3.3 V Dual Micropower Regulator with ENABLE and RESET

The CS8363 is a precision Micropower dual voltage regulator with ENABLE and RESET.

The 3.3 V standby output is accurate within -2%, +2.4% while supplying loads of 100 mA. Quiescent current is low, typically 140 μ A with a 300 μ A load. The active \overline{RESET} output monitors the 3.3 V standby output and is low during power–up and regulator dropout conditions. The \overline{RESET} circuit includes hysteresis and is guaranteed to operate correctly with 1.0 V on the standby output.

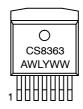
The second output tracks the 3.3 V standby output through an external adjust lead, and can supply loads of 250 mA. The logic level lead $\overline{\text{ENABLE}}$ is used to control this tracking regulator output.

Both outputs are protected against overvoltage, short circuit, reverse battery and overtemperature conditions. The robustness and low quiescent current of the CS8363 makes it not only well suited for automotive microprocessor applications, but for any battery powered microprocessor applications.

Features

- 2 Regulated Outputs
 - Standby Output 3.3 V -2%, +2.4%; 100 mA
 - Adjustable Tracking Output; 250 mA
- Operation down to $V_{IN} = 4.5 \text{ V}$
- RESET for V_{STBY}
- ENABLE for V_{TRK}
- Low Quiescent Current
- Protection Features
 - Independent Thermal Shutdown
 - Short Circuit
 - 60 V Load Dump
 - Reverse Battery

ON Semiconductor®


http://onsemi.com

D²PAK-7 DPS SUFFIX CASE 936AB Pin 1. V_{STBY}

- 2. V_{IN}
- 3. V_{TRK}
- 4. GND 5. Adi
- 6. ENABLE
- 7. RESET

MARKING DIAGRAM

A = Assembly Location

WL = Wafer Lot Y = Year WW = Work Week

ORDERING INFORMATION*

Device	Package	Shipping [†]
CS8363YDPS7	D ² PAK-7	50 Units/Rail
CS8363YDPSR7	D ² PAK-7	750 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1

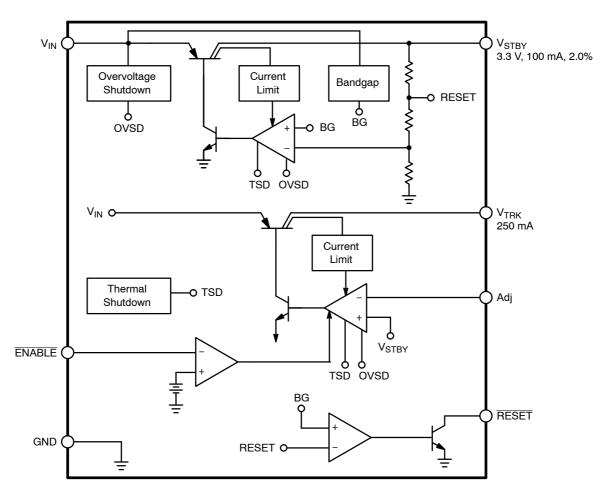


Figure 1. Block Diagram. Consult Your Local Sales Representative for Positive ENABLE Option

ABSOLUTE MAXIMUM RATINGS*

Rating	Value	Unit
Supply Voltage, V _{IN}	-16 to 26	V
Positive Transient Input Voltage, tr > 1.0 ms	60	V
Negative Transient Input Voltage, T < 100 ms, 1.0 % Duty Cycle	-50	V
Input Voltage Range (ENABLE, RESET)	-0.3 to 10	V
Junction Temperature	-40 to +150	°C
Storage Temperature Range	-55 to +150	°C
ESD Susceptibility (Human Body Model)	2.0	kV
Lead Temperature Soldering Wave Solder (through hole styles only) Note Reflow (SMD styles only) Note	000' 1	္ခံ ၁၁

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

^{1. 10} seconds max.

^{2. 60} seconds max above 183°C

^{*}The maximum package power dissipation must be observed.

CS8363

ELECTRICAL CHARACTERISTICS (6.0 V \leq V_{IN} \leq 26 V, I_{OUT1} = I_{OUT2} = 100 μ A, -40° C \leq T_A \leq +125 $^{\circ}$ C; unless otherwise stated.)

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	250 mA. –25 – –	- 1.5 5.0	+25	mV
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	-	1.5		mV
Line Regulation $6.0 \ V \le V_{IN} \le 26 \ V. \ \text{Note 3}$ Load Regulation $100 \ \mu A \le I_{TRK} \le 250 \ \text{mA. Note 3}$ Dropout Voltage $(V_{IN} - V_{TRK})$ $I_{TRK} = 100 \ \mu A.$ $I_{TRK} = 250 \ \text{mA}$ Current Limit $V_{IN} = 12 \ V, \ V_{TRK} = 3.0 \ V$ Quiescent Current $V_{IN} = 12 \ V, \ I_{TRK} = 250 \ \text{mA, No Load}$ $V_{IN} = 12 \ V, \ I_{TRK} = 500 \ \mu A, \ I_{STBY} = 10$ Reverse Current $V_{TRK} = 3.3 \ V, \ V_{IN} = 0 \ V$ Ripple Rejection $f = 120 \ \text{Hz}, \ I_{TRK} = 250 \ \text{mA, } 7.0 \ V \le V$ Standby Output (V_{STBY}) Output Voltage, V_{STBY} $4.5 \ V \le V_{IN} \le 26 \ V, \ 100 \ \mu A \le I_{STBY} \le 100 \ \text{mA.}$ Load Regulation $6.0 \ V \le V_{IN} \le 26 \ V.$ Dropout Voltage $(V_{IN} - V_{STBY})$ $I_{STBY} = 100 \ \mu A, \ V_{IN} = 4.2 \ V$	-		5.0	1
Load Regulation $100 \ \mu A \le I_{TRK} \le 250 \ mA. \ Note \ 3$ Dropout Voltage (V _{IN} − V _{TRK}) $I_{TRK} = 100 \ \mu A.$ $I_{TRK} = 250 \ mA$ Current Limit $V_{IN} = 12 \ V, \ V_{TRK} = 3.0 \ V$ Quiescent Current $V_{IN} = 12 \ V, \ I_{TRK} = 250 \ mA, \ No \ Load \ V_{IN} = 12 \ V, \ I_{TRK} = 500 \ \mu A, \ I_{STBY} = 10$ Reverse Current $V_{TRK} = 3.3 \ V, \ V_{IN} = 0 \ V$ Ripple Rejection $f = 120 \ Hz, \ I_{TRK} = 250 \ mA, \ 7.0 \ V \le V$ Standby Output (V _{STBY}) Output Voltage, V _{STBY} $4.5 \ V \le V_{IN} \le 26 \ V, \ 100 \ \mu A \le I_{STBY} \le 100 \ mA.$ Dropout Voltage (V _{IN} − V _{STBY}) $I_{STBY} = 100 \ \mu A, \ V_{IN} = 4.2 \ V$		5.0	3.0	μΑ
Dropout Voltage ($V_{IN} - V_{TRK}$) $I_{TRK} = 100 \ \mu A.$ $I_{TRK} = 250 \ mA$ Current Limit $V_{IN} = 12 \ V, \ V_{TRK} = 3.0 \ V$ Quiescent Current $V_{IN} = 12 \ V, \ I_{TRK} = 250 \ mA, \ No \ Load \ V_{IN} = 12 \ V, \ I_{TRK} = 500 \ \mu A, \ I_{STBY} = 10$ Reverse Current $V_{TRK} = 3.3 \ V, \ V_{IN} = 0 \ V$ Ripple Rejection $f = 120 \ Hz, \ I_{TRK} = 250 \ mA, \ 7.0 \ V \le V$ Standby Output (V_{STBY}) Output Voltage, V_{STBY} $4.5 \ V \le V_{IN} \le 26 \ V, \ 100 \ \mu A \le I_{STBY} \le 100 \ mA.$ Load Regulation $6.0 \ V \le V_{IN} \le 26 \ V.$ Load Regulation $100 \ \mu A \le I_{STBY} \le 100 \ mA.$ Dropout Voltage ($V_{IN} - V_{STBY}$) $I_{STBY} = 100 \ \mu A, \ V_{IN} = 4.2 \ V$	_	1	50	mV
$I_{TRK} = 250 \text{ mA}$ $Current \ Limit$ $V_{IN} = 12 \ V, \ V_{TRK} = 3.0 \ V$ $Quiescent \ Current$ $V_{IN} = 12 \ V, \ I_{TRK} = 250 \ mA, \ No \ Load$ $V_{IN} = 12 \ V, \ I_{TRK} = 250 \ mA, \ No \ Load$ $V_{IN} = 12 \ V, \ I_{TRK} = 250 \ mA, \ No \ Load$ $V_{TRK} = 3.3 \ V, \ V_{IN} = 0 \ V$ $Ripple \ Rejection$ $f = 120 \ Hz, \ I_{TRK} = 250 \ mA, \ 7.0 \ V \le V$ $Standby \ Output \ (V_{STBY})$ $Output \ Voltage, \ V_{STBY}$ $4.5 \ V \le V_{IN} \le 26 \ V, \ 100 \ \mu A \le I_{STBY} \le V$ $Line \ Regulation$ $6.0 \ V \le V_{IN} \le 26 \ V.$ $Load \ Regulation$ $100 \ \mu A \le I_{STBY} \le 100 \ mA.$ $Dropout \ Voltage \ (V_{IN} - V_{STBY})$ $I_{STBY} = 100 \ \mu A, \ V_{IN} = 4.2 \ V$		5.0	50	mV
$\begin{array}{lll} \text{Quiescent Current} & V_{\text{IN}} = 12 \text{ V, } I_{\text{TRK}} = 250 \text{ mA, No Load} \\ V_{\text{IN}} = 12 \text{ V, } I_{\text{TRK}} = 500 \mu\text{A, } I_{\text{STBY}} = 10 \\ \text{Reverse Current} & V_{\text{TRK}} = 3.3 \text{ V, } V_{\text{IN}} = 0 \text{ V} \\ \text{Ripple Rejection} & f = 120 \text{ Hz, } I_{\text{TRK}} = 250 \text{ mA, } 7.0 \text{ V} \leq \text{V} \\ \text{Standby Output (V}_{\text{STBY}}) & 4.5 \text{ V} \leq \text{V}_{\text{IN}} \leq 26 \text{ V, } 100 \mu\text{A} \leq I_{\text{STBY}} \leq 100 \text{ mA.} \\ \text{Line Regulation} & 6.0 \text{ V} \leq \text{V}_{\text{IN}} \leq 26 \text{ V.} \\ \text{Load Regulation} & 100 \mu\text{A} \leq I_{\text{STBY}} \leq 100 \text{ mA.} \\ \text{Dropout Voltage (V}_{\text{IN}} - \text{V}_{\text{STBY}}) & I_{\text{STBY}} = 100 \mu\text{A, V}_{\text{IN}} = 4.2 \text{ V} \\ \end{array}$			1.05 1.05	mV mV
$V_{IN} = 12 \text{ V, } I_{TRK} = 500 \mu\text{A, } I_{STBY} = 10 $	275	500	-	mA
Ripple Rejection $f = 120 \text{ Hz}, \ I_{TRK} = 250 \text{ mA}, \ 7.0 \text{ V} \leq \text{V}$ $\textbf{Standby Output (V_{STBY})}$ Output Voltage, V_{STBY} $4.5 \text{ V} \leq V_{IN} \leq 26 \text{ V}, \ 100 \mu\text{A} \leq I_{STBY} \leq \text{V}$ Line Regulation $6.0 \text{ V} \leq V_{IN} \leq 26 \text{ V}.$ $Load \text{ Regulation}$ $100 \mu\text{A} \leq I_{STBY} \leq 100 \text{ mA}.$ Dropout Voltage ($V_{IN} - V_{STBY}$) $I_{STBY} = 100 \mu\text{A}, \ V_{IN} = 4.2 \text{ V}$		25 145	50 220	mA μA
	-	200	1500	μΑ
	′ _{IN} ≤ 17 V 60	70	_	dB
Load Regulation100 μA \leq I _{STBY} \leq 100 mA.Dropout Voltage (V _{IN} – V _{STBY})I _{STBY} = 100 μA, V _{IN} = 4.2 V	100 mA. 3.234	3.3	3.380	V
Dropout Voltage ($V_{IN} - V_{STBY}$) $I_{STBY} = 100 \mu A, V_{IN} = 4.2 V$	-	5.0	50	mV
	-	5.0	50	mV
		-	1.05 1.05	V
Current Limit V _{IN} = 12 V, V _{STBY} = 3.0 V	125	200	-	mA
Short Circuit Current V _{IN} = 12 V, V _{STBY} = 0 V	10	100	_	mA
Quiescent Current $\begin{aligned} V_{IN} &= 12 \text{ V, I}_{STBY} = 100 \text{ mA, I}_{TRK} = 0 \\ V_{IN} &= 12 \text{ V, I}_{STBY} = 300 \mu\text{A, I}_{TRK} = 0 \end{aligned}$		10 140	20 200	mA μA
Reverse Current V _{STBY} = 3.3 V, V _{IN} = 0 V	-	100	200	μΑ
Ripple Rejection f = 120 Hz, I_{STBY} = 100 mA, 7.0 V \leq	V _{IN} ≤ 17 V 60	70	-	dB
RESET ENABLE Functions		•		
ENABLE Input Threshold -	0.8	1.2	2.0	V
ENABLE Input Bias Current V _{ENABLE} = 0 V to 10 V	-10	0	10	μΑ
RESET Hysteresis –	10	50	150	mV
$\overline{\text{RESET}} \text{ Threshold Low (V}_{\text{RL}}) \qquad \qquad \text{V}_{\text{STBY}} \text{ Decreasing, V}_{\text{IN}} > 4.5 \text{ V}$	92.5	95	97.5	%V _{STBY}
RESET Leakage -	-	-	25	μΑ
Output Voltage, Low (V _{RLO}) $1.0 \text{ V} \leq \text{V}_{\text{STBY}} \leq \text{V}_{\text{RL}}, \text{ R}_{\text{RST}} = 10 \text{ k}\Omega$	-	0.1	0.4	V
Output Voltage, Low (V _{RPEAK}) V _{STBY} , Power Up, Power Down	-	0.6	1.0	V
V _{IN} (V _{RST} Low) V _{STBY} = 3.3 V	-	4.0	4.5	V
Protection Circuitry (Both Outputs)				
Independent Thermal Shutdown V _{STBY} V _{TRK}	150 150	180 165		°C °C
Overvoltage Shutdown –		1	•	1

^{3.} V_{TRK} connected to Adj lead. V_{TRK} can be set to higher values by using an external resistor divider.

CS8363

PACKAGE PIN DESCRIPTION

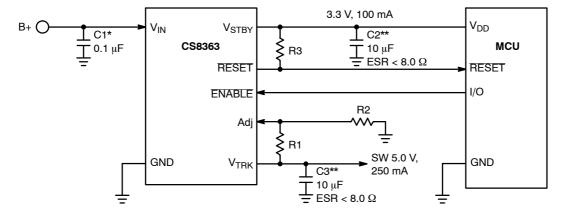
PACKAGE PIN #		
D ² PAK-7	PIN SYMBOL	FUNCTION
1	V _{STBY}	Standby output voltage delivering 100 mA.
2	V _{IN}	Input voltage.
3	V _{TRK}	Tracking output voltage controlled by ENABLE delivering 250 mA.
4	GND	Reference ground connection.
5	Adj	Resistor divider from V_{TRK} to Adj. Sets the output voltage on V_{TRK} . If tied to V_{TRK} , V_{TRK} will track V_{STBY} .
6	ENABLE	Provides on/off control of the tracking output, active LOW.
7	RESET	CMOS compatible output lead that goes low whenever $V_{\mbox{\scriptsize STBY}}$ falls out of regulation.

CIRCUIT DESCRIPTION

ENABLE Function

The \overline{ENABLE} function switches the output transistor for V_{TRK} on and off. When the \overline{ENABLE} lead voltage exceeds 1.4 V (Typ), V_{TRK} turns off. This input has several hundred millivolts of hysteresis to prevent spurious output activity during power–up or power–down.

RESET Function

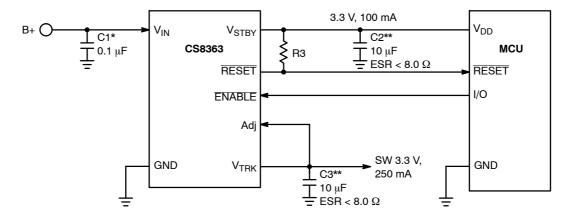

The \overline{RESET} is an open collector NPN transistor, controlled by a low voltage detection circuit sensing the V_{STBY} (3.3 V) output voltage. This circuit guarantees the \overline{RESET} output stays below 1.0 V (0.1 V Typ) when V_{STBY} is as low as 1.0 V to ensure reliable operation of microprocessor–based systems.

V_{TRK} Output Voltage

This output uses the same type of output device as V_{STBY} , but is rated for 250 mA. The output is configured as a tracking regulator of the standby output. By using the standby output as a voltage reference, giving the user an external programming lead (Adj lead), output voltages from 3.3 V to 20 V are easily realized. The programming is done with a simple resistor divider, and following the formula:

$$VTRK = VSTBY \times (1 + R1/R2) + IAdj \times R1$$

If another 3.3 V output is needed, simply connect the Adj lead to the V_{TRK} output lead.


V_{TRK} ~ V_{STBY}(1 + R1/R2)

For $V_{TRK} \sim 5.0$ V, $R1/R2 \sim 0.5$

Figure 2. Test and Application Circuit, 3.3 V, 5.0 V Regulator

^{*}C1 is required if regulator is located far from power supply filter.

^{**}C2 and C3 are required for stability.

*C1 is required if regulator is located far from power supply filter.

Figure 3. Test and Application Circuit, Dual 3.3 V Regulator

APPLICATION NOTES

External Capacitors

Output capacitors for the CS8363 are required for stability. Without them, the regulator outputs will oscillate. Actual size and type may vary depending upon the application load and temperature range. Capacitor effective series resistance (ESR) is also a factor in the IC stability. Worst–case is determined at the minimum ambient temperature and maximum load expected.

Output capacitors can be increased in size to any desired value above the minimum. One possible purpose of this would be to maintain the output voltages during brief conditions of negative input transients that might be characteristic of a particular system.

Capacitors must also be rated at all ambient temperatures expected in the system. To maintain regulator stability down to -40° C, capacitors rated at that temperature must be used.

More information on capacitor selection for SMART REGULATOR®s is available in the SMART REGULATOR application note, "Compensation for Linear Regulators," document number SR003AN/D, available through the Literature Distribution Center or via our website at http://www.onsemi.com.

Calculating Power Dissipation in a Dual Output Linear Regulator

The maximum power dissipation for a dual output regulator (Figure 4) is

$$PD(max) = \frac{|VIN(max) - VOUT1(min)|IOUT1(max) +}{|VIN(max) - VOUT2(min)|IOUT2(max) + VIN(max)IQ} (1)$$

where:

V_{IN(max)} is the maximum input voltage,

 $V_{OUT1(min)}$ is the minimum output voltage from V_{OUT1} , $V_{OUT2(min)}$ is the minimum output voltage from V_{OUT2} ,

 $I_{OUT1(max)}$ is the maximum output current, for the application,

 $I_{OUT2(max)}$ is the maximum output current, for the application, and

 I_Q is the quiescent current the regulator consumes at both $I_{OUT1(max)}$ and $I_{OUT2(max)}$.

Once the value of $P_{D(max)}$ is known, the maximum permissible value of $R_{\theta JA}$ can be calculated:

$$R_{\Theta JA} = \frac{150^{\circ} C - T_A}{P_D}$$
 (2)

The value of $R_{\theta JA}$ can be compared with those in the package section of the data sheet. Those packages with $R_{\theta JA}$'s less than the calculated value in equation 2 will keep the die temperature below 150°C.

In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heatsink will be required.

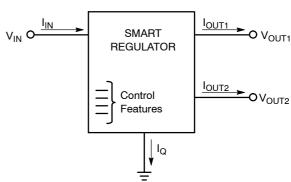


Figure 4. Dual Output Regulator With Key Performance Parameters Labeled.

^{**}C2 and C3 are required for stability.

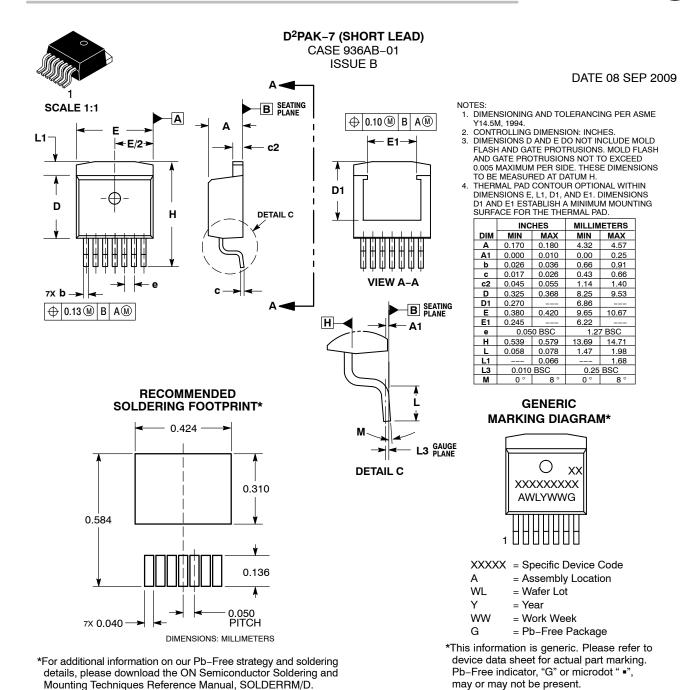
CS8363

Heat Sinks

A heat sink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air.

Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of $R_{\theta JA}$:

$$R_{\Theta}JA = R_{\Theta}JC + R_{\Theta}CS + R_{\Theta}SA$$
 (3)


where:

 $R_{\theta JC}$ = the junction-to-case thermal resistance,

 $R_{\theta CS}$ = the case–to–heatsink thermal resistance, and

 $R_{\theta SA}$ = the heatsink-to-ambient thermal resistance.

 $R_{\theta JC}$ appears in the package section of the data sheet. Like $R_{\theta JA},$ it too is a function of package type. $R_{\theta CS}$ and $R_{\theta SA}$ are functions of the package type, heatsink and the interface between them. These values appear in heat sink data sheets of heat sink manufacturers.

DOCUMENT NUMBER:	98AON14119D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	D ² PAK-7 (SHORT LEAD)		PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative