ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Power MOSFET 6 Amps, 30 Volts

N-Channel SO-8, FETKY™

The FETKY product family incorporates low R_{DS(on)}, true logic level MOSFETs packaged with industry leading, low forward drop, low leakage Schottky Barrier rectifiers to offer high efficiency components in a space saving configuration. Independent pinouts for MOSFET and Schottky die allow the flexibility to use a single component for switching and rectification functions in a wide variety of applications such as Buck Converter, Buck-Boost, Synchronous Rectification, Low Voltage Motor Control, and Load Management in Battery Packs, Chargers, Cell Phones and other Portable Products.

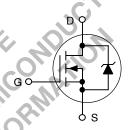
Features

- Power MOSFET with Low V_F
- Lower Component Placement and Inventory Costs along with **Board Space Savings**
- Logic Level Gate Drive Can be Driven by Logic ICs
- Mounting Information for SO-8 Package Provided
- Applications Information Provided
- R2 Suffix for Tape and Reel (2500 units/13" reel)
- Marking: 6N303

MOSFET MAXIMUM RATINGS

Board Space Savings				
• Logic Level Gate Drive — Can be Drive	ven by Log	gic ICs		
• Mounting Information for SO-8 Packa	ge Provide	ed b		~O~ ~
 Applications Information Provided 				02 611
• R2 Suffix for Tape and Reel (2500 unit	ts/13" reel)			y sy
• Marking: 6N303			5	14.90
				8
MOSFET MAXIMUM RATINGS (T _J = 25°C unless otherwise noted) (Note 1)		110		COK
Rating	Symbol	Value	Unit	C
Drain-to-Source Voltage	V _{DSS}	30	Vdc	S
Drain-to-Gate Voltage (R _{GS} = 1.0 MΩ)	V _{DGR}	30	Vdc	
Gate-to-Source Voltage — Continuous	V _{GS}	±20	Vdc	
Drain Current (Note 2)	0/2			
⁻ Continuous @ T _A = 25°C	H _D	6.0	Adc	
– Single Pulse (tp ≤ 10 μs)	I _{DM}	30	Apk	
Total Power Dissipation @ T _A = 25°C	PD	2.0	Watts	
(Note 2)				
Single Pulse Drain-to-Source Avalanche	E _{AS}	325	mJ	А
Energy — Startin T _J = 25°C				
$V_{DD} = 30 \text{ Vdc}, V_{GS} = 5.0 \text{ Vdc}, V_{DS} = 20$				A
Vdc, $I_L = 9.0$ Apk, $L = 10$ mH, $R_G = 25 \Omega$				So

- 1. Pulse Test: Pulse Width ≤[250 μs, Duty Cycle ≤ 2.0%.
- 2. Mounted on 2" square FR4 board (1" sq. 2 oz. Cu 0.06" thick single sided), 10 sec. max.

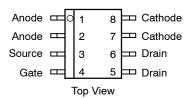


ON Semiconductor®

http://onsemi.com

6 AMPERES 30 VOLTS $R_{DS(on)} = 35 \text{ m}\Omega$ $V_F = 0.42 \text{ Volts}$

N-Channel


SO₋₈ **CASE 751** STYLE 18

MARKING DIAGRAM

6N303 **ALYW**

= Assembly Location = Wafer Lot = Year = Work Week

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping [†]
MMDFS6N303R2	SO-8	2500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

SCHOTTKY RECTIFIER MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Peak Repetitive Reverse Voltage DC Blocking Voltage	$V_{RRM} \ V_{R}$	30	Volts
Average Forward Current (Note 3) (Rated V _R) T _A = 104°C	Io	2.0	Amps
Peak Repetitive Forward Current (Note 3) (Rated V _R , Square Wave, 20 kHz) T _A = 108°C	I _{frm}	4.0	Amps
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{fsm}	30	Amps

THERMAL CHARACTERISTICS — SCHOTTKY AND MOSFET

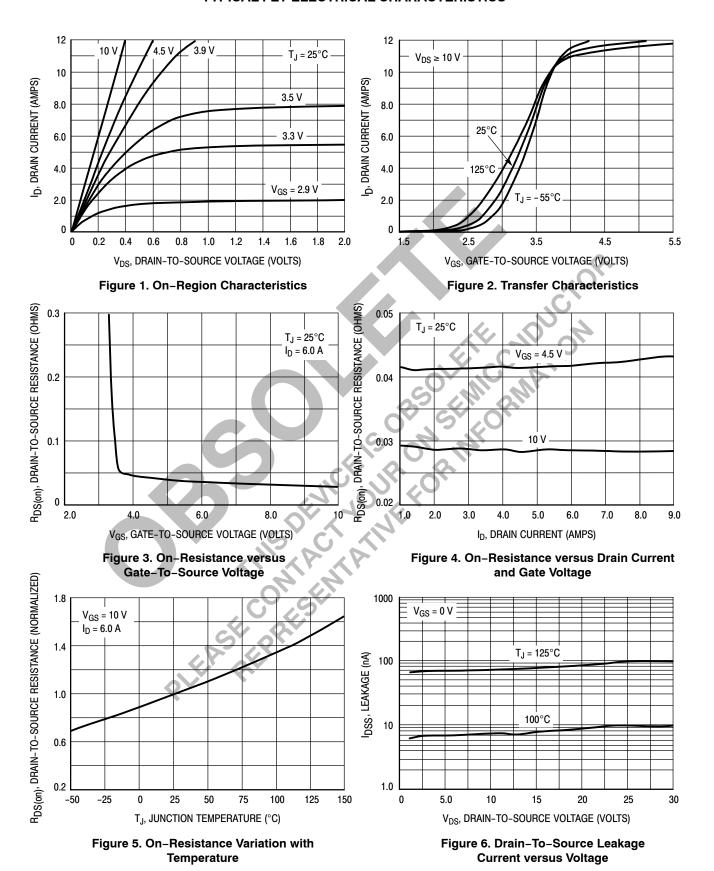
Thermal Resistance — Junction-to-Ambient (Note 4) — MOSFET	$R_{\theta JA}$	167	°C/W
Thermal Resistance — Junction-to-Ambient (Note 5) — MOSFET	$R_{\theta JA}$	97	
Thermal Resistance — Junction-to-Ambient (Note 2) — MOSFET	R _{0JA}	62.5	
Thermal Resistance — Junction-to-Ambient (Note 4) — Schottky	R ₀ JA	197	
Thermal Resistance — Junction-to-Ambient (Note 5) — Schottky	$R_{\theta JA}$	97	2~
Thermal Resistance — Junction-to-Ambient (Note 3) — Schottky	$R_{ heta JA}$	62.5	
Operating and Storage Temperature Range	T _j , T _{stg}	-55 to 150	

MOSFET ELECTRICAL CHARACTERISTICS (To = 25°C unless other

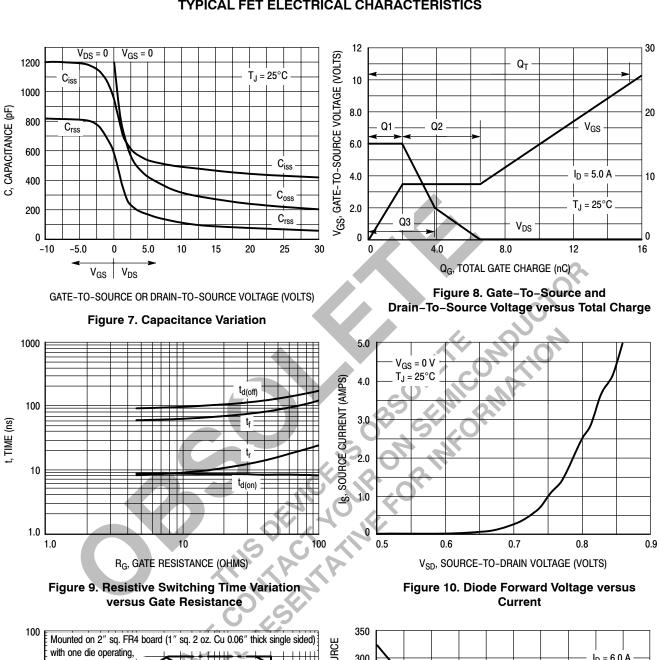
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		V 10			- 1
Drain-Source Voltage (V _{GS} = 0 Vdc, I _D = 0.25 mA) Temperature Coefficient (Positive)	V _{(BR)DSS}	30 —	_	<u> </u>	Vdc mV/°C
Zero Gate Drain Current $(V_{DS} = 24 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 24 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$	I _{DSS}	<i>y</i> -		1.0 20	μAdc
Gate Body Leakage Current (V _{GS} = ± 20 Vdc, V _{DS} = 0)	I _{GSS}	_	_	100	nAdc
ON CHARACTERISTICS (Note 6)					
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 0.25 mA) Temperature Coefficient (Negative)	V _{GS(th)}	1.0	_	<u> </u>	Vdc
Static Drain-Source Resistance (V _{GS} = 10 Vdc, I _D = 5.0 Adc) (V _{GS} = 4.5 Vdc, I _D = 3.9 Adc)	R _{DS(on)}		28 42	35 50	mΩ
Forward Transconductance (V _{DS} = 15 Vdc, I _D = 5.0 Adc)	9FS	_	9.0	_	mhos
DYNAMIC CHARACTERISTICS	•				•
Input Capacitance	C _{iss}	_	430	600	pF
Output Capacitance (V _{DS} = 24 Vdc, V _{GS} = 0 Vdc. f = 1.0 MHz)	C _{oss}	_	217	300	
Reverse Transfer Capacitance	C _{rss}	_	67.5	135	

- Mounted on 2" square FR4 board (1" sq. 2 oz. Cu 0.06" thick single sided), 10 sec. max.
 Mounted with minimum recommended pad size, PC Board FR4.
 Mounted on 2" square FR4 board (1" sq. 2 oz. Cu 0.06" thick single sided), Steady State.
 Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

MOSFET ELECTRICAL CHARACTERISTICS – continued ($T_C = 25$ °C unless otherwise noted) (Note 7)


, =			, ,		
Characteristic		Min	Тур	Max	Unit
Note 8)					
	t _{d(on)}	_	8.2	16.5	ns
$(V_{DD} = 15 \text{ Vdc}, I_D = 1.0 \text{ Adc},$	t _r	=	8.5	17	1
$V_{GS} = 10 \text{ VdC},$ $R_{G} = 6.0 \Omega)$	t _{d(off)}	_	89.6	179	
	t _f	_	61.1	122	1
	Q _T	_	15.7	31.4	nC
$(V_{DS} = 15 \text{ Vdc}, I_{D} = 5.0 \text{ Adc}, V_{GS} = 10 \text{ Vdc})$	Q ₁	_	2.0	_	1
	Q ₂	_	4.6	_	1
	Q ₃	_	3.9	_	
ERISTICS					
$(I_S = 1.7 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$	V _{SD}		0.77	1.2	Vdc
	t _{rr}	_	54.5	OZ	ns
$(V_{GS} = 0 \text{ V}, I_S = 5.0 \text{ A},$	t _a	_	14.8	_	1
dIS/dt = 100 A/μs)	t _b		39.7		1
	Q _{RR}		0.048	/	μC
	Note 8) $(V_{DD} = 15 \text{ Vdc}, \ I_D = 1.0 \text{ Adc}, \\ V_{GS} = 10 \text{ Vdc}, \\ R_G = 6.0 \ \Omega)$ $(V_{DS} = 15 \text{ Vdc}, \ I_D = 5.0 \text{ Adc}, \\ V_{GS} = 10 \text{ Vdc})$ $ERISTICS$ $(I_S = 1.7 \text{ Adc}, \\ V_{GS} = 0 \text{ Vdc})$ $(V_{GS} = 0 \text{ V}, \ I_S = 5.0 \text{ A}, $	Note 8)	Note 8)	Note 8)	Note 8) $ (V_{DD} = 15 \text{Vdc}, I_D = 1.0 \text{Adc}, V_{GS} = 10 \text{Vdc}, R_G = 6.0 \Omega) $ $ t_r$

SCHOTTKY RECTIFIER ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)


Maximum Instantaneous Forward Voltage (N		V _F	T _J = 25°C	T _J = 125°C	Volts
	$I_F = 100 \text{ mAdc}$ $I_F = 3.0 \text{ Adc}$ $I_F = 6.0 \text{ Adc}$	OBS	0.28 0.42 0.50	0.13 0.33 0.45	
Maximum Instantaneous Reverse Current (N		lR	T _J = 25°C	$T_J = 125^{\circ}C$	μΑ
	V _R = 30 V	P ~	250	_	
		2, 50	_	25	mA
Maximum Voltage Rate of Change	V _R = 30 V	dV/dt	10,0	000	V/μs

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.
 Switching characteristics are independent of operating junction temperature. ...y junction temp

TYPICAL FET ELECTRICAL CHARACTERISTICS

TYPICAL FET ELECTRICAL CHARACTERISTICS

SINGLE PULSE DRAIN-TO-SOURCE 300 $I_D = 6.0 \text{ A}$ (Lm) 250 200 200 AVALANCHE 150 100 50 EAS, 0 100 25 100 125 150 T_J, STARTING JUNCTION TEMPERATURE (°C)

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Figure 11. Maximum Rated Forward Biased Safe Operating Area

10 ms

DRAIN CURRENT (AMPS)

10

1.0

0.1

0.01

SINGLE PULSE

R_{DS(on)} LIMIT THERMAL LIMIT

1.0

PACKAGE LIMIT

 $T_C = 25^{\circ}C$

Figure 12. Maximum Avalanche Energy versus **Starting Junction Temperature**

TYPICAL FET ELECTRICAL CHARACTERISTICS

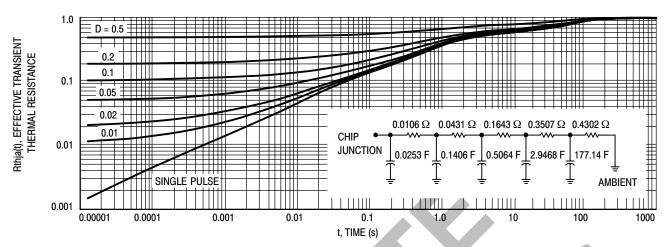


Figure 13. FET Thermal Response

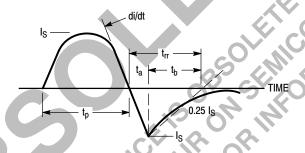


Figure 14. Diode Reverse Recovery Waveform

TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS

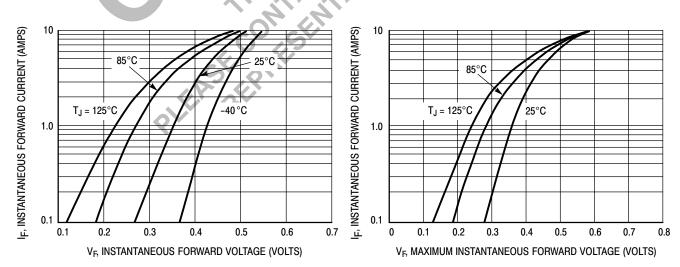


Figure 15. Typical Forward Voltage

Figure 16. Maximum Forward Voltage

TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS

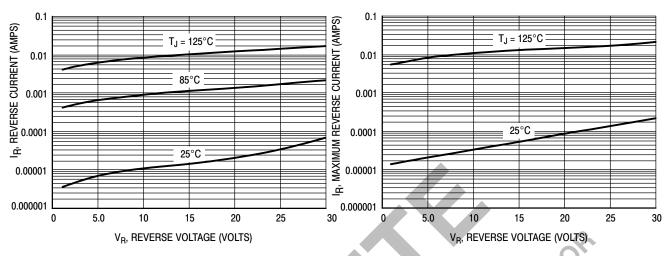


Figure 17. Typical Reverse Current

Figure 18. Maximum Reverse Current

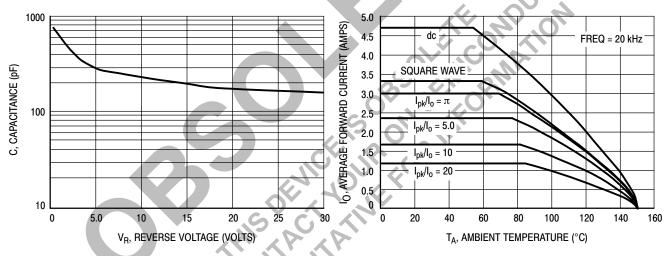


Figure 19. Typical Capacitance

Figure 20. Current Derating

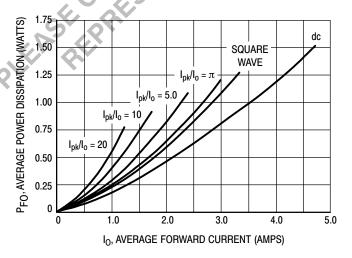


Figure 21. Forward Power Dissipation

TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS

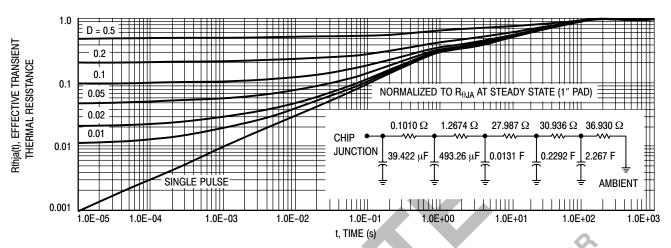
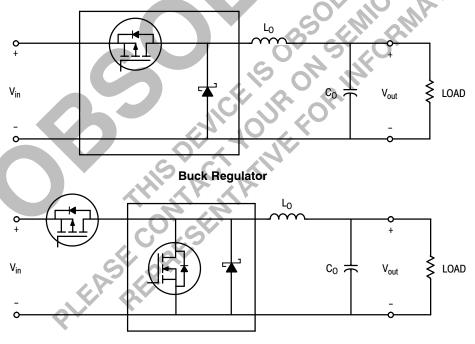
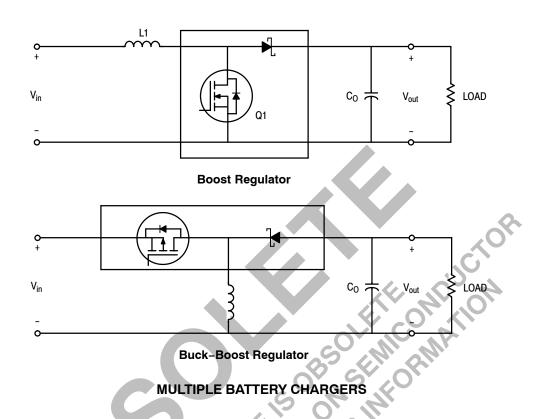
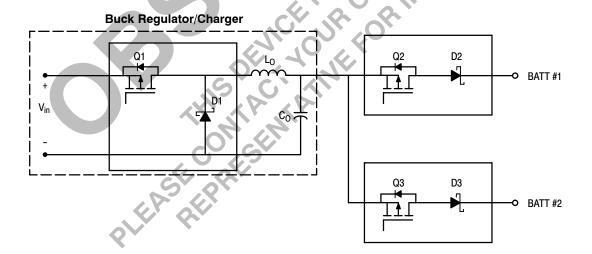



Figure 22. Schottky Thermal Response

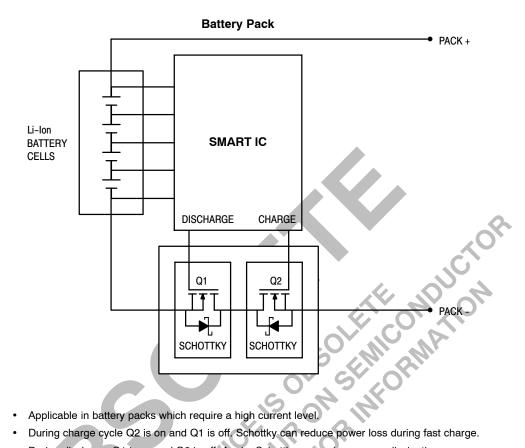
TYPICAL APPLICATIONS


STEP DOWN SWITCHING REGULATORS

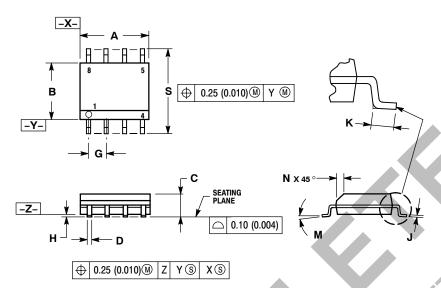


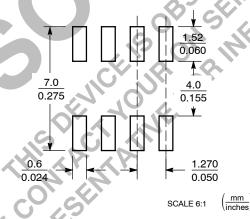
Synchronous Buck Regulator

TYPICAL APPLICATIONS


STEP UP SWITCHING REGULATORS

TYPICAL APPLICATIONS


Li-Ion BATTERY PACK APPLICATIONS


- During charge cycle Q2 is on and Q1 is off. Schottky can reduce power loss during fast charge.
- During discharge Q1 is on and Q2 is off. Again, Schottky can reduce power dissipation.
- Under normal operation, both transistors are on.

PACKAGE DIMENSIONS

SO-8 CASE 751-07 **ISSUE AB**

SOLDERING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

FETKY is a trademark of International Rectifier Corporation.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD
- PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
- 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN
 EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.2	7 BSC	0.050 BSC	
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0 °	8 °	0 °	8 °
N a	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

PIN 1 ANODE

- ANODE SOURCE
- GATE DRAIN
- DRAIN
- CATHODE
- CATHODE

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative