

SN74LV594A

SCLS413K - APRIL 1998 - REVISED DECEMBER 2022

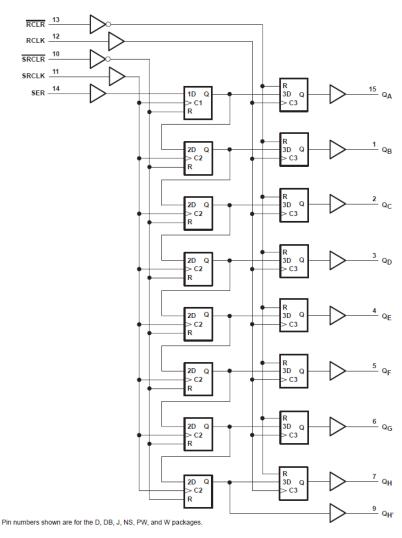
SN74LV594A 8-Bit Shift Registers With Output Registers

1 Features

- V_{CC} operation of 2 V to 5.5 V
- Maximum tpd of 6.5 ns at 5 V
- Typical V_{OLP} (output ground bounce) <0.8 V at V_{CC} = 3.3 V, TA = 25°C
- Support mixed-mode voltage operation on all ports
- 8-bit serial-in, parallel-out shift registers with
- Independent direct overriding clears on shift and storage registers
- Independent clocks for shift and storage registers
- Latch-up performance exceeds 100 mA per JESD

2 Applications

- ECG electrocardiograms
- Storage servers
- EPOS, ECR, and cash drawers
- Servers and high-performance computing


3 Description

The SN74LV594A devices are 8-bit shift registers designed for 2 V to 5.5 V V_{CC} operation.

Package Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
	DB (SSOP, 16)	6.20 mm × 5.30 mm		
SN74LV594A	D (SOIC, 16)	9.90 mm × 3.91 mm		
SN/4LV594A	PW (TSSOP, 16)	5.00 mm × 4.40 mm		
	BQB (WQFN, 16)	3.60 mm × 2.60 mm		

For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

Table of Contents

1 Features1	7 Parameter Measurement Information	11
2 Applications1	8 Detailed Description1	12
3 Description1	8.1 Overview1	12
4 Revision History2	8.2 Functional Block Diagram1	13
5 Pin Configuration and Functions3	8.3 Feature Description1	14
6 Specifications4	8.4 Device Functional Modes1	14
6.1 Absolute Maximum Ratings4	9 Application and Implementation	15
6.2 ESD Ratings4	9.1 Application Information	
6.3 Recommended Operating Conditions5	9.2 Typical Application1	
6.4 Thermal Information5	9.3 Power Supply Recommendations1	
6.5 Electrical Characteristics6	9.4 Layout1	16
6.6 Switching Characteristics: V _{CC} = 2.5 V ± 0.2 V6	10 Device and Documentation Support1	18
6.7 Switching Characteristics: V _{CC} = 3.3 V ± 0.3 V7	10.1 Receiving Notification of Documentation Updates1	18
6.8 Switching Characteristics: V _{CC} = 5 V ± 0.5 V7	10.2 Support Resources1	
6.9 Timing Requirements: V _{CC} = 2.5 V ± 0.2 V8	10.3 Trademarks1	18
6.10 Timing Requirements: V _{CC} = 3.3 V ± 0.3 V8	10.4 Electrostatic Discharge Caution1	18
6.11 Timing Requirements: V _{CC} = 5 V ± 0.5 V9	10.5 Glossary1	18
6.12 Noise Characteristics9	11 Mechanical, Packaging, and Orderable	
6.13 Operating Characteristics9	Information1	18
6.14 Typical Characteristics10		

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision J (February 2015) to Revision K (December 2022)

Page

Changes from Revision I (April 2005) to Revision J (February 2015)

Page

Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device
Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout
section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information
section

5 Pin Configuration and Functions

Figure 5-1. D, DB, or PW Package 16-Pin SOIC, SSOP, or TSSOP Top View

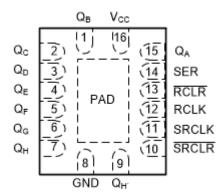


Figure 5-2. BQB Package 16-Pin WQFN Top View

Table 5-1. Pin Functions

P	IN	TYPE ⁽¹⁾	DESCRIPTION
NAME	NO.	ITPE	DESCRIPTION
Q _B	1	0	Output B
Q _C	2	0	Output C
Q _D	3	0	Output D
Q _E	4	0	Output E
Q _F	5	0	Output F
Q_G	6	0	Output G
Q _H	7	0	Output H
GND	8	G	Ground pin
Q _H '	9	0	Q _H inverted
SRCLR	10	1	Serial clear
SRCLK	11	I	Serial clock
RCLK	12	I	Storage clock
RCLR	13	I	Storage clear
SER	14	1	Serial input
Q _A	15	0	Output A
Vcc	16	Р	Power pin
PAD	_	_	Thermal Pad (2)

⁽¹⁾ I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power.

⁽²⁾ BQB Package Only

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT			
V _{CC}	Supply voltage		-0.5	7	V			
VI	Input voltage ⁽²⁾	Input voltage ⁽²⁾						
Vo	Voltage range applied to any output in the high-	Voltage range applied to any output in the high-impedance or power-off state ⁽²⁾						
Vo	Output voltage ^{(2) (3)}		-0.5	V _{CC} + 0.5	V			
I _{IK}	Input clamp current	V _I < 0	-20		mA			
I _{OK}	Output clamp current	V _O < 0	-50		mA			
Io	Continuous output current	V _O = 0 to V _{CC}	-25	25	mA			
T _{stg}	Storage temperature	Storage temperature						

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value is limited to 5.5 V maximum.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Product Folder Links: SN74LV594A

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			SN74LV5	594A	LINUT
			MIN	MAX	UNIT
V _{CC}	Supply voltage		2	5.5	V
		V _{CC} = 2 V	1.5		
.,	High lavel in a strate as	V _{CC} = 2.3 V to 2.7 V	V _{CC} × 0.7		V
V_{IH}	High-level input voltage	V _{CC} = 3 V to 3.6 V	V _{CC} × 0.7		V
		V _{CC} = 4.5 V to 5.5 V	V _{CC} × 0.7		
		V _{CC} = 2 V		0.5	
\/	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		V _{CC} × 0.3	V
V_{IL}	Low-level input voltage	V _{CC} = 3 V to 3.6 V		V _{CC} × 0.3	V
		V _{CC} = 4.5 V to 5.5 V		V _{CC} × 0.3	
VI	Input voltage	,	0	5.5	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 2 V		-50	μA
	High lavel in a A arrange	V _{CC} = 2.3 V to 2.7 V		-2	
I _{OH}	High-level input current	V _{CC} = 3 V to 3.6 V		6	mA
		V _{CC} = 4.5 V to 5.5 V			
		V _{CC} = 2 V		50	μA
	Low-level output current	V _{CC} = 2.3 V to 2.7 V		2	
I _{OL}	Low-level output current	V _{CC} = 3 V to 3.6 V		6	mA
		V _{CC} = 4.5 V to 5.5 V		12	
		V _{CC} = 2.3 V to 2.7 V		200	
Δt/Δν	Input transition rise or fall rate	V _{CC} = 3 V to 3.6 V		100	ns/V
		V _{CC} = 4.5 V to 5.5 V		20	
T _A	Operating free-air temperature	ı	-40	125	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report *Implications of Slow or Floating CMOS Inputs*, SCBA004.

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	D (SOIC)	DB (SSOP)	PW (TSSOP)	UNIT	
		16 PINS	16 PINS	16 PINS	16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	85.9	80.2	97.8	106.1	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	82.4	40.3	48.1	40.8	
$R_{\theta JB}$	Junction-to-board thermal resistance	55.6	38	48.5	51.1	°C/W
ΨЈТ	Junction-to-top characterization parameter	9.4	9	10	3.8	C/VV
ΨЈВ	Junction-to-board characterization parameter	55.6	37.7	47.9	50.6	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	33.3	N/A	N/A	N/A	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	vcc	SN54	LV594A			LV594A TO 85°C	;		LV594A TO 125°C		UNIT
	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
	I _{OH} = -50 μA	2 V to 5.5 V	V _{CC} - 0.1			V _{CC} - 0.1			V _{CC} - 0.1			
	I _{OH} = -2 μA	2.3 V	2			2			2			V
V _{OH}	I _{OH} = -6 μA	3 V	2.48			2.48			2.48			V
	I _{OH} = -12 μA	4.5 V	3.8			3.8			3.8			
	I _{OH} = -50 μA	2 V to 5.5 V			0.1			0.1			0.1	
	I _{OH} = -2 μA	2.3 V			0.4			0.4			0.4	V
V _{OL}	I _{OH} = -6 μA	3 V			0.44			0.44			0.44	V
	I _{OH} = -12 μA	4.5 V			0.55			0.55			0.55	
I _I	V _I = 5.5 V or GND	0 to 5.5 V			±1			±1			±1	μΑ
Icc	$V_I = V_{CC}$ of GND, $I_O = 0$	5.5 V			20			20			20	μΑ
I _{off}	$V_1 \text{ or } V_0 = 0 \text{ to } 5.5 \text{ V}$	0		,	5			5			5	μΑ
C _i	V _I = V _{CC} or GND	3.3 V		3.5			3.5					pF

6.6 Switching Characteristics: V_{CC} = 2.5 V ± 0.2 V

over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted). See Figure 6-1.

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	1	T _A = 25°C			SN74LV594A -40°C TO 85°C		94A 25°C	UNIT
	(INFUT)	(001701)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
£			C _L = 15 pF	65 ⁽¹⁾	80 ⁽¹⁾		45		35		MHz
f _{max}			C _L = 50 pF	60	70		40		30		IVIF1Z
t _{PLH}		0 0			6.4 ⁽¹⁾	10.6 ⁽¹⁾	1	11.1	1	12.5	
t _{PHL}	SRCLK	$Q_A - Q_H$			6.3 ⁽¹⁾	10.4 ⁽¹⁾	1	11.1	1	12.5	
t _{PLH}	1	0	C _L = 15 pF		7.4 ⁽¹⁾	12.1 ⁽¹⁾	1	12.8	1	15	ns
t _{PHL}		Q _H	CL = 15 pr		7.2 ⁽¹⁾	11.6 ⁽¹⁾	1	12.8	1	15	115
	RCLK	Q _A – Q _H			7.9 ⁽¹⁾	12.7 ⁽¹⁾	1	13.6	1	15.5	
t _{PHL}		Q _H '			7.4 ⁽¹⁾	11.9 ⁽¹⁾	1	13.1	1	15.5	
t _{PLH}		0 0			9.5	14.1	1	14.6	1	17	
t _{PHL}	SRCLR	$Q_A - Q_H$			10.8	15.5	1	17.2	1	19.5	
t _{PLH}	1	0	0 - 50 -5		10.6	15.7	1	16.5	1	18.5	
t _{PHL}		Q _H '	C _L = 50 pF		11.3	16.1	1	18.6	1	20.5	ns
	RCLR	Q _A – Q _H			12.1	17.4	1	19	1	21	
t _{PHL}		Q _H '			11.6	16.5	1	18.6	1	20.6	1

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

6.7 Switching Characteristics: V_{CC} = 3.3 V ± 0.3 V

over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted). See Figure 6-1.

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	TA	= 25°C		SN74LV5 -40°C TO		SN74LV59 -40°C TO 1		UNIT				
	(INPUT)	(001701)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX					
			C _L = 15 pF	80 ⁽¹⁾	120 ⁽¹⁾		70		60		MHz				
f _{max}			C _L = 50 pF	55	105		50		40		IVITIZ				
t _{PLH}		0 0			4.6 ⁽¹⁾	8(1)	1	8.5	1	10.5					
t _{PHL}	SRCLK	$Q_A - Q_H$			4.9 ⁽¹⁾	8.2 ⁽¹⁾	1	8.8	1	10.5					
t _{PLH}		0	C _L = 15 pF		5.4 ⁽¹⁾	9.1 ⁽¹⁾	1	9.7	1	11.5	ns				
t _{PHL}		- Q _H	CL = 15 pr		5.5 ⁽¹⁾	9.2 ⁽¹⁾	1	9.9	1	11.6	115				
	RCLK	Q _A – Q _H			6 ⁽¹⁾	9.8 <mark>(1)</mark>	1	10.6	1	12.1					
t _{PHL}		Q _H '			5.6 ⁽¹⁾	9.2 ⁽¹⁾	1	10	1	12					
t _{PLH}		0 0	0 0	0 0	0 0	0 0					1	11.1	1	12.5	
t _{PHL}	SRCLR	$Q_A - Q_H$					1	13.1	1	15					
t _{PLH}		0	0 - 50 - 5				1	12.4	1	14					
t _{PHL}		- Q _H	C _L = 50 pF				1	13.9	1	15.5	ns				
t _{PHL}	RCLR	Q _A – Q _H					1	14.4	1	16.1					
		Q _H '					1	14	1	16					

⁽¹⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested.

6.8 Switching Characteristics: $V_{CC} = 5 V \pm 0.5 V$

over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted). See Figure 6-1.

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	TA	= 25°C		SN74LV59 -40°C TO		SN74LV5 -40°C TO 1	-	UNIT			
	(INPUT)	(001701)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX				
f			C _L = 15 pF	135 ⁽¹⁾	170 ⁽¹⁾		115		105		MHz			
f _{max}			C _L = 50 pF	120	140		95		85		IVITZ			
t _{PLH}		0.0.			3.3(1)	6.2 ⁽¹⁾	1	6.5	1	8				
t _{PHL}	SRCLK	$Q_A - Q_H$			3.7 ⁽¹⁾	6.5 ⁽¹⁾	1	6.9	1	8.5				
t _{PLH}		Q _H	C _L = 15 pF		3.7 ⁽¹⁾	6.8 ⁽¹⁾	1	7.2	1	8.5	ns			
t _{PHL}		QH'	OL = 13 pi		4.1 ⁽¹⁾	7.2 ⁽¹⁾	1	7.6	1	9	115			
	RCLK	$Q_A - Q_H$			4.5 ⁽¹⁾	7.6 ⁽¹⁾	1	8.2	1	9.5				
t _{PHL}		Q _H			4.1 ⁽¹⁾	7.1 ⁽¹⁾	1	7.6	1	9				
t _{PLH}		0 0			4.9	7.8	1	8.3	1	9.6				
t _{PHL}	SRCLR	$Q_A - Q_H$	$Q_A - Q_H$	$Q_A - Q_H$	\overline{R} $Q_A - Q_H$			5.8	8.9	1	9.7	1	11	
t _{PLH}		0	C ₁ = 50 pF		5.5	8.6	1	9.1	1	10.5	no			
t _{PHL}		Q _H '	C _L = 50 pr		6	9.2	1	10.1	1	11.5	ns			
	RCLR	$Q_A - Q_H$			6.6	10	1	10.7	1	12				
t _{PHL}		Q _H			6	9.2	1	10.1	1	11.5				

 $^{(1) \}quad \hbox{On products compliant to MIL-PRF-38535, this parameter is not production tested.}$

6.9 Timing Requirements: $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$

over recommended operating free-air temperature range, V_{CC} = 2.5 V ± 0.2 V. See Figure 6-1.

			T _A = 25	°C	SN74LV594A -40°C TO 85°C		SN74LV594A -40°C TO 125°C		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
	Dulco duration	RCLK or SRCLK high or low	7		7.5		8.5		
t _w	t _w Pulse duration	RCKR or SCRCLR low	6		6.5		7.5		ns
		SER before SRCLK↑	5.5		5.5		6		
		SRCLK↑ before RCLK↑	8		9		10		
t _{su}	Setup time	SCRCLR low before RCLK↑(1)	8.5		9.5		10.5		ns
		SRCLR high (inactive) before SRCLK↑	6		6.8		7.5		
		RCLK high (inactive) before RCLK↑	6.7		7.6		8.5		
t _h	Hold time	SER after SRCLK↑	1.5		1.5		2		ns

⁽¹⁾ This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

6.10 Timing Requirements: V_{CC} = 3.3 V ± 0.3 V

over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$. See Figure 6-1.

			T _A = 25	°C	SN74LV59 -40°C TO 8		SN74LV594A -40°C TO 125°C		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
	Pulse duration	RCLK or SRCLK high or low	5.5		5.5		6.5		no
l _w		RCKR or SCRCLR low	5		5		6		ns
		SER before SRCLK↑	3.5		3.5		4		
		SRCLK↑ before RCLK↑	8		8.5		9.5		
t _{su}	Setup time	SCRCLR low before RCLK↑(1)	8		9		10		ns
		SRCLR high (inactive) before SRCLK↑	4.2		4.8		5.5		
		RCLK high (inactive) before RCLK↑	4.6		5.3		6		
t _h	Hold time	SER after SRCLK↑	1.5		1.5		2		ns

⁽¹⁾ This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

Product Folder Links: SN74LV594A

6.11 Timing Requirements: $V_{CC} = 5 V \pm 0.5 V$

over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V. See Figure 6-1.

			T _A = 25	°C	SN74LV59 -40°C TO 8		SN74LV59- -40°C TO 12		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
	t Pulse duration	RCLK or SRCLK high or low	5		5		6		no
t _w	Pulse duration	RCKR or SCRCLR low	5.2		5.2		6.2		ns
	Setup time	SER before SRCLK↑	3		3		3.5		
		SRCLK↑ before RCLK↑	5		5		6		
t _{su}		SCRCLR low before RCLK↑(1)	5		5		5.5		ns
		SRCLR high (inactive) before SRCLK↑	2.9		3.3		4		
		RCLK high (inactive) before RCLK↑	3.2		3.7		4.5		
t _h	Hold time	SER after SRCLK↑	2		2		2.5		ns

⁽¹⁾ This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

6.12 Noise Characteristics

over operating free-air temperature range (unless otherwise noted), V_{CC} = 3.3 V, C_L = 50 pF, T_A = 25°C

	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.5	0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.1	-0.8	V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		2.8		V
V _{IH(V)}	High-level dynamic input voltage	2.31			V
V _{IL(V)}	Low-level dynamic input voltage			0.99	V

6.13 Operating Characteristics

 $T_A = 25^{\circ}C$

- A 20 0	PARAMETER	TEST CONDITIONS	V _{cc}	TYP	UNIT
<u> </u>	Dewar dissination consistence	f = 10 MHz	3.3 V	3.3 V 93	
C _{pd}	Power dissipation capacitance	I – 10 MITZ	5 V	112	pF

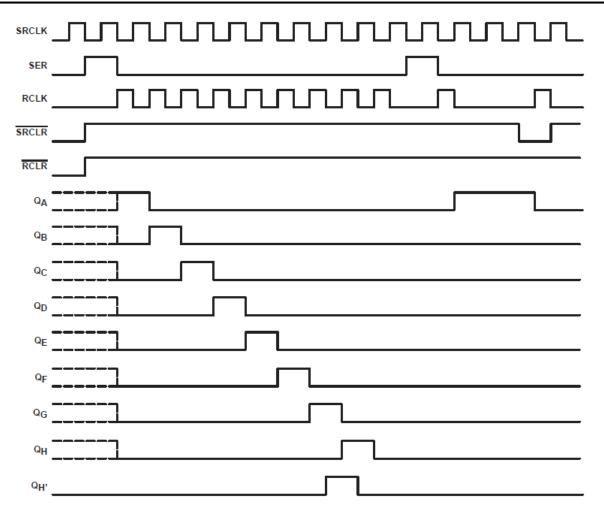
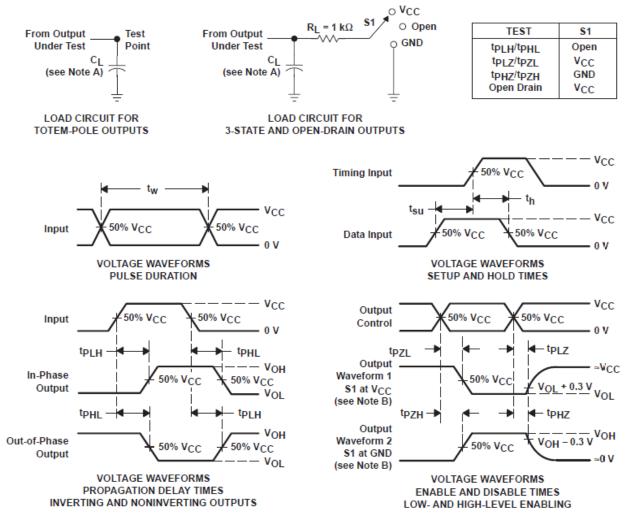



Figure 6-1. Timing Diagram

6.14 Typical Characteristics

7 Parameter Measurement Information

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , $t_f \leq$ 3 ns. $t_f \leq$ 3 ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- tPHL and tPLH are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

Figure 7-1. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

The SN74LV594A devices are 8-bit shift registers designed for 2 V to 5.5 V V_{CC} operation.

These devices contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Separate clocks (RCLK, SRCLK) and direct overriding clear (\overline{RCLR} , \overline{SRCLR}) inputs are provided on the shift and storage registers. A serial output ($Q_{H'}$) is provided for cascading purposes. The shift-register (SRCLK) and storage-register (RCLK) clocks are positive-edge triggered. If the clocks are tied together, the shift register always is one clock pulse ahead of the storage register.

omit Document Feedback

Product Folder Links: SN74LV594A

8.2 Functional Block Diagram

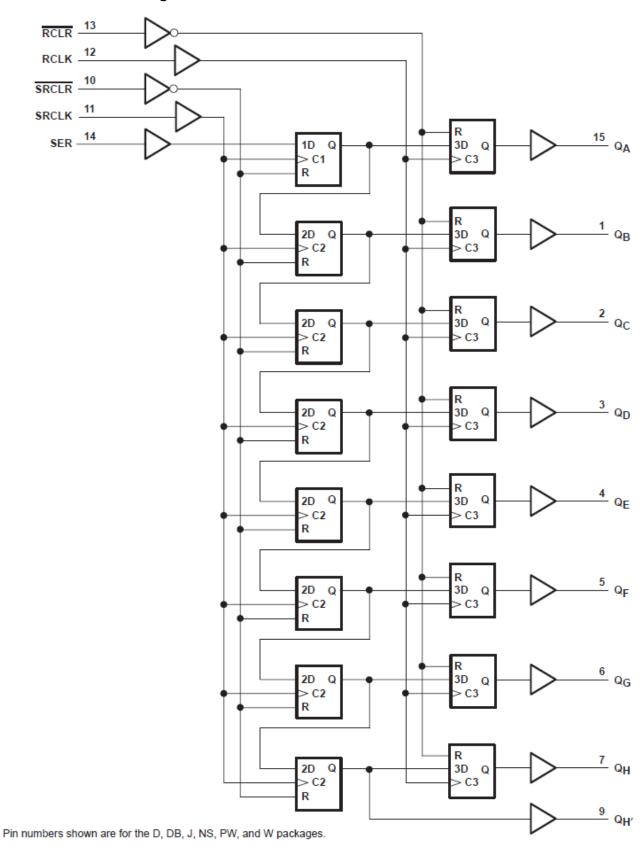


Figure 8-1. Logic Diagram (Positive Logic)

Product Folder Links: SN74LV594A

8.3 Feature Description

The device's wide operating range allows it to be used in a variety of systems that use different logic levels. The low propagation delay allows fast switching and higher speeds of operation. In addition, the low ground bounce stabilizes the performance of non-switching outputs while another output is switching.

8.4 Device Functional Modes

Table 8-1. Function Table

	Table 0-1. I dilettori Table												
		INPUTS			FUNCTION								
SER	SRCLK	SRCLR	RCLK	RCLR	FUNCTION								
Х	X	L	X	Х	Shift register is cleared.								
L	1	Н	Х	Х	First stage of shift register goes low. Other stages store the data of previous stage, repectively.								
Н	1	Н	Х	X	First stage of shift register goes high. Other stages store the data of previous stage, respectively.								
L	↓	Н	X	Х	Shift register state is not changed.								
Х	Х	Х	X	L	Storage register is cleared.								
Х	Х	Х	1	Н	Shift register data is stored in the storage register.								
Х	Х	X	1	Н	Storage register state is not changed.								

Product Folder Links: SN74LV594A

ibmit Document Feedback

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The SN74LV594A is a low drive CMOS device that can be used for a multitude of bus interface type applications where output ringing is a concern. The low drive and slow edge rates will minimize overshoot and undershoot on the outputs.

9.2 Typical Application

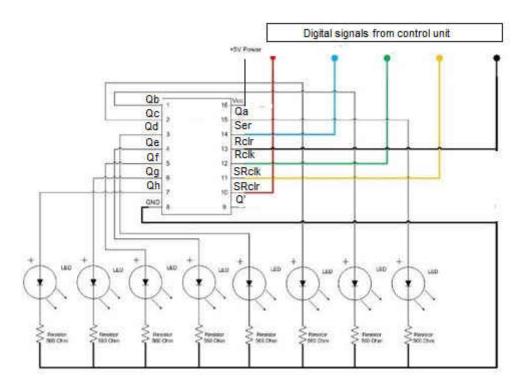


Figure 9-1. Typical Application Schematic

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so consider routing and load conditions to prevent ringing.

9.2.2 Detailed Design Procedure

- · Recommended input conditions:
 - Rise time and fall time specs. See (Δt/ΔV) in Section 6.3.
 - Specified high and low levels. See (V_{IH} and V_{IL}) in Section 6.3.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}.
- · Recommended output conditions:
 - Load currents should not exceed 25 mA per output and 50 mA total for the part.
 - Outputs should not be pulled above V_{CC}.

9.2.3 Application Curves

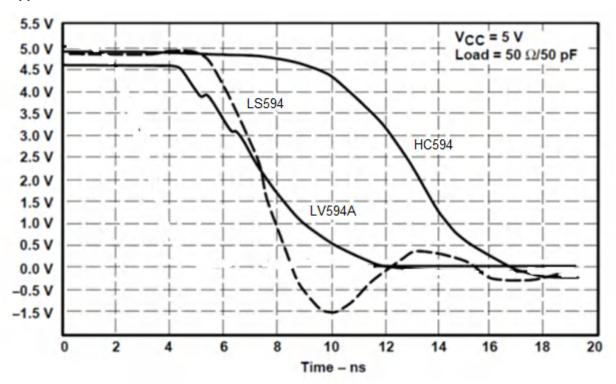


Figure 9-2. Switching Characteristics Comparison

9.3 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the Section 6.3. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1- μ F capacitor and if there are multiple V_{CC} terminals then TI recommends a 0.01- μ F or 0.022- μ F capacitor for each power terminal. Multiple bypass capacitors can be paralleled to reject different frequencies of noise. Frequencies of 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close as possible to the power terminal for best results.

9.4 Layout

9.4.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only three of the four buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they

www.ti.com

will be tied to GND or V_{CC} whichever make more sense or is more convenient. Floating outputs is generally acceptable, unless the part is a transceiver. If the transceiver has an output enable pin it will disable the outputs section of the part when asserted. This will not disable the input section of the I.O's so they also cannot float when disabled.

9.4.2 Layout Example

Figure 9-3. Layout Example

10 Device and Documentation Support

10.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

10.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: SN74LV594A

www.ti.com 11-May-2023

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LV594ABQBR	ACTIVE	WQFN	BQB	16	3000	RoHS & Green	(6) NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	_
SIVIAEVSAADQDIX	ACTIVE	WQIII	DQD	10	3000	Norio & Green	NII DAO	Level-1-200C-OINLIM	-40 to 125	LVJJ4A	Samples
SN74LV594AD	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Samples
SN74LV594ADBR	ACTIVE	SSOP	DB	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Samples
SN74LV594ADE4	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Samples
SN74LV594ADG4	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Samples
SN74LV594ADR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Samples
SN74LV594APWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	LV594A	Samples
SN74LV594APWRG4	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

www.ti.com 11-May-2023

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

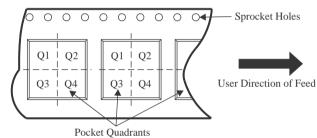
OTHER QUALIFIED VERSIONS OF SN74LV594A:

Automotive: SN74LV594A-Q1

NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

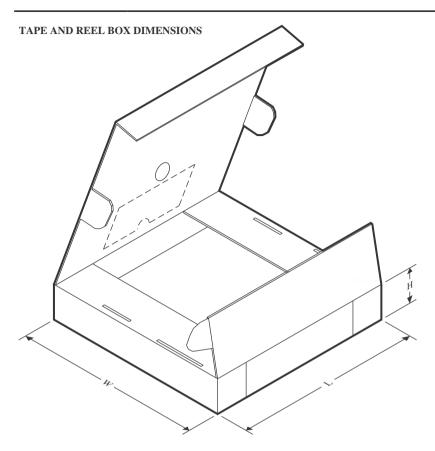
www.ti.com 12-May-2023


TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

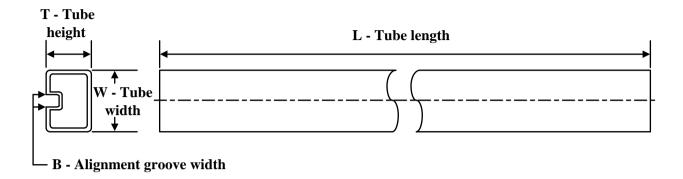
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV594ABQBR	WQFN	BQB	16	3000	180.0	12.4	2.8	3.8	1.2	4.0	12.0	Q1
SN74LV594ADBR	SSOP	DB	16	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74LV594ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LV594APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV594APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV594APWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 12-May-2023

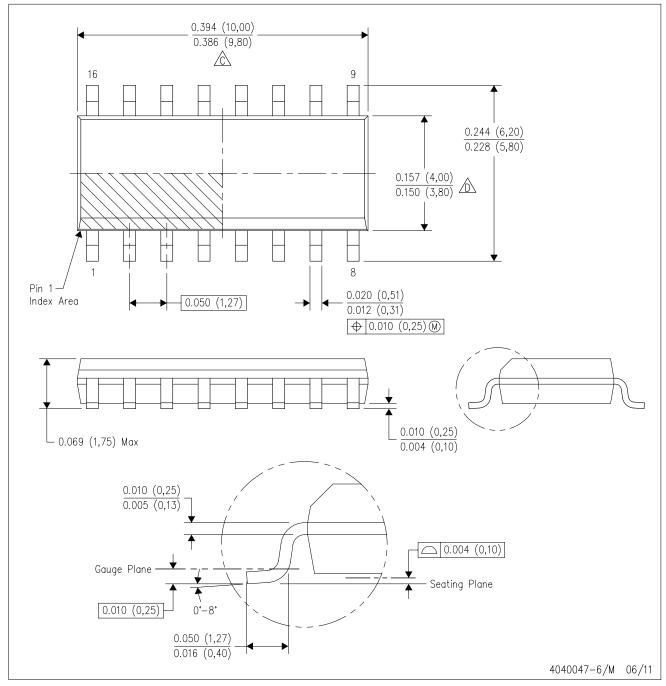

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV594ABQBR	WQFN	BQB	16	3000	210.0	185.0	35.0
SN74LV594ADBR	SSOP	DB	16	2000	356.0	356.0	35.0
SN74LV594ADR	SOIC	D	16	2500	340.5	336.1	32.0
SN74LV594APWR	TSSOP	PW	16	2000	356.0	356.0	35.0
SN74LV594APWR	TSSOP	PW	16	2000	364.0	364.0	27.0
SN74LV594APWRG4	TSSOP	PW	16	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 12-May-2023

TUBE

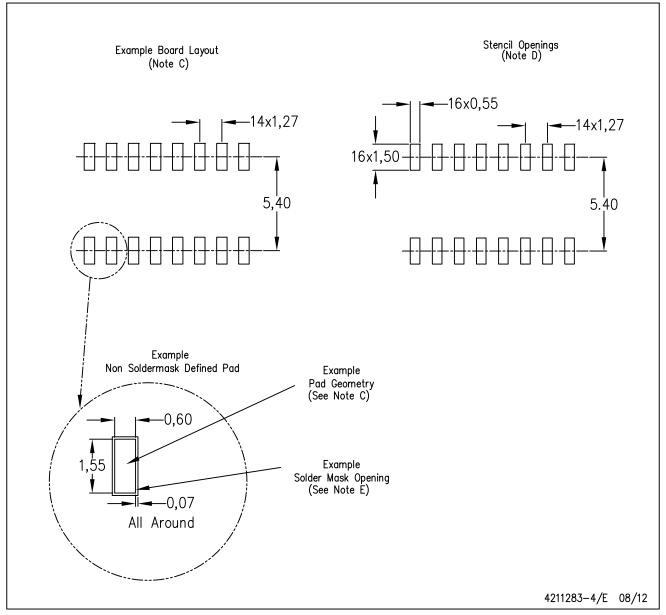


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74LV594AD	D	SOIC	16	40	507	8	3940	4.32
SN74LV594ADE4	D	SOIC	16	40	507	8	3940	4.32
SN74LV594ADG4	D	SOIC	16	40	507	8	3940	4.32

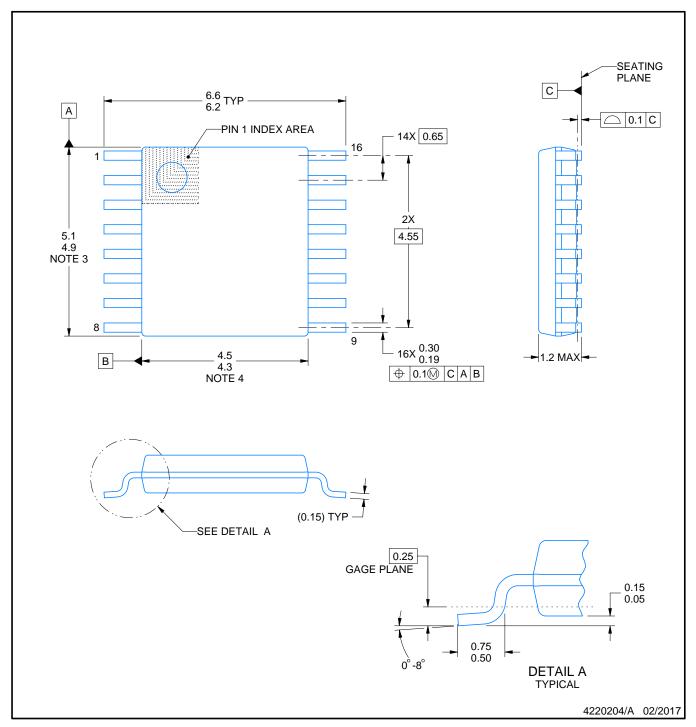
D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

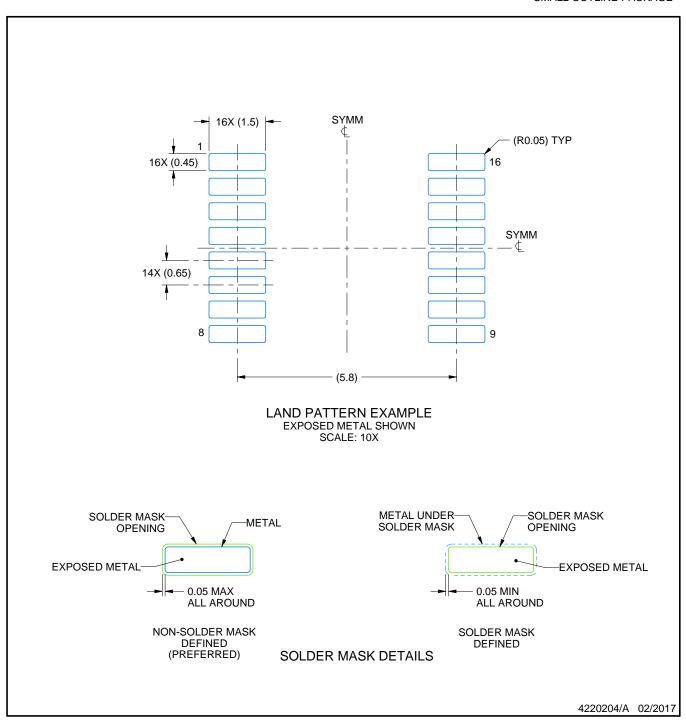


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)


PLASTIC SMALL OUTLINE

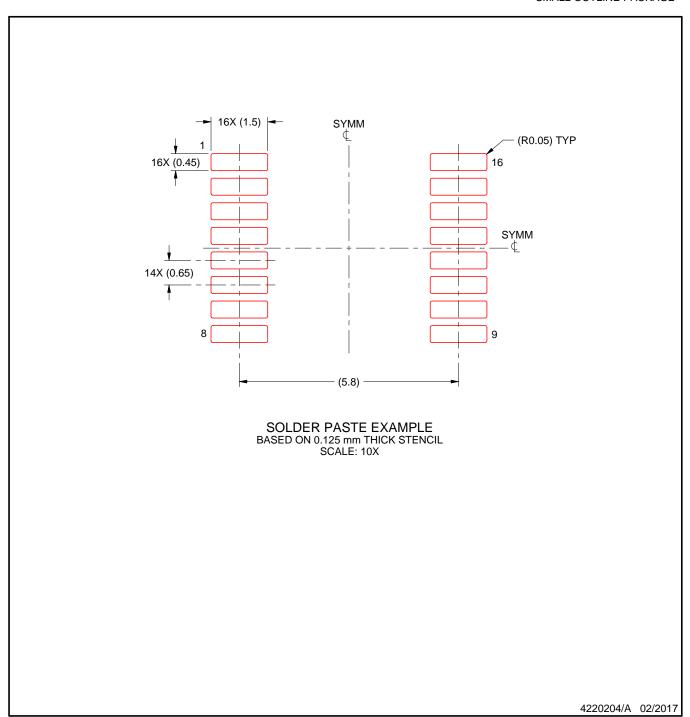
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

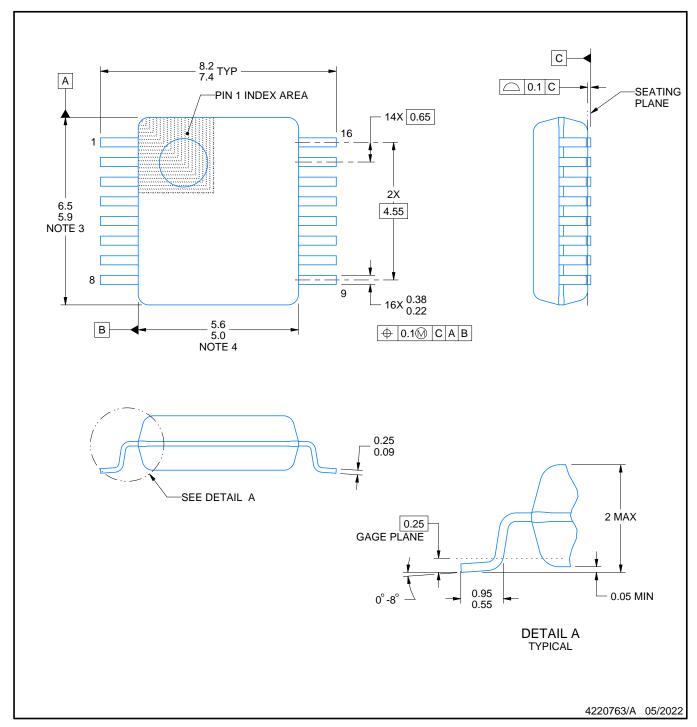
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

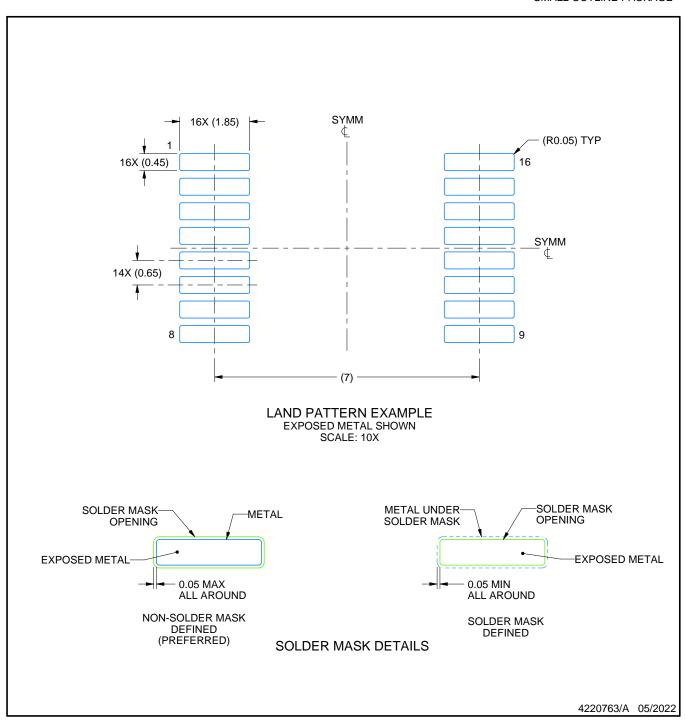
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NOTES: (continued)

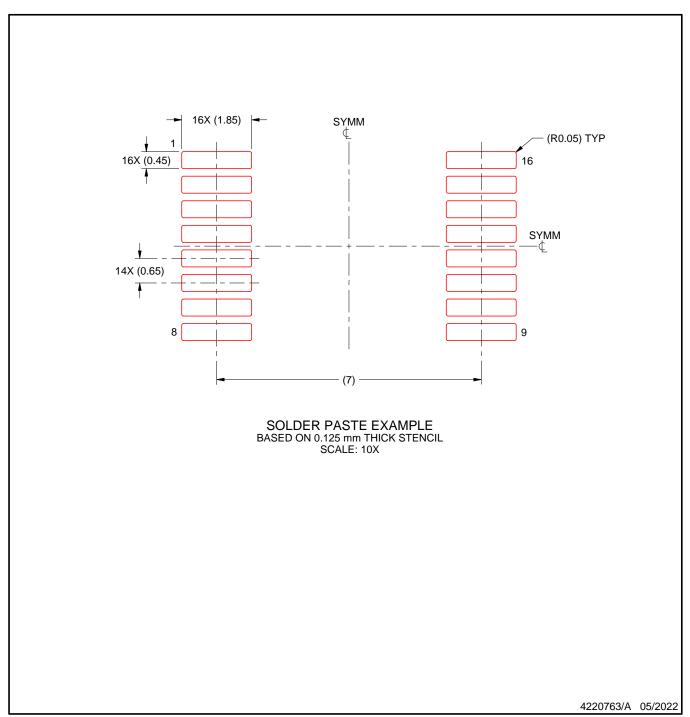
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

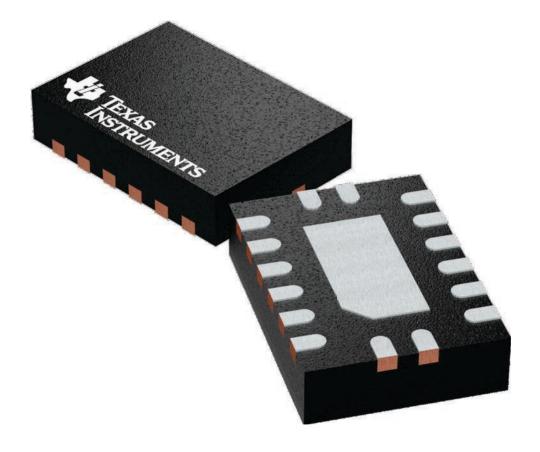
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-150.



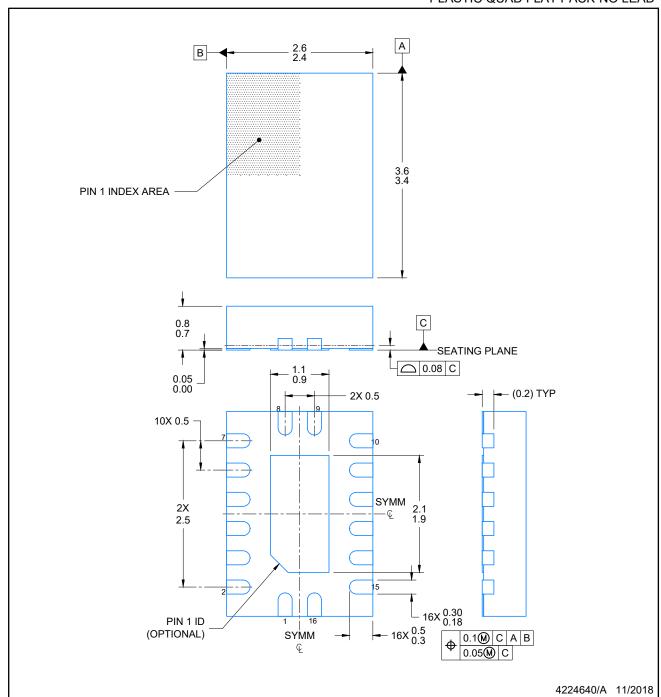
NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

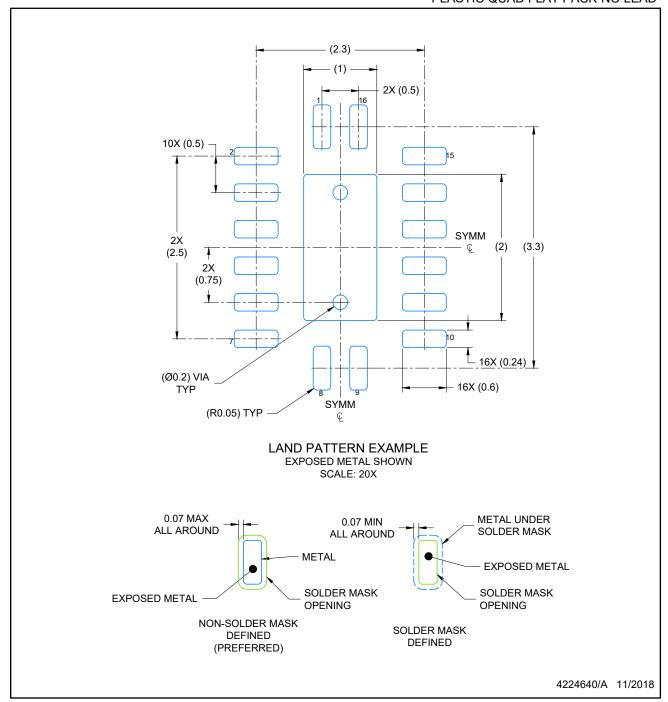

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

2.5 x 3.5, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

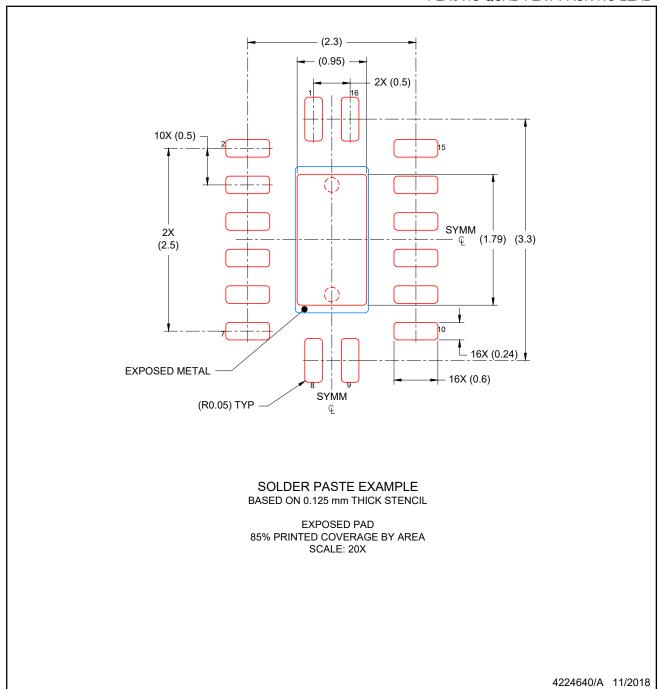
This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com


PLASTIC QUAD FLAT PACK-NO LEAD

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

PLASTIC QUAD FLAT PACK-NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLAT PACK-NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated