

LMS78 1.0R Series

Wide Input Non-Isolated & Regulated, Single Positive/Negative Output

Switching Regulator

- Efficiency up to 96%
- Operating temperature: -40°C ~ +85°C
- Pin-out compatible with LM78xx linear regulator
- Short circuit protection (SCP)
 No-load input current as low
- as 0.1mA
- Low ripple and noise
- Subminiature SIP package
 Meeting UL60950, EN60950 standards
- No heatsink required
- Industry standard pinout
- MTBF>2,000,000 hours
- Supporting negative output perfectly

Continuous, automatic recovery
0.1mA TYP, 1mA MAX
Forbidden
Capacitor Filter
25°C MAX, 15°C TYP
Free air convection
-40°C~+85°C Power derating above 71°C
-55°C ~+125°C
260°C MAX, 1.5mm from case for 10 sec
100°C
< 95%RH
Plastic [UL94-V0]
>2,000,000 hours +25°C MIL-HDBK-217F
3.8g

Note:

- 1. The max. capacitive load should be tested within the input voltage range and under full load conditions;
- 2. Without any special statement, all indexes are only specific to positive output application;
- Unless otherwise specified, data in this datasheet should be tested under the conditions of Ta = 25°C, humidity <75% when inputting nominal voltage and outputting rated load;
- All index testing methods in this datasheet are based on our Company's corporate standards;
- 5. The performance indexes of the product models listed in this manual are as above, but some indexes of non-standard model products will exceed the above-mentioned requirements, and please directly contact with our technician for specific information;
- 6. Specifications subject to change without prior notice.

The LMS78_1.0R series are high efficiency switching regulators and ideal substitutes of LM78XX series three-terminal linear regulators.

The product is featured with high efficiency, low loss, low radiation and no heat sink requirement. They are widely used in industrial control, instrumentation, and electric power applications.

Output specification	15				
Item	Test conditions	Min	Тур	Max	Units
Output voltage accuracy	100% load • LMS78_03-1.0R • others		±2 ±2	±4 ±3	% %
Line regulation	Input Voltage Range		±0.2	±0.4	%
Load regulation	10% to 100% load		±0.4	±0.6	%
Ripple + Noise*	20MHz Bandwidth		20	75	mVp- p
Switching frequency	 3.3V/5V output others	420 580	520 680	620 780	KHz KHz
Transient response deviation	Nominal input, 25% load step change		50	300	mV
Transient recovery time	Nominal input, 25% load step change		0.1	1	ms
Temperature coefficient	-40 °C to +85 °C ambient			±0.03	%/°C

* Test ripple and noise by "parallel cable" method. With the load lower than 10%, maximum ripple and noise will be 150mVp-p.

Example: LMS78_05-1.0RL

LM = Series; S = SIP Case; 05 = 5Vout; 1.0 = 1.0A; R = Revised; L = Bended Pins

EMC sp	ecifications			
EMI	CE	CISPR22/EN55022	CLASS B	(External circuit refer to EMC recommended circuit,②)
EMI	RE	CISPR22/EN55022	CLASS B	(External circuit refer to EMC recommended circuit, $\textcircled{0}$
EMS	ESD	IEC/EN61000-4-2	Contact ±4KV	perf. Criteria B
EMS	RS	IEC/EN61000-4-3	10V/m	perf. Criteria A
EMS	EFT	IEC/EN61000-4-4	±1KV	perf. Criteria B (External circuit refer to EMC recommended circuit, \bigcirc
EMS	Surge	IEC/EN61000-4-5	±1KV	perf. Criteria B (External circuit refer to EMC recommended circuit, \bigcirc
EMS	CS	IEC/EN61000-4-6	3 Vr.m.s	perf. Criteria A

LMS78_1.0R Series

Wide Input Non-Isolated & Regulated, Single Positive/Negative Output

Part Number	Input Voltage [VDC]	Output Voltage	Output Current	Efficiency	Max. capacitive load
	Nominal (Range)	[VDC]	[mA]	[%, min/max]	[μF]
LMS78_03-1.0R	24 (6-36)	3.3	1000	90/81	680
LMS78_05-1.0R	24 (8-36)	5.0	1000	93/86	680
	12 (8-27)	-5.0	-500	86/82	330
LMS78_09-1.0R	24 (13-36)	9.0	1000	95/90	680
LMS78_12-1.0R	24 (16~36)	12	1000	96/93	680
	12 (8-20)	-12	-300	89/88	330
LMS78_15-1.0R	24 (20-36)	15	1000	96/94	680
	12 (8-18)	-15	-300	89/89	330

Add suffix "L" for 90° bend pins, for example: LMS78_05-1.0RL.

Typical characteristics

Typical application circuit

Positive and Negative output parallelling application circuit

Note:

- 1. C1 and C2 (C3 and C4) are required and should be connected close to the pin terminal of the module.
- 2. The capacitance of C1 and C2 (C3 and C4) refer to Sheet 1.
- 3. To reduce the output ripple furtherly. C2 and C4 can be increased properly if required, and tantalum or low ESR electrolytic capacitors may also suffice.
- 4. When the products used as positive and negative output parallelling application circuit, an inductor named as LDM up to 10μ H is recommended in the circuit to reduce the mutual interference.
- 5. Cannot be used in parallel for output and hot swap.

Part Number	C1,C3 (Ceramic Capacitor)	C2,C4 (Ceramic Capacitor)
LMS78_03-1.0R	10µF/50V	22µF/10V
LMS78_05-1.0R	10µF/50V	22µF/10V
LMS78_09-1.0R	10µF/50V	10µF/16V
LMS78_12-1.0R	10µF/50V	10µF/25V
LMS78_15-1.0R	10µF/50V	10µF/25V

Wide Input Non-Isolated & Regulated, Single Positive/Negative Output

Standard application circuit

EMC solution-recommended circuit

FUSE	MOV	LDM1	CO	C1/C2	C3	LDM2
Selected based on the actual input current from the customer	S20K30	82μΗ	680µF /50V	Refer to positive output application circuit	4.7µF /50V	12µН

Wide Input Non-Isolated & Regulated, Single Positive/Negative Output

Mechanical dimension and footprint

LMS78_xx-1.0R

LMS78_xx-1.0R

_	- ø1.00	[Ø0.039]	
	_	-		
1	_		l	
2				
30 I			T	
- 4-	-			

Note : Grid 2.54*2.54mm

	Pin-Out	
Pin	+Output	-Output
1	Vin	Vin
2	GND	-Vo
3	+Vo	GND

Note: Unit :mm[inch] Pin diameter tolerances :±0.10[±0.004] General tolerances:±0.25[±0.010]