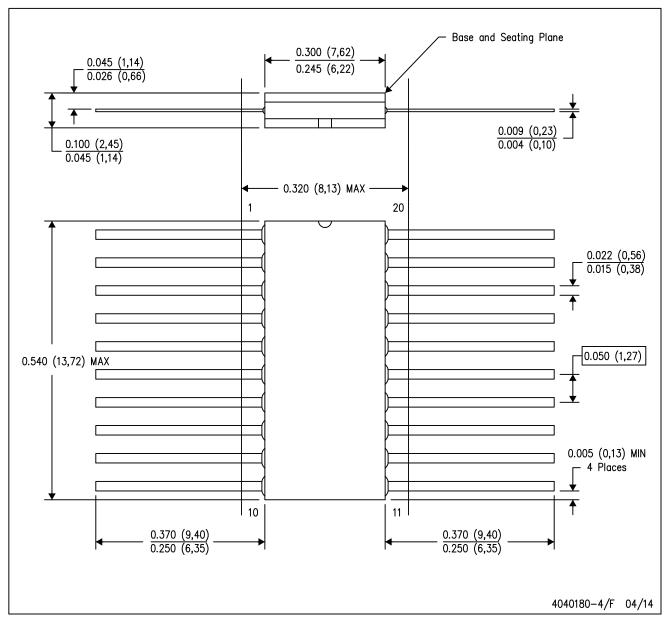
SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

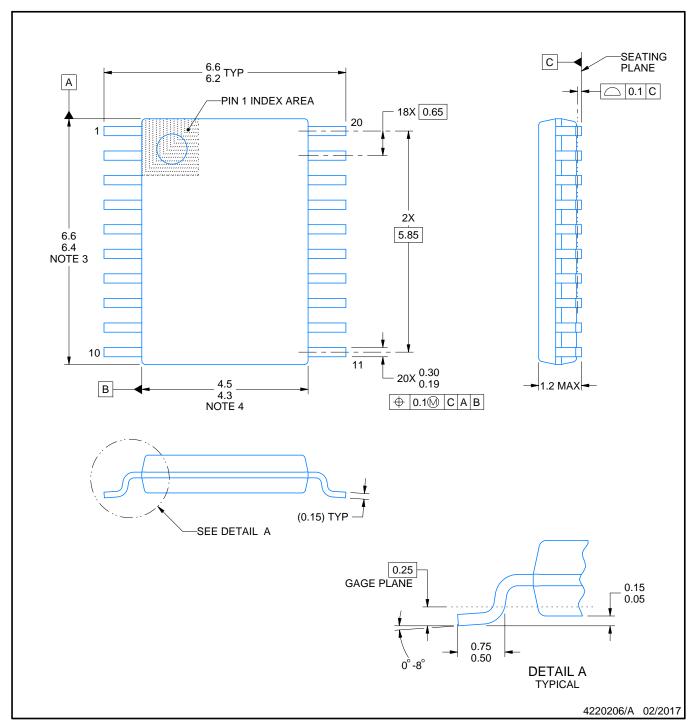
SOIC


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

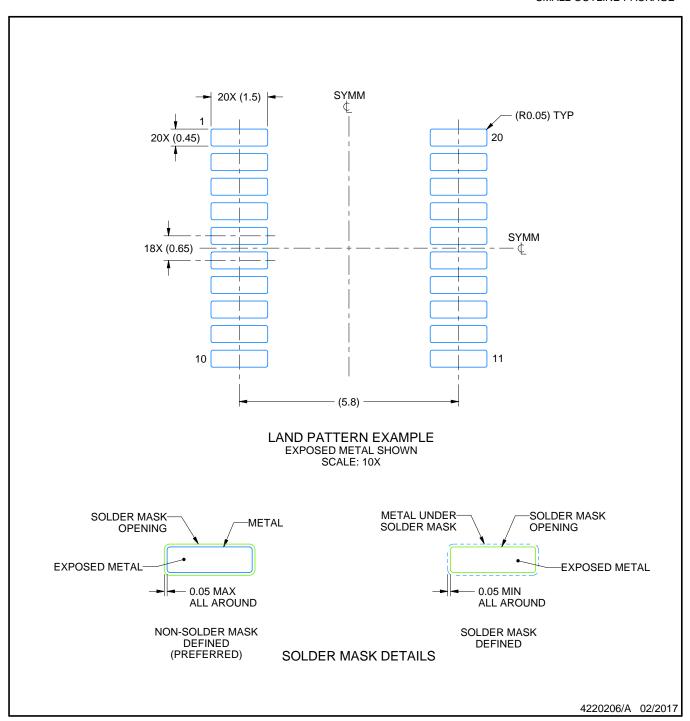
W (R-GDFP-F20)

CERAMIC DUAL FLATPACK


- A. All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.

 D. Index point is provided on cap for terminal identification only.

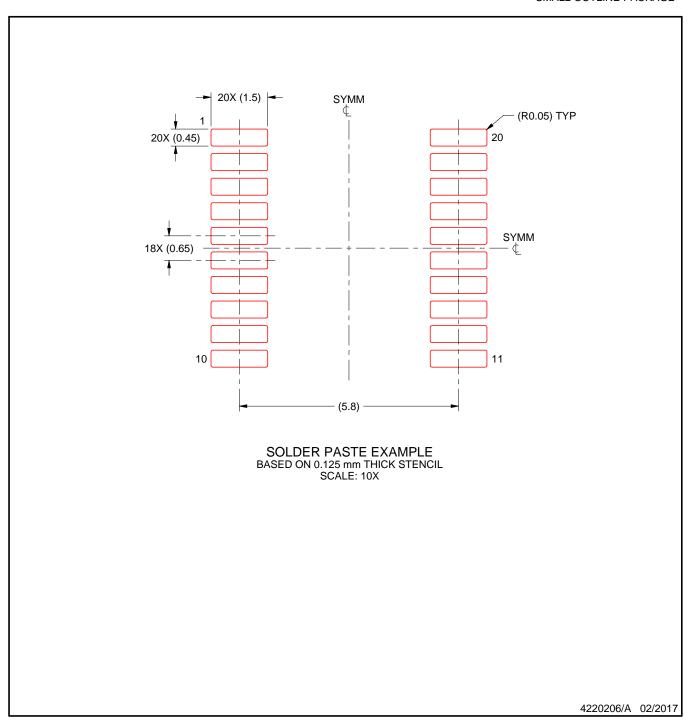
 E. Falls within Mil—Std 1835 GDFP2—F20



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

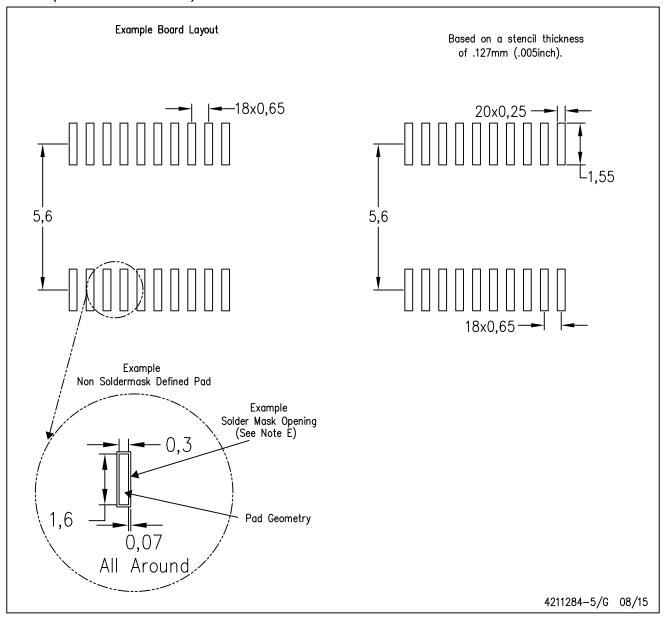
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

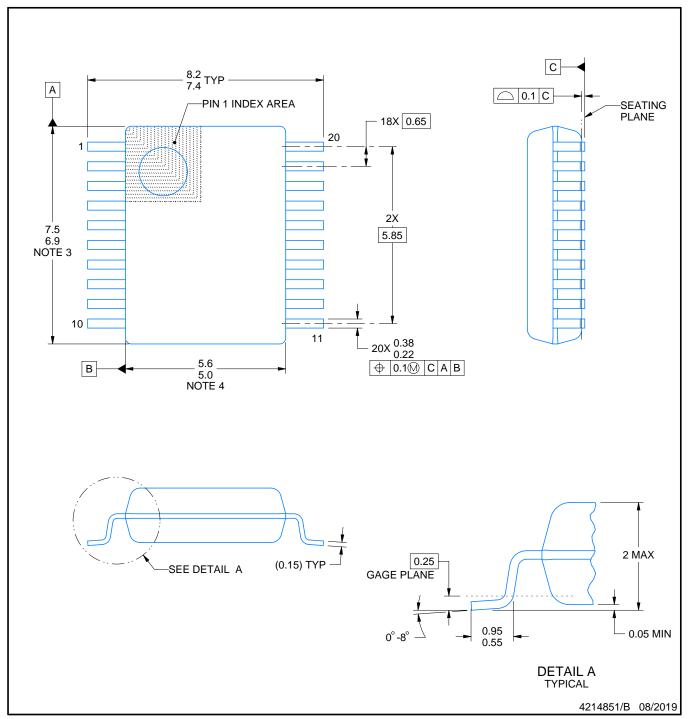
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

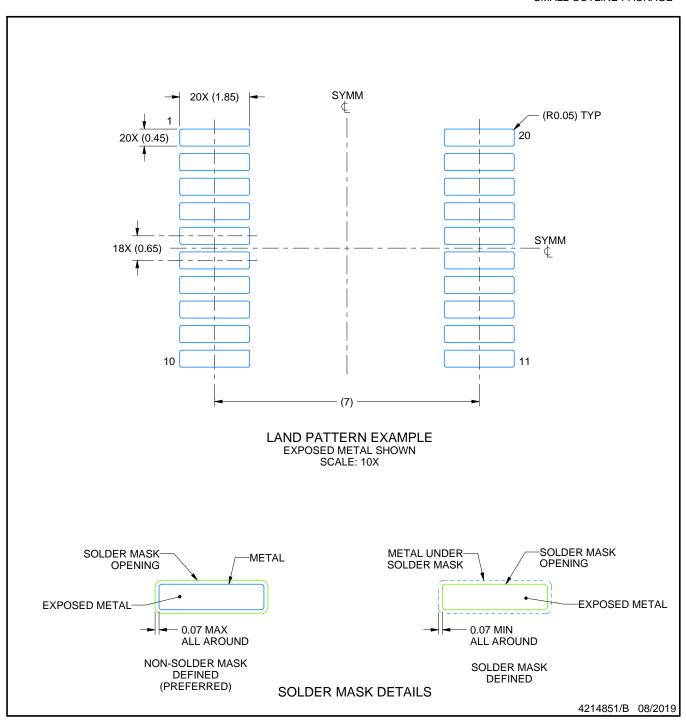

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

PW (R-PDSO-G20)


PLASTIC SMALL OUTLINE

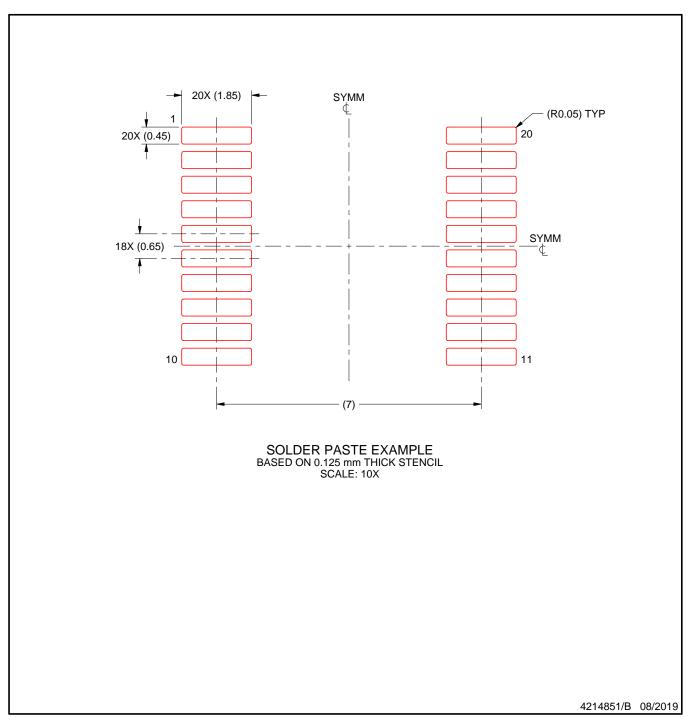
- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated