

www.sensirion.com Version 1 – April 2013 – Restricted D2 1/17

Application Note for Liquid Flow Sensors

Implementation Guide to the SHDLC Protocol for the RS485 Sensor
Cable

Summary

This document describes the main features of the
Sensirion High-level Data Link Control (SHDLC) protocol
and provides a guide on how to implement the protocol on

a controller system (master) for the communication with a
single SHDLC device (slave).

Introduction

This document describes the general implementation of the SHDLC protocol. Consult the RS485 Sensor Cable SHDLC
Command Reference (RS485_Sensor_Cable_SHDLC_Commands_EN_x_D1) for detailed information on individual
commands.

RS485 Sensor Cable Hardware Settings

Communication Hardware

Compatible hardware configurations for use with the RS485 Sensor Cable include:
 PC with RS485 PCI board
 PC with USB to RS485 converter
 PC with RS232 to RS485 converter
 Microcontroller with UART (Universal Asynchronous Receiver/Transmitter) interface and RS485 transceiver
 PC with USB slot (when using the cable with the integrated USB-to-RS485 converter)

The RS485 Sensor Cable is available in 3 versions:
 RS485 side with open wire ends, article code 1-100804-01
 RS485 side with D-sub DE-9 connector and external power supply, article code 1-100839-01
 Cable with integrated USB-to-RS485 converter, article code TBD

Serial Port Configuration

The RS485 Sensor Cable uses the following settings:
 115’200 baud (May be configured to baudrates between 1200 and 115’200)
 Half Duplex
 8 Data bits, Least-significant bit (LSb) first
 No Parity
 1 Stop bit

Application Note for Liquid Flow Sensors: Implementation Guide to the SHDLC Protocol for the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 2/16

SHDLC Protocol

The Sensirion High-level Data Link Control (SHDLC) protocol is a master/slave protocol without the need for bus arbitration. It
is based on a byte oriented, bidirectional interface without hardware handshaking.

Frame Definition

MOSI (Master Out Slave In) Frame

The following diagram shows the data flow for a MOSI (Master Out Slave In) frame:
 Frame Content

 Start
(0x7E)

Adr
1 Byte

CMD
1 Byte

Length
1 Byte

Tx Data
0…255 Bytes

CHK
1 Byte

Stop
(0x7E)

The MOSI frame consists of the following components:
 Start The byte 0x7E marks the beginning of the frame.
 Adr Device Address of the slave to which the frame is sent. Addresses 0...254 may be assigned to individual slaves,

the address 255 is reserved for sending commands in broadcast mode to all slaves on the bus.
 CMD Command ID of the command which is sent to the slave device. See the RS485 Sensor Cable SHDLC

Command Reference for details.
 Length Indicates the number of bytes sent in the Data block
 Data The data format depends on the command, see the RS485 Sensor Cable SHDLC Command Reference for

details.
 CHK Check sum over the frame content.
 Stop The second byte 0x7E marks the end of the frame.

MISO (Master In Slave Out) Frame

The following diagram shows the data flow for a MISO (Master In Slave Out) frame:
 Frame Content

 Start
(0x7E)

Adr
1 Byte

CMD
1 Byte

State
1 Byte

Length
1 Byte

Rx Data
 0…255 Bytes

CHK
1 Byte

Stop
(0x7E)

The MISO frame follows a similar structure as the MOSI frame:
 Start The byte 0x7E marks the beginning of the frame.
 Adr Device Address of the slave which is sending the frame.
 CMD Command ID of the command to which the slave device is responding. See the RS485 Sensor Cable SHDLC

Command Reference for details.
 State The slave sends a state byte to report execution errors or communication errors to the master. The value 0x00

corresponds to 'no error'.
 Length Indicates the number of bytes sent in the Data block.
 Data The data format depends on the command, see the RS485 Sensor Cable SHDLC Command Reference for

details.
 CHK Check sum over the frame content.
 Stop The second byte 0x7E marks the end of the frame.

Checksum

The checksum is calculated over the frame content in the following way:

 sum all bytes in the frame content (from and including Adr to and including Data)
 take the least significant byte of this sum
 invert the least significant byte

Application Note for Liquid Flow Sensors: Implementation Guide to the SHDLC Protocol for the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 3/16

Example:

 Send command 'Start Continuous Measurement' with sampling time 250 ms to Address 0:
Frame Content

Adr

0x00
CMD

0x33
Length

0x02
Tx Data

0x00, 0xFA

 frame content: [0x00, 0x33, 0x02, 0x00, 0xFA]

 sum all bytes: 0x00 + 0x33 + 0x02 + 0x00 + 0xFA = 0 + 51 + 2 + 0 + 250 = 303 = 0x12F

 least significant byte: 0x12F & 0xFF = 0x2F (the operator '&' stands for the bit-wise AND)

 invert: 0x2F ^ 0xFF = 0xD0 (the operator '^' stands for the bit-wise XOR, 'exclusive OR')
 Checksum: 0xD0

Byte Stuffing

Because there is no hardware handshaking, the frame start and stop are signaled by a unique data content:

 Start: 0x7E (binary 01111110)

 Stop: 0x7E (binary 01111110)

If this special start/stop byte (0x7E) occurs anywhere else in the frame (i.e. in the frame content or the checksum), it needs to

be replaced. The same is true for 3 more special bytes: Escape (0x7D), XON (0x11) and XOFF (0x13).

If any of these 4 special bytes occur anywhere in the frame, they are replaced by 0x7D, followed by the original byte with bit 5

inverted. See the following table:

Tab. 1: Byte Stuffing (transmission of special bytes)

Original byte Transferred bytes

0x7E 0x7D, 0x5E
0x7D 0x7D, 0x5D
0x11 0x7D, 0x31
0x13 0x7D, 0x33

Example 1:

 Send command 'Start Continuous Measurement' with sampling time 250 ms to address 0:
Frame Content

Adr

0x00
CMD

0x33
Length

0x02
Tx Data

0x00, 0xFA
CHK

0xD0

 Convert to byte array: [0x00, 0x33, 0x02, 0x00, 0xFA, 0xD0]

 None of the special bytes (0x11, 0x13, 0x7D, 0x7E) occurs in the frame content or the checksum.

 The following byte array is sent: [0x7E, 0x00, 0x33, 0x02, 0x00, 0xFA, 0xD0, 0x7E]

Example 2:

 Send command 'Start Continuous Measurement' with sampling time 250 ms to address 17 (hex 0x11):
Frame Content

Adr

0x11
CMD

0x33
Length

0x02
Tx Data

0x00, 0xFA
CHK

0xBF

 Note that the check sum has changed with respect to example 1.

 Convert to byte array: [0x11, 0x33, 0x02, 0x00, 0xFA, 0xBF]

 The special byte 0x11 appears in the byte array. It needs to be replaced by 0x7D, 0x31:

 [0x7D, 0x31, 0x33, 0x02, 0x00, 0xFA, 0xBF]

 Note that the checksum (0xBF in this case) is computed before the byte stuffing, it remains therefore unchanged.

 The following byte array is sent: [0x7E, 0x7D, 0x31, 0x33, 0x02, 0x00, 0xFA, 0xBF, 0x7E]

Application Note for Liquid Flow Sensors: Implementation Guide to the SHDLC Protocol for the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 4/16

Example 3:

 Send command 'Start Continuous Measurement' with sampling time 19 ms (hex 0x13) to Address 0:
Frame Content

Adr

0x00
CMD

0x33
Length

0x02
Tx Data

0x00, 0x13
CHK

0xB7

 Note that again the checksum has changed with respect to examples 1 and 2.

 Convert to byte array: [0x00, 0x33, 0x02, 0x00, 0x13, 0xB7]

 The special byte 0x13 appears in the byte array. It needs to be replaced by 0x7D, 0x33:

 [0x00, 0x33, 0x02, 0x00, 0x7D, 0x33, 0xB7]

 Note that the Length (here: 0x02) of the data is computed before the byte stuffing, it remains therefore unchanged.

 Also the checksum remains unchanged as in example 2.

 The following byte array is sent: [0x7E, 0x00, 0x33, 0x02, 0x00, 0x7D, 0x33, 0xB7, 0x7E]

Error Handling

There are 3 error modes for which error handling should be implemented on the master:

Error State

The master should recognize if an execution error has occurred on the slave device and the error state in the MISO frame is
different from 0x00. See the RS485 Sensor Cable SHDLC Command Reference for errors codes and their descriptions.

MOSI checksum error

If the slave device receives a frame with an erroneous checksum (i.e. the check sum does not match the frame content) it will
silently ignore the command, i.e. the slave will not send any reply to the master. To detect such errors it is necessary that the
master always waits for a correct answer from the slave device before sending the next command. This is obvious when the
master requests some data from the slave (e.g. when reading a measurement) but the reply should also be checked when the
master expects no data (e.g. when starting a measurement on the device).

MISO checksum error

To detect communication errors, the master should always check that the incoming checksum matches the incoming frame
content. If this is not the case, a communication error has occurred.

Possible causes for checksum errors include
 incorrect implementation of the checksum computation on the master
 overlapping commands. For instance, if the master sends the next command before the reply to the previous

command has arrived, then the reply from the slave may overlap with that next command sent by the master.
 several devices on the bus have the same address and their replies to a command overlap.
 electrical interference from very harsh electromagnetic environments.

Application Note for Liquid Flow Sensors: Implementation Guide to the SHDLC Protocol for the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 5/16

Data Types and Representation

The data in the frames is transmitted in big-endian order, i.e. Most-Significant Byte (MSB) first.

Integer

Integers can be transmitted as signed or unsigned integers. The following types of integers are used:

Tab. 2: Integer data types

Integer Type Size Range

unsigned, 8-bit (u8t) 1 Byte 0 … 28-1

unsigned, 16-bit (u16t) 2 Byte 0 … 216-1

unsigned, 32-bit (u32t) 4 Byte 0 … 232-1

unsigned, 64-bit (u64t) 8 Byte 0 … 264-1

signed, 8-bit (i8t) 1 Byte -27 … 27-1

signed, 16-bit (i16t) 2 Byte -215 … 215-1

signed, 32-bit (i32t) 4 Byte -231 … 231-1

signed, 64-bit (i64t) 8 Byte -263 … 263-1

Signed integers are represented according to the two’s complement convention. This means that the N-bit binary
representation of a negative number –x is the two's complement of that number's absolute value |-x|. The following recipes
may be used to obtain the binary representations of negative numbers and to reconstruct the numerical value from the binary
representations, respectively.

Find the N-bit signed integer representation m corresponding to a number x
 if x<0: # if the number is negative

 m = (|x| ^ (2**N – 1))+1 # compute the two's complement of its absolute value

 else: # else the number is positive

 m = x # no computation needed

Here the operator '| |' denotes the absolute value, '^' denotes the bit-wise XOR (exclusive OR), '**' denotes the power as

in 2**3 = 8.

 Examples:

 -7 as 8-bit signed integer:
 (|-7| ^ (2**8-1)) + 1 = (7 ^ (256-1))+1 = (7 ^ 255) +1 = 248 + 1 = 249 = 0xF9

 -7 as 16-bit signed integer:
 (|-7| ^ (2**16-1)) + 1 = (7 ^ 65535) + 1 = 65528 + 1 = 65529 = 0xFFF9

Find the number x represented by the N-bit signed integer m

 if m & 2**(N-1) == 2**(N-1): # if the most-significant bit of m is '1', the number is negative.

 x = -((m ^ (2**N – 1)) + 1) # compute the two's complement

 else: # else the number is positive

 x = m # no computation needed

Here the operator '&' denotes the bit-wise AND, '^' denotes the bit-wise XOR (exclusive OR), '**' denotes the power as in

2**3 = 8.

 Examples:

 Find the number represented by the 8-bit signed integer 0xF7:
 m=0xF7 = 247
 247 & 2**7 == 2**7 : True
 therefore: x= -((247 ^ (2**8-1)) + 1) = -((247 ^ 255) + 1) = -(8 + 1) = -9

Application Note for Liquid Flow Sensors: Implementation Guide to the SHDLC Protocol for the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 6/16

 Find the number represented by the 16-bit signed integer represented by the bytes [0xF7, 0x34]:
 m = 0xF7 * 2**8 + 0x34 = 247 * 256 + 52 = 63232 + 52 = 63284
 63284 & 2**15 == 2**15 : True
 therefore: x= -((63284 ^ 65535) + 1) = -(2251 + 1) = -2252

Boolean

A boolean is represented by 1 byte:
 False = 0
 True = 1…255

String

Strings are transferred as C-strings. This means in ASCII encoding, one byte per character and terminated with a final null-
character (0x00). The first letter will be sent first.

Application Note for Liquid Flow Sensors: Implementation Guide to the SHDLC Protocol for the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 7/16

Examples of Communication Sequences (Use Cases)

Device Reset (receive no data)

We want to send the command 'DeviceReset' to device 0.

 Consult the RS485 Sensor Cable SHDLC Command Reference:

 Build frame content:
Adr CMD Length Data

0x00 0xD3 0x00

 Compute the checksum over the frame content:
sum all bytes in the frame content: 0x00 + 0xD3 + 0x00 = 0xD3

take the Least-Significant Byte (LSB): 0xD3
invert: 0x2C

 Add checksum to frame content
Adr CMD Length Data CHK

0x00 0xD3 0x00 0x2C

 Convert to byte array: [0x00, 0xD3, 0x00, 0x2C]

 Byte stuffing
check: none of the special characters (0x11, 0x13, 0x7D, 0x7E) appears in the byte array.

Byte array after byte stuffing: [0x00, 0xD3, 0x00, 0x2C]

 Add Start / Stop Bytes.

Byte array sent to Tx Buffer: [0x7E, 0x00, 0x32, 0x00, 0xCD, 0x7E]

Byte array received at Rx Buffer: [0x7E, 0x00, 0xD3, 0x00, 0x00, 0x2C, 0x7E]

 remove start and stop bytes: [0x00, 0xD3, 0x00, 0x00, 0x2C]

 Byte (un-)stuffing
check for special characters marker (0x7D): No special characters marker.

byte array after byte un-stuffing: [0x00, 0xD3, 0x00, 0x00, 0x2C]

 Now the byte array may be interpreted as frame content and checksum:
Adr CMD State Length Data CHK

0x00 0xD3 0x00 0x00 0x2C

 remove checksum to obtain frame content
Adr CMD State Length Data

0x00 0xD3 0x00 0x00

Application Note for Liquid Flow Sensors: Implementation Guide to the SHDLC Protocol for the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 8/16

 compute checksum of received frame content
sum all bytes 0x00 + 0xD3 + 0x00 + 0x00 = 0xD3

take LSB: 0xD3

invert: 0x2C

checksum of received frame content matches received checksum. OK.

 check: address in the received frame is the same as in the sent frame. OK

 check command ID in the received frame is the same as in the sent frame. OK

 check: State is 0x00 (no error). OK

 data length is 0x00, so no Data is received.

Get Device Info (receive a string)

We want to send the command 'Get Device Information' to device 0 to retrieve the product name from the device.

 Consult the RS485 Sensor Cable SHDLC Command Reference:

 Build frame content:
Adr CMD Length Data

0x00 0xD0 0x01 0x01

 Compute the checksum over the frame content:
sum all bytes in the frame content: 0x00 + 0xD0 + 0x01 + 0x01 = 0xD2

take the Least-Significant Byte (LSB): 0xD2

invert: 0x2D

 Add checksum to frame content
Adr CMD Length Data CHK

0x00 0xD0 0x01 0x01 0x2D

 Convert to byte array: [0x00, 0xD0, 0x01, 0x01, 0x2D]

 Byte stuffing
check: none of the special characters (0x11, 0x13, 0x7D, 0x7E) appears in the byte array.

Byte array after byte stuffing: [0x00, 0xD0, 0x01, 0x01, 0x2D]

 Add Start / Stop Bytes.

Byte array sent to Tx Buffer: [0x7E, 0x00, 0xD0, 0x01, 0x01, 0x2D, 0x7E]

Application Note for Liquid Flow Sensors: Implementation Guide to the SHDLC Protocol for the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 9/16

Byte array received at Rx Buffer: [0x7E, 0x00, 0xD0, 0x00, 0x7D, 0x33, 0x52, 0x53, 0x34, 0x38,
0x35, 0x20, 0x53, 0x65, 0x6E, 0x73, 0x6F, 0x72, 0x20, 0x43, 0x61, 0x62, 0x6C, 0x65,
0x00, 0x45, 0x7E]

 remove start and stop bytes: [0x00, 0xD0, 0x00, 0x7D, 0x33, 0x52, 0x53, 0x34, 0x38,
0x35, 0x20, 0x53, 0x65, 0x6E, 0x73, 0x6F, 0x72, 0x20, 0x43, 0x61, 0x62, 0x6C,
0x65, 0x00, 0x45]

 Byte (un-)stuffing
check for special characters marker (0x7D): Special character 0x7D occurrs:

[0x00, 0xD0, 0x00, 0x7D, 0x33, 0x52, 0x53, 0x34, 0x38, 0x35, 0x20, 0x53,
0x65, 0x6E, 0x73, 0x6F, 0x72, 0x20, 0x43, 0x61, 0x62, 0x6C, 0x65, 0x00, 0x45]
replace 0x7D, 0x33 → 0x13 according to Tab. 2, above.

byte array after byte un-stuffing: [0x00, 0xD0, 0x00, 0x13, 0x52, 0x53, 0x34, 0x38, 0x35,
0x20, 0x53, 0x65, 0x6E, 0x73, 0x6F, 0x72, 0x20, 0x43, 0x61, 0x62, 0x6C, 0x65,
0x00, 0x45]

 Now the byte array may be interpreted as frame content and checksum:
Adr CMD State Length Data CHK

0x00 0xD0 0x00 0x13 0x52, 0x53, 0x34, 0x38, 0x35, 0x20, 0x53,
0x65, 0x6E, 0x73, 0x6F, 0x72, 0x20, 0x43,

0x61, 0x62, 0x6C, 0x65, 0x00

0x45

 remove checksum to obtain frame content
Adr CMD State Length Data

0x00 0xD3 0x00 0x00 0x52, 0x53, 0x34, 0x38, 0x35, 0x20, 0x53,
0x65, 0x6E, 0x73, 0x6F, 0x72, 0x20, 0x43,

0x61, 0x62, 0x6C, 0x65, 0x00

 compute checksum of received frame content
sum all bytes 0x00 + 0xD0 + 0x00 + 0x13 + 0x52 + ...
 + 0x00 = 0x6BA

take LSB: 0xBA

invert: 0x45

checksum of received frame content matches received checksum. OK.

 check: address in the received frame is the same as in the sent frame. OK

 check command ID in the received frame is the same as in the sent frame. OK

 check: State is 0x00 (no error). OK

 data length is 0x13, so 19 bytes of Data have been received.

 Data = [0x52, 0x53, 0x34, 0x38, 0x35, 0x20, 0x53, 0x65, 0x6E, 0x73, 0x6F, 0x72,
0x20, 0x43, 0x61, 0x62, 0x6C, 0x65, 0x00]

 Translate the remaining bytes according to the ASCII encoding:
0x52 0x53 0x34 0x38 0x35 0x20 0x53 0x65 0x6E 0x73 0x6F 0x72 0x20 0x43 0x61 0x62 0x6C 0x65 0x00

R S 4 8 5 S e n s o r C a b l e

The final Null character (0x00) is due to the definition as C-string. The product name is therefore
RS485 Sensor Cable

Application Note for Liquid Flow Sensors: Implementation Guide to the SHDLC Protocol for the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 10/16

Get Single Measurement (receive one i16t or u16t)

We want to send the command 'GetSingleMeasurement' to device 0, to read the measurement result of a previously started
single measurement.

 Consult the RS485 Sensor Cable SHDLC Command Reference:

 Build frame content:
Adr CMD Length Data

0x00 0x32 0x00

 Compute the checksum over the frame content:
sum all bytes in the frame content: 0x00 + 0x32 + 0x00 = 0x32

take the Least-Significant Byte (LSB): 0x32

invert: 0xCD

 Add checksum to frame content
Adr CMD Length Data CHK

0x00 0x32 0x00 0xCD

 Convert to byte array: [0x00, 0x32, 0x00, 0xCD]

 Byte stuffing
check: none of the special characters (0x11, 0x13, 0x7D, 0x7E) appears in the byte array.

Byte array after byte stuffing: [0x00, 0x32, 0x00, 0xCD]

 Add Start / Stop Bytes.

Byte array sent to Tx Buffer: [0x7E, 0x00, 0x32, 0x00, 0xCD, 0x7E]

Byte array received at Rx Buffer: [0x7E, 0x00, 0x32, 0x00, 0x02, 0xFF, 0xC6, 0x06, 0x7E]

 remove start and stop bytes: [0x00, 0x32, 0x00, 0x02, 0xFF, 0xC6, 0x06]

 Byte (un-)stuffing
check for special characters marker (0x7D): No special characters marker.

byte array after byte un-stuffing: [0x00, 0x32, 0x00, 0x02, 0xFF, 0xC6, 0x06]

 Now the byte array may be interpreted as frame content and checksum:
Adr CMD State Length Data CHK

0x00 0x32 0x00 0x02 0xFF, 0xC6 0x06

 remove checksum to obtain frame content
Adr CMD State Length Data

0x00 0x32 0x00 0x02 0xFF, 0xC6

Application Note for Liquid Flow Sensors: Implementation Guide to the SHDLC Protocol for the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 11/16

 compute checksum of received frame content
sum all bytes 0x00 + 0x32 + 0x00 + 0x02 + 0xFF + 0xC6

 = 0x1F9

take LSB: 0xF9

invert: 0x06

checksum of received frame content matches received checksum. OK.

 check: address in the received frame is the same as in the sent frame. OK

 check command ID in the received frame is the same as in the sent frame. OK

 check: State is 0x00 (no error). OK

 data length is 0x02, so Data has 2 bytes.

 Data = [0xFF, 0xC6]

The two bytes returned by the command GetSingleMeasurement need to be combined into one unsigned 16bit integer.

The first received byte is the Most Significant Byte (MSB), the second byte is the Least Significant Byte (LSB):

 sensor_output = (0xFF << 8) + 0xC6 = 0xFFC6 = 65478

where '<<' indicates a bit shift operation to the left. Shifting by 8 bits to the left is equivalent to multiplying by 2**8 = 256.

If the measurement data type is signed, the unsigned integer value sensor_output needs to be converted (type cast) to a

signed integer by the 2's complement convention:

 if measurementdatatype == 0: # signed

 if sensor_output & 32768 == 32768: # 32768 = 2**15:

 flow_ticks = -((sensor_output ^ 65535) +1) # 65535 = 2**16 -1

 else:
 flow_ticks = sensor_output
 else: # unsigned

 flow_ticks = sensor_output

where the operator '**' denotes the power operator such as 2**3=8 and the operator '^' denotes the boolean 'exclusive or'

(XOR).

So in the present example

 flow_ticks = -((65478 ^ 65535) + 1) = -(57 + 1)=-58

The flow ticks can be converted to a physical flow rate (floating point operations are needed)

 physical_flow = flow_ticks / scale_factor

here (assuming the scale factor is 13 and the flow unit of the sensor is ul/s, i.e. microliters per second):

 -58 / 13 = -4.46

the flow rate measured by the sensor is -4.46 ul/s

Application Note for Liquid Flow Sensors: Implementation Guide to the SHDLC Protocol for the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 12/16

GetMeasurementBuffer(receive several i16t or u16t)

We want to send the command 'GetMeasurementBuffer' to device 0, to read the measurement results during continuous
measurement mode.

 Consult the RS485 Sensor Cable SHDLC Command Reference:

 Build frame content:
Adr CMD Length Data

0x00 0x36 0x00

 Compute the checksum over the frame content:
sum all bytes in the frame content: 0x00 + 0x36 + 0x00 = 0x36

take the Least-Significant Byte (LSB): 0x36

invert: 0xC9

 Add checksum to frame content
Adr CMD Length Data CHK

0x00 0x36 0x00 0xC9

 Convert to byte array: [0x00, 0x36, 0x00, 0xC9]

 Byte stuffing
check: none of the special characters (0x11, 0x13, 0x7D, 0x7E) appears in the byte array.

Byte array after byte stuffing: [0x00, 0x36, 0x00, 0xC9]

 Add Start / Stop Bytes.

Byte array sent to Tx Buffer: [0x7E, 0x00, 0x36, 0x00, 0xC9, 0x7E]

Byte array received at Rx Buffer: [0x7E, 0x00, 0x36, 0x00, 0x06, 0xFF, 0xC6, 0xFE, 0x7D, 0x5D,
0xFF, 0xA5, 0xDF, 0x7E]

 remove start and stop bytes: [0x00, 0x36, 0x00, 0x06, 0xFF, 0xC6, 0xFE, 0x7D, 0x5D,
0xFF, 0xA5, 0xDF]

 Byte (un-)stuffing
check for special characters marker (0x7D): Special character 0x7D occurrs:

[0x00, 0x36, 0x00, 0x06, 0xFF, 0xC6, 0xFE, 0x7D, 0x5D, 0xFF, 0xA5, 0xDF]

replace according to Tab. 2: 0x7D, 0x5D → 0x7D

byte array after byte un-stuffing: [0x00, 0x36, 0x00, 0x06, 0xFF, 0xC6, 0xFE, 0x7D, 0xFF,
0xA5, 0xDF]

 Now the byte array may be interpreted as frame content and checksum:
Adr CMD State Length Data CHK

0x00 0x36 0x00 0x06 0xFF, 0xC6, 0xFE, 0x7D, 0xFF, 0xA5 0xDF

Application Note for Liquid Flow Sensors: Implementation Guide to the SHDLC Protocol for the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 13/16

 remove checksum to obtain frame content
Adr CMD State Length Data

0x00 0x36 0x00 0x06 0xFF, 0xC6, 0xFE, 0x7D, 0xFF, 0xA5

 compute checksum of received frame content
sum all bytes 0x00 + 0x36 + 0x00 + 0x06 + 0xFF + 0xC6

 + 0xFE + 0x7D + 0xFF + 0xA5 = 0x520

take LSB: 0x20

invert: 0xDF

checksum of received frame content matches received checksum. OK.

 check: address in the received frame is the same as in the sent frame. OK

 check command ID in the received frame is the same as in the sent frame. OK

 check: State is 0x00 (no error). OK

 data length is 0x06, so Data has 6 bytes.

 Data = [0xFF, 0xC6, 0xFE, 0x7D, 0xFF, 0xA5]

Each pairs of bytes returned by the command GetMeasurementBuffer needs to be combined into one unsigned 16bit

integer.

The first received byte in each pair is the Most Significant Byte (MSB), the second byte is the Least Significant Byte (LSB):
 sensor_output_1 = (0xFF << 8) + 0xC6 = 0xFFC6 = 65478
 sensor_output_2 = (0xFE << 8) + 0x7D = 0xFE7D = 65149
 sensor_output_3 = (0xFF << 8) + 0xA5 = 0xFFA5 = 65445

where '<<' indicates a bit shift operation to the left. Shifting by 8 bits to the left is equivalent to multiplying by 2**8 = 256.

The 3 values of the sensor output correspond to the measbuffer:

measbuffer = [sensor_output_1, sensor_output2, sensor_output_3] = [65478, 65149, 65445]

If the measurement data type is signed, each unsigned integer value sensor_output_x needs to be converted (type cast)

to a signed integer by the 2's complement convention:

 if measurementdatatype == 0: # signed

 if sensor_output_x & 32768 == 32768: # 32768 = 2**15:

 flow_ticks_x = -((sensor_output_x ^ 65535) +1) # 65535 = 2**16 -1

 else:
 flow_ticks_x = sensor_output_x
 else: # unsigned

 flow_ticks_x = sensor_output_x

where the operator '**' denotes the power operator such as 2**3=8 and the operator '^' denotes the boolean 'exclusive or'

(XOR).

So in the present example
 flow_ticks_1 = -((65478 ^ 65535) + 1) = -(57 + 1)=-58
 flow_ticks_2 = -((65149 ^ 65535) + 1) = -(386 + 1)=-387
 flow_ticks_3 = -((65445 ^ 65535) + 1) = -(90 + 1)=-91

The flow ticks can be converted to physical flow rate (floating point operations are needed)

 physical_flow = flow_ticks / scale_factor

here (assuming the scale factor is 13 and the flow unit of the sensor is ul/s, i.e. microliters per second):

 -58 / 13 = -4.46, -387 / 13 = -29.77, 91 / 13 = -7.00

the array of flow rates returned by the sensor is [-4.46 ul/s, - 29.77 ul/s, -7.00 ul/s]

Application Note for Liquid Flow Sensors: Implementation Guide to the SHDLC Protocol for the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 14/16

GetTotalizatorValue (receive one i64t)

 We want to send the command 'GetTotalizatorValue' to device 0, to read the value of the Totalizator.

 Consult the RS485 Sensor Cable SHDLC Command Reference:

 Build frame content:
Adr CMD Length Data

0x00 0x38 0x00

 Compute the checksum over the frame content:
sum all bytes in the frame content: 0x00 + 0x36 + 0x00 = 0x38

take the Least-Significant Byte (LSB): 0x38

invert: 0xC7

 Add checksum to frame content
Adr CMD Length Data CHK

0x00 0x38 0x00 0xC7

 Convert to byte array: [0x00, 0x38, 0x00, 0xC7]

 Byte stuffing
check: none of the special characters (0x11, 0x13, 0x7D, 0x7E) appears in the byte array.

Byte array after byte stuffing: [0x00, 0x38, 0x00, 0xC7]

 Add Start / Stop Bytes.

Byte array ready to send to Tx Buffer: [0x7E, 0x00, 0x38, 0x00, 0xC7, 0x7E]

Byte array received at Rx Buffer: [0x7E, 0x00, 0x38, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x83, 0xB4, 0x86, 0x7E]

 remove start and stop bytes: [0x00, 0x38, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x83, 0xB4, 0x86]

 Byte (un-)stuffing
check for special characters marker (0x7D): No special characters marker.

byte array after byte un-stuffing: [0x00, 0x38, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x83, 0xB4, 0x86]

 Now the byte array may be interpreted as frame content and checksum:
Adr CMD State Length Data CHK

0x00 0x38 0x00 0x08 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x83, 0xB4 0x86

 remove checksum to obtain frame content
Adr CMD State Length Data

0x00 0x38 0x00 0x08 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x83, 0xB4

Application Note for Liquid Flow Sensors: Implementation Guide to the SHDLC Protocol for the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 15/16

 compute checksum of received frame content
sum all bytes 0x00 + 0x38 + 0x00 + 0x08 + 0x00 + ...

 + 0xB4 = 0x179

take LSB: 0x79

invert: 0x86

checksum of received frame content matches received checksum. OK.

 check: address in the received frame is the same as in the sent frame. OK

 check command ID in the received frame is the same as in the sent frame. OK

 check: State is 0x00 (no error). OK

 data length is 0x08, so Data has 8 bytes.

 Data = [0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x83, 0xB4]

The 8 bytes returned by the command GetTotalizatorValue first need to be combined into one unsigned 64bit integer.

The first received byte is the Most Significant Byte (MSB), the last byte is the Least Significant Byte (LSB):
 tot_output = (0x00 << 56) + (0x00 << 48) + ... + 0xB4 = 0x0283B4 = 164788

where '<<' indicates a bit shift operation to the left. Shifting by 8 bits to the left is equivalent to multiplying by 2**8 = 256.

This unsigned 64 bit value needs to be converted to a signed integer by the 2's complement convention:
 if tot_output & 2**63 == 2**63:
 tot_ticks = -((tot_output ^ (2**64-1)) +1)
 else:
 tot_ticks = tot_output

where the operator '**' denotes the power operator such as 2**3=8 and the operator '^' denotes the boolean 'exclusive or'

(XOR).

So in the present example
 tot_output & 2**63 == 2**63: False
 tot_ticks = tot_output

The flow ticks can be converted to physical flow rate (floating point operations are needed)

 physical_volume = tot_ticks / scalefactor * sampling_time

here (assuming the scale factor is 13 and the flow unit of the sensor is ul/s, i.e. microliters per second and a sampling time of
20 ms):

 164778 / 13 * 0.020 = 253.52

the integrated volume is 253.52 ul

Application Note for Liquid Flow Sensors: Implementation Guide to the SHDLC Protocol for the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 16/16

Headquarter and Sales Offices

SENSIRION AG Phone: + 41 (0)44 306 40 00
Laubisruetistr. 50 Fax: + 41 (0)44 306 40 30
CH-8712 Staefa ZH info@sensirion.com
Switzerland www.sensirion.com

SENSIRION Korea Co. Ltd. Phone: +82-31-440-9925~27
#1414, Anyang Construction Tower B/D, Fax: +82-31-440-9927
1112-1, Bisan-dong, Anyang-city, info@sensirion.co.kr
Gyeonggi-Province, South Korea www.sensirion.co.kr

SENSIRION Inc Phone: +1 805-409 4900
Westlake Pl. Ctr. I, suite 204 Fax: +1 805-435 0467
2801 Townsgate Road michael.karst@sensirion.com
Westlake Village, CA 91361 www.sensirion.com
USA

SENSIRION China Co. Ltd. Phone: +86 755 8252 1501
Room 2411, Main Tower Fax: +86 755 8252 1580
Jin Zhong Huan Business Building, info@sensirion.com.cn/
Postal Code 518048 www.sensirion.com.cn
Futian District, Shenzhen, PR China

SENSIRION Japan Phone: +81 3-3444-4940
Sensirion Japan Co. Ltd. Fax: +81 3-3444-4939
Shinagawa Station Bldg. 7F info@sensirion.co.jp
4-23-5 Takanawa www.sensirion.co.jp
Minato-ku, Tokyo, Japan

Find your local representative at: www.sensirion.com

mailto:info@sensirion.com
http://www.sensirion.com/
mailto:info@sensirion.co.kr
http://www.sensirion.co.kr/
mailto:michael.karst@sensirion.com
http://www.sensirion.com/
mailto:info@sensirion.com.cn/
http://www.sensirion.com.cn/
mailto:info@sensirion.co.jp
http://www.sensirion.co.jp/
http://www.sensirion.com/

