

CY62157H MoBL[®]

8-Mbit (512K words × 16-bit) Static RAM with Error-Correcting Code (ECC)

Features

- Ultra-low standby current
 Typical standby current: 5.5 μA
 Maximum standby current: 16 μA
- High speed: 45 ns
- Voltage range: 2.2 V to 3.6 V
- Embedded Error-Correcting Code (ECC) for single-bit error correction
- 1.0 V data retention
- Transistor-transistor logic (TTL) compatible inputs and outputs
- Available in Pb-free 48-ball VFBGA and 48-pin TSOP I packages

Functional Description

CY62157H is a high-performance CMOS low-power (MoBL) SRAM device with Embedded Error-Correcting Code. ECC logic can detect and correct single bit error in accessed location.

This device is offered in dual chip enable option. Dual chip enable devices are accessed by asserting both chip enable inputs – \overline{CE}_1 as LOW and \overline{CE}_2 as HIGH.

<u>Data</u> writes are performed by asserting the Write Enable input (WE LOW), and providing the data and address on device data (I/O₀ through I/O₁₅) and address (A₀ through A₁₈) pins respectively. The Byte High/Low Enable (BHE, BLE) inputs control byte writes, and write data on the corresponding I/O lines to the memory location specified. BHE controls I/O₈ through I/O₁₅ and BLE controls I/O₀ through I/O₇.

Data reads are performed by asserting the Output Enable (\overline{OE}) input and providing the required address on the address lines. Read data is accessible on I/O lines (I/O₀ through I/O₁₅). Byte accesses can <u>be performed</u> by asserting the required byte enable signal (BHE, BLE) to read either the upper byte or the lower byte of data from the specified address location.

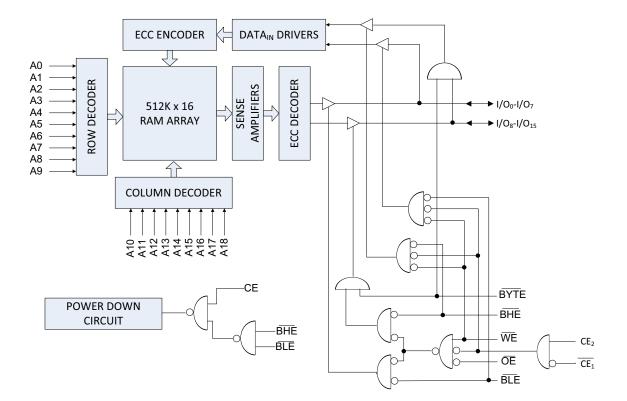
All I/Os (I/O₀ through I/O₁₅) are placed in a high impedance state when the device is deselected (\overline{CE}_1 HIGH / \overline{CE}_2 LOW for dual chip enable device), or control signals are de-asserted (\overline{OE} , BLE, BHE).

These devices also have a unique "Byte Power down" feature, where, if both the Byte Enables (BHE and BLE) are disabled, the devices seamlessly switch to standby mode irrespective of the state of the chip enable(s), thereby saving power.

The CY62157H device is available in a Pb-free 48-ball VFBGA and 48-pin TSOP I packages. The logic block diagram is on page 2.

Product Portfolio

	Features and	and				Power Di	issipation		
	Options (see the Pin Range	_			Operating I _{CC} , (mA)		Standby, I _{SB2} (µA)		
Product		V _{CC} Range (V)	Speed (ns)	f = f _{max}		Standby, ISB2 (PA)			
	Configurations section)				Тур ^[1]	Max	Typ ^[1]	Max	
CY62157H30	Dual Chip Enable	Industrial	2.2 V–3.6 V	45	29	36	5.5	16	


Note

1. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 3 V (for V_{CC} range of 2.2 V–3.6 V), T_A = 25 °C.

198 Champion Court

Logic Block Diagram

CY62157H MoBL[®]

Contents

Pin Configurations	4
Maximum Ratings	5
Operating Range	5
DC Electrical Characteristics	5
Capacitance	6
Thermal Resistance	6
AC Test Loads and Waveforms	6
Data Retention Characteristics	7
Data Retention Waveform	7
Switching Characteristics	8
Switching Waveforms	9
Truth Table – CY62157H	
Ordering Information	
Ordering Code Definitions	

Package Diagrams	16
Acronyms	18
Document Conventions	18
Units of Measure	18
Document History Page	19
Sales, Solutions, and Legal Information	20
Worldwide Sales and Design Support	20
Products	20
PSoC® Solutions	20
Cypress Developer Community	20
Technical Support	20

Pin Configurations

Figure 1. 48-ball VFBGA (6 × 8 × 1mm) pinout ^[2]

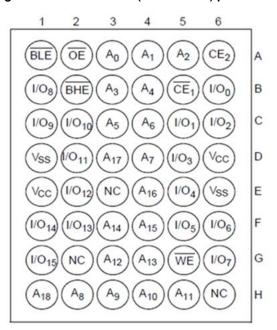
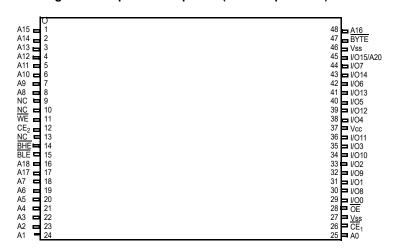



Figure 2. 48-pin TSOP I pinout (Dual Chip Enable) ^[2, 3]

Notes

- 2. NC pins are not connected internally to the die and are typically used for address expansion to a higher-density device. Refer to the respective datasheets for pin configuration.
- Tie the <u>BYTE</u> pin in the 48-pin TSOP I package to V_{CC} to use the device as a 1 M × 16 SRAM. The 48-pin <u>TSOP</u> I package can also be used as a 2 M × 8 SRAM by tying the <u>BYTE</u> signal to V_{SS}. In the 2 M × 8 configuration, Pin 45 is the extra address line A20, while <u>BHE</u>, <u>BLE</u>, and <u>I/O</u>₈ to <u>I/O</u>₁₄ pins are not used and can be left floating.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature65 °C to + 150 °C
Ambient temperature with power applied–55 °C to + 125 °C
Supply voltage to ground potential–0.2 V to V_{CC} + 0.3 V
DC voltage applied to outputs in High Z state $^{[4]}$ 0.2 V to V_{CC} + 0.3 V

DC input voltage ^[4]	-0.2 V to V _{CC} + 0.3 V
Output current into outputs (LOW)	
Static discharge voltage (MIL-STD-883, Method 3015)	>2001 V
Latch-up current	>140 mA

Operating Range

Grade	Ambient Temperature	V _{cc}
Industrial	–40 °C to +85 °C	2.2 V to 3.6 V

DC Electrical Characteristics

Over the Operating Range of -40 °C to 85 °C

Devenerator	arameter Description		Teet Canditi			45 ns		11
Parameter	Desc	ription	Test Condition	ons	Min	Typ ^[5]	Мах	Unit
V _{OH}	Output HIGH	2.2 V to 2.7 V	V_{CC} = Min, I_{OH} = -0.1 m.	A	2	-	-	V
	voltage	2.7 V to 3.6 V	V_{CC} = Min, I_{OH} = -1.0 m.	A	2.4	_	_	
V _{OL}	Output LOW	2.2 V to 2.7 V	V _{CC} = Min, I _{OL} = 0.1 mA		_	-	0.4	V
	voltage	2.7 V to 3.6 V	V _{CC} = Min, I _{OL} = 2.1 mA		_	-	0.4	
V _{IH}	Input HIGH	2.2 V to 2.7 V	-		1.8	-	V _{CC} + 0.3	V
	voltage	2.7 V to 3.6 V	-		2	-	V _{CC} + 0.3	
V _{IL}	Input LOW	2.2 V to 2.7 V	-		-0.3	-	0.6	V
	voltage ^[4]	2.7 V to 3.6 V	-		-0.3	_	0.8	
I _{IX}	Input leakage cu	urrent	$GND \leq V_{IN} \leq V_{CC}$		-1	_	+1	μA
I _{OZ}	Output leakage	current	GND <u><</u> V _{OUT} ≤ V _{CC} , Out	put disabled	-1	_	+1	μA
I _{CC}	V _{CC} operating s	upply current	V _{CC} = Max, f =	= f _{MAX}	_	29.0	36.0	mA
			I _{OUT} = 0 mA, CMOS levels f =	= 1 MHz	-	7.0	9.0	mA
I _{SB1} ^[6]	Automatic powe current – CMOS V _{CC} = 2.2 to 3.6	S inputs;	$\label{eq:cell} \begin{split} \overline{\text{CE}}_1 \geq \text{V}_{\text{CC}} & - 0.2 \text{ V or CE} \\ (\overline{\text{BHE}} \text{ and } \overline{\text{BLE}}) \geq \text{V}_{\text{CC}} & - \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} & - 0.2 \text{ V, } \text{V}_{\text{IN}} \leq \\ \text{f} = \text{f}_{\text{max}} \text{ (address and dat} \\ \text{f} = 0 \text{ (}\overline{\text{OE}}\text{, and } \overline{\text{WE}}\text{)}\text{, } \text{V}_{\text{CC}} \end{split}$	0.2 V, 0.2 V, ta only),	-	5.5	16.0	μΑ
I _{SB2} ^[6]	Automatic powe		$\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or}$		-	5.5	6.5	μA
	current – CMOS V _{CC} = 2.2 to 3.6		$CE_2 \le 0.2$ V,	40 °C ^[7]	-	6.3	8.0	
	V _{CC} - 2.2 10 0.0	v	$(\overline{BHE} \text{ and } \overline{BLE}) \ge V_{CC} - 0$.2 V, 85 °C	_	12.0 ^[7]	16.0	
			$ \begin{aligned} & V_{\text{IN}} \geq V_{\text{CC}} - 0.2 \text{ V or} \\ & V_{\text{IN}} \leq 0.2 \text{ V}, \\ & f = 0, \ V_{\text{CC}} = V_{\text{CC}(\text{max})} \end{aligned} $					

- Notes
 4. V_{IL(min)} = -2.0 V and V_{IH(max)} = V_{CC} + 2 V for pulse durations of less than 20 ns.
 5. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 3 V (for V_{CC} range of 2.2 V–3.6 V), T_A = 25 °C.
 6. Chip enables (CE₁ and CE₂) must be tied to CMOS levels to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.
 7. The I_{SB2} limits at 25 °C, 70 °C, 40 °C and typical limit at 85 °C are guaranteed by design and not 100% tested.

Capacitance

Parameter ^[8]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 \text{ °C}, f = 1 \text{ MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF

Thermal Resistance

Parameter ^[8]	Description	Test Conditions	48-pin TSOP I	48-ball VFBGA	Unit
JA		Still air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	57.99	31.50	°C/W
- 10	Thermal resistance (junction to case)		13.42	15.75	°C/W

AC Test Loads and Waveforms

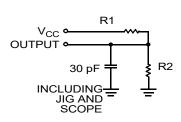
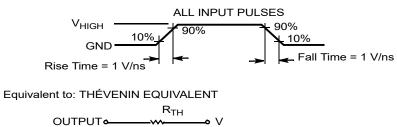
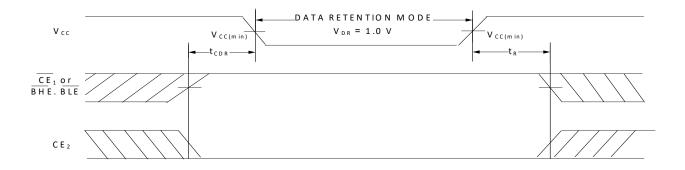



Figure 3. AC Test Loads and Waveforms

Parameters	2.5 V	3.0 V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Note8. Tested initially and after any design or process changes that may affect these parameters.


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ ^[9]	Max	Unit
V _{DR}	V _{CC} for data retention		1	-	-	V
I _{CCDR} ^[10, 11]	Data retention current	2.2 V < V _{CC} <u><</u> 3.6 V,	-	5.5	16.0	μA
		$\overline{\text{CE}}_1 \ge \text{V}_{\text{CC}} - 0.2 \text{ V or } \text{CE}_2 \le 0.2 \text{ V},$				
		$(\overline{BHE} \text{ and } \overline{BLE}) \ge V_{CC} - 0.2 \text{ V},$				
		$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$				
t _{CDR} ^[12]	Chip deselect to data retention time		0	_	_	-
t _R ^[13]	Operation recovery time		45	-	-	ns

Data Retention Waveform

Figure 4. Data Retention Waveform ^[14]

Notes

- 9. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = 3 V$ (for V_{CC} range of 2.2 V–3.6 V), $T_A = 25 °C$. 10. Chip enables (\overline{CE}_1 and CE_2) must be tied to CMOS levels to meet the $I_{SB1} / I_{SB2} / I_{CCDR}$ spec. Other inputs can be left floating. 11. I_{CCDR} is guaranteed only after the device is firs powered up to V_{CC} (min) and then brought down to V_{DR} . 12. Tested initially and after any design or process changes that may affect these parameters.

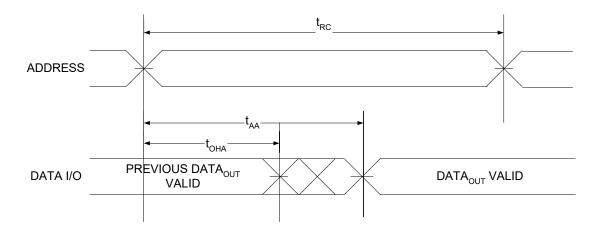
- 13. <u>Full device</u> operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} \geq 100 µs or stable at V_{CC(min)} \geq 100 µs. 14. <u>BHE.BLE</u> is the AND of both <u>BHE</u> and <u>BLE</u>. Deselect the chip by either disabling the chip enable signals or by disabling both <u>BHE</u> and <u>BLE</u>.

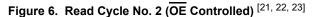
Switching Characteristics

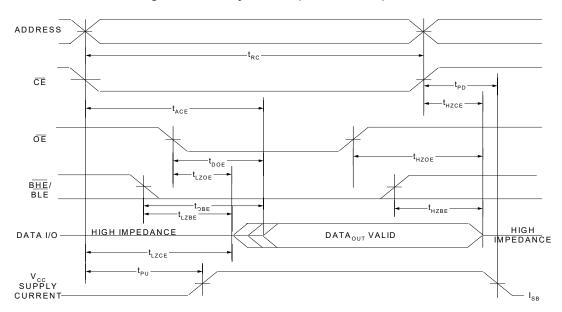
Parameter [15]DescriptionMinRead Cycle t_{RC} Read cycle time45 t_{RC} Read cycle time45 t_{AA} Address to data valid t_{OHA} Data hold from address change10 t_{ACE} \overline{CE}_1 LOW and CE_2 HIGH to data valid t_{DOE} \overline{OE} LOW to data valid t_{LOE} \overline{OE} LOW to Low $Z^{[16]}$ 5 t_{LZOE} \overline{OE} LOW to Low $Z^{[16]}$ t_{LZCE} \overline{CE}_1 LOW and CE_2 HIGH to Low- $Z^{[16]}$ 10 t_{HZCE} \overline{CE}_1 LOW and CE_2 HIGH to power-up0 t_{PD} \overline{CE}_1 HIGH and CE_2 LOW to High- $Z^{[16, 17]}$ t_{PD} \overline{CE}_1 HIGH and CE_2 LOW to power-down t_{DBE} BLE / BHE LOW to data valid t_{LZBE} \overline{BLE} / BHE HIGH to High- $Z^{[16]}$ 5 t_{HZBE} \overline{BLE} / BHE HIGH to High- $Z^{[16]}$ 5 t_{HZBE} \overline{BLE} / BHE HIGH to High- $Z^{[16]}$ t_{WC} Write cycle time45 t_{SCE} \overline{CE}_1 LOW and CE_2 HIGH to write end35	Max 45 - 45 22 - 18	 Unit ns ns ns ns ns ns ns ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	45 - 45 22 -	ns ns ns ns
NCInstantInstant t_{AA} Address to data valid- t_{AA} Data hold from address change10 t_{ACE} \overline{CE}_1 LOW and CE_2 HIGH to data valid- t_{ACE} \overline{OE} LOW to data valid- t_{DOE} \overline{OE} LOW to Low $Z^{[16]}$ 5 t_{LZOE} \overline{OE} LOW to Low $Z^{[16]}$ 5 t_{HZOE} \overline{OE} HIGH to High $Z^{[16, 17]}$ - t_{LZCE} \overline{CE}_1 LOW and CE_2 HIGH to Low- $Z^{[16]}$ 10 t_{HZCE} \overline{CE}_1 LOW and CE_2 HIGH to power-up0 t_{PU} \overline{CE}_1 LOW and CE_2 HIGH to power-up0 t_{PD} \overline{CE}_1 HIGH and CE_2 LOW to power-down- t_{DBE} BLE / BHE LOW to data valid- t_{LZBE} \overline{BLE} / BHE LOW to Low- $Z^{[16]}$ 5 t_{HZBE} \overline{BLE} / BHE HIGH to High- $Z^{[16, 17]}$ - $Write$ Cycle $[^{18, 19]}$ t_{WC} Write cycle time45 t_{SCE} \overline{CE}_1 LOW and CE_2 HIGH to write end35	45 - 45 22 -	ns ns ns ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- 45 22 -	ns ns ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	45 22 -	ns ns
$\begin{array}{c c c c c c c c } \hline t_{ACE} & \overline{CE}_1 LOW and CE_2 HIGH to data valid & & \\ \hline t_{DOE} & \overline{OE} LOW to data valid & & \\ \hline t_{LZOE} & \overline{OE} LOW to Low Z^{[16]} & 5 & \\ \hline t_{HZOE} & \overline{OE} HIGH to High Z^{[16, 17]} & & \\ \hline t_{LZCE} & \overline{CE}_1 LOW and CE_2 HIGH to Low-Z^{[16]} & 10 & \\ \hline t_{HZCE} & \overline{CE}_1 HIGH and CE_2 LOW to High-Z^{[16, 17]} & & \\ \hline t_{PU} & \overline{CE}_1 LOW and CE_2 HIGH to power-up & 0 & \\ \hline t_{PD} & \overline{CE}_1 HIGH and CE_2 LOW to power-down & & \\ \hline t_{DBE} & BLE / BHE LOW to data valid & & \\ \hline t_{LZBE} & \overline{BLE} / \overline{BHE} LOW to Low-Z^{[16]} & 5 & \\ \hline t_{HZBE} & \overline{BLE} / \overline{BHE} HIGH to High-Z^{[16, 17]} & & \\ \hline \textbf{Write Cycle} ^{[18, 19]} & & \\ \hline t_{WC} & Write cycle time & 45 & \\ \hline t_{SCE} & \overline{CE}_1 LOW and CE_2 HIGH to write end & 35 & \\ \hline \end{array}$	22	ns
bolc \overline{OE} LOW to Low $Z^{[16]}$ 5 t_{LZOE} \overline{OE} HIGH to High $Z^{[16, 17]}$ \overline{OE} HIGH to High $Z^{[16, 17]}$ t_{LZCE} \overline{CE}_1 LOW and CE_2 HIGH to Low- $Z^{[16]}$ 10 t_{HZCE} \overline{CE}_1 HIGH and CE_2 LOW to High- $Z^{[16, 17]}$ t_{PU} \overline{CE}_1 LOW and CE_2 HIGH to power-up0 t_{PD} \overline{CE}_1 HIGH and CE_2 LOW to power-down t_{DBE} $BLE / BHE LOW$ to data valid t_{LZBE} $BLE / BHE LOW$ to Low- $Z^{[16]}$ 5 t_{HZBE} $BLE / BHE HIGH to High-Z^{[16, 17]}Write Cycle ^{[18, 19]}t_{WC}Write cycle time45t_{SCE}\overline{CE}_1 LOW and CE_2 HIGH to write end35$	_	
LCOLDEHIGH to High $Z^{[16, 17]}$ t_{LZCE} $\overline{CE}_1 LOW$ and $CE_2 HIGH$ to Low- $Z^{[16]}$ 10 t_{HZCE} $\overline{CE}_1 HIGH$ and $CE_2 LOW$ to High- $Z^{[16, 17]}$ t_{PU} $\overline{CE}_1 LOW$ and $CE_2 HIGH$ to power-up0 t_{PD} $\overline{CE}_1 HIGH$ and $CE_2 LOW$ to power-down t_{DBE} $BLE / BHE LOW$ to data valid t_{LZBE} $\overline{BLE} / \overline{BHE} LOW$ to Low- $Z^{[16]}$ 5 t_{HZBE} $\overline{BLE} / \overline{BHE} HIGH$ to High- $Z^{[16, 17]}$ Write Cycle [18, 19]45 t_{SCE} $\overline{CE}_1 LOW$ and $CE_2 HIGH$ to write end35		ns
Instruct $\overline{CE_1}$ LOW and $\overline{CE_2}$ HIGH to Low- $Z^{[16]}$ 10 t_{LZCE} $\overline{CE_1}$ HIGH and $\overline{CE_2}$ LOW to High- $Z^{[16, 17]}$ - t_{PU} $\overline{CE_1}$ LOW and $\overline{CE_2}$ HIGH to power-up0 t_{PD} $\overline{CE_1}$ HIGH and $\overline{CE_2}$ LOW to power-down- t_{DBE} $BLE / BHE LOW$ to data valid- t_{LZBE} $\overline{BLE} / \overline{BHE}$ LOW to Low- $Z^{[16]}$ 5 t_{HZBE} $\overline{BLE} / \overline{BHE}$ HIGH to High- $Z^{[16, 17]}$ -Write Cycle [18, 19]-45 t_{SCE} $\overline{CE_1}$ LOW and $\overline{CE_2}$ HIGH to write end35	18	
$\begin{array}{c c c c c c c c c } \hline Tilde{Linescond} \hline Tilde{$		ns
$\begin{array}{c c c c c c c c c } \hline t_{PU} & \hline C\overline{E}_1 \ LOW \ and \ CE_2 \ HIGH \ to \ power-up & 0 \\ \hline t_{PD} & \hline C\overline{E}_1 \ HIGH \ and \ CE_2 \ LOW \ to \ power-down & - \\ \hline t_{DBE} & BLE \ / \ BHE \ LOW \ to \ data \ valid & - \\ \hline t_{LZBE} & \hline BLE \ / \ BHE \ LOW \ to \ Low-Z^{[16]} & 5 \\ \hline t_{HZBE} & \hline BLE \ / \ BHE \ HIGH \ to \ High-Z^{[16, \ 17]} & - \\ \hline \textbf{Write \ Cycle}^{[18, \ 19]} & \hline \hline t_{WC} & \hline Write \ cycle \ time & 45 \\ \hline t_{SCE} & \hline C\overline{E}_1 \ LOW \ and \ CE_2 \ HIGH \ to \ write \ end & 35 \\ \hline \end{array}$	-	ns
$\begin{array}{c c c c c c c c } \hline T_{PD} & \hline CE_1 \mbox{ HIGH and } CE_2 \mbox{ LOW to power-down} & - & \\ \hline T_{DBE} & BLE / \mbox{ BLE / BHE LOW to data valid} & - & \\ \hline T_{LZBE} & \hline BLE / \mbox{ BHE LOW to Low-} Z^{[16]} & 5 & \\ \hline T_{HZBE} & \hline BLE / \mbox{ BHE HIGH to High-} Z^{[16, 17]} & - & \\ \hline \hline$	18	ns
t_{DBE} BLE / BHE LOW to data valid - t_{LZBE} BLE / BHE LOW to Low- $Z^{[16]}$ 5 t_{HZBE} BLE / BHE HIGH to High- $Z^{[16, 17]}$ - Write Cycle ^[18, 19] - t_{SCE} \overline{CE}_1 LOW and CE_2 HIGH to write end 35	_	ns
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	45	ns
Image: transformed system Image: transformed system <thimage: system<="" th="" transformed=""> Image:</thimage:>	45	ns
Write Cycle [18, 19] t _{WC} Write cycle time 45 t _{SCE} \overline{CE}_1 LOW and CE_2 HIGH to write end 35	_	ns
Write Cycle [18, 19] t _{WC} Write cycle time 45 t _{SCE} \overline{CE}_1 LOW and CE_2 HIGH to write end 35	18	ns
t_{SCE} \overline{CE}_1 LOW and CE_2 HIGH to write end 35		•
	_	ns
t _{AW} Address setup to write end 35	_	ns
	_	ns
t _{HA} Address hold from write end 0	-	ns
t _{SA} Address setup to write start 0	_	ns
t _{PWE} WE pulse width 35	_	ns
t _{BW} BLE / BHE LOW to write end 35	_	ns
t _{SD} Data setup to write end 25	_	ns
t _{HD} Data hold from write end 0	_	ns
t _{HZWE} WE LOW to High-Z ^[16, 17] –	18	ns
t _{LZWE} WE HIGH to Low-Z ^[16] 10	_	ns

Notes

15. Test conditions assume signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for V_{CC} ≥ 3 V) and V_{CC}/2 (for V_{CC} < 3 V), and input pulse levels of 0 to 3 V (for V_{CC} ≥ 3 V) and 0 to V_{CC} (for V_{CC} < 3V). Test conditions for the read cycle use output loading shown in AC Test Loads and Waveforms section, unless specified attenuite. otherwise.


16. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZDE}, t_{HZDE} is less than t_{LZDE}, and t_{HZWE} is less than t_{LZWE} for any device.
17. t_{HZCE}, t_{HZCE}, t_{HZEE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
18. The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.


19. The minimum write cycle pulse width for Write Cycle No. 1 (WE Controlled, OE LOW) should be equal to the sum of t_{HZWE} and t_{SD}.



Switching Waveforms

Figure 5. Read Cycle No. 1 of CY62157H (Address Transition Controlled) ^[20, 21]

Notes 20. The device is continuously selected. $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} .

21. WE is HIGH for read cycle.

22. Eor all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH.

23. Address valid prior to or coincident with \overline{CE} LOW transition.

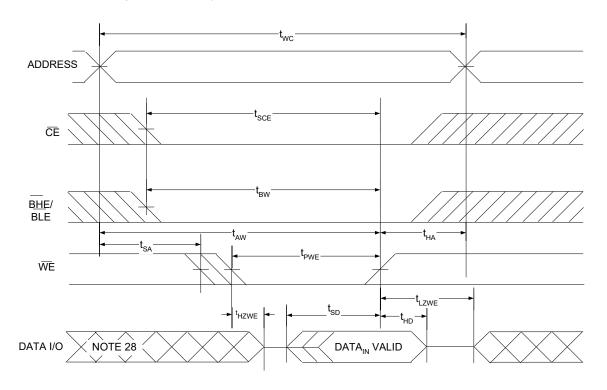


Figure 7. Write Cycle No. 1 (WE Controlled, OE LOW) ^[24, 25, 26, 27]

Notes

- 24. Eor all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH.
- 25. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{EE}_1 = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} , and $CE_2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.
- 26. Data I/O is in high impedance state if $\overline{CE} = V_{|H}$, or $\overline{OE} = V_{|H}$ or \overline{BHE} , and/or $\overline{BLE} = V_{|H}$.

27. The minimum write cycle pulse width for Write Cycle No. 1 (WE Controlled, OE LOW) should be equal to the sum of t_{HZWE} and t_{SD}.

28. During this period the I/Os are in output state. Do not apply input signals.

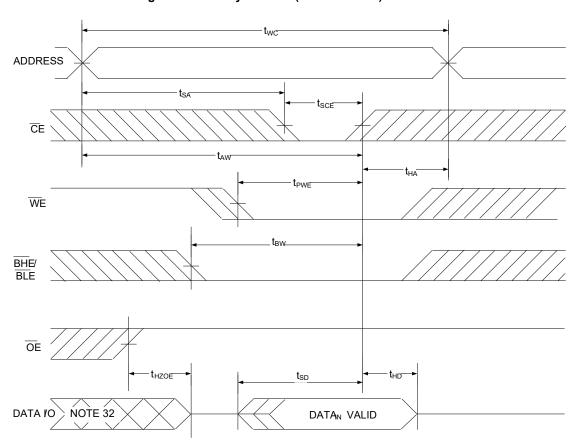


Figure 8. Write Cycle No. 2 (CE Controlled) ^[29, 30, 31]

Notes

- 29. Eor all dual chip enable devices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.
- 30. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE}_1 = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} , and $CE_2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.
- 31. Data I/O is in high impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.
- 32. During this period the I/Os are in output state. Do not apply input signals.

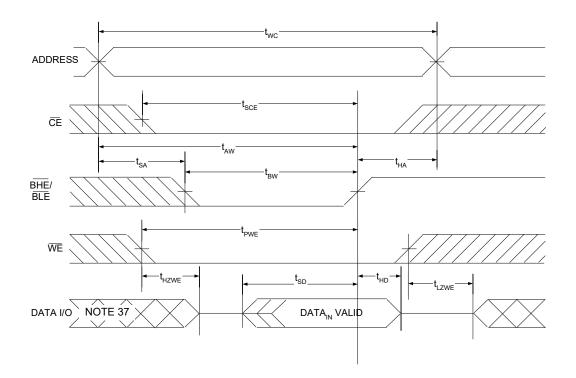


Figure 9. Write Cycle No. 3 (BHE/BLE controlled, OE LOW) ^[33, 34, 35, 36]

Notes

- 33. Eor all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH.
- 34. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{EE}_1 = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} , and $\overline{CE}_2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

35. Data I/O is in high impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$. 36. The minimum write cycle pulse width for Write Cycle No. 3 ($\overline{BHE}/\overline{BLE}$ Controlled, \overline{OE} LOW) should be equal to the sum of t_{HZWE} and t_{SD} .

37. During this period the I/Os are in output state. Do not apply input signals.

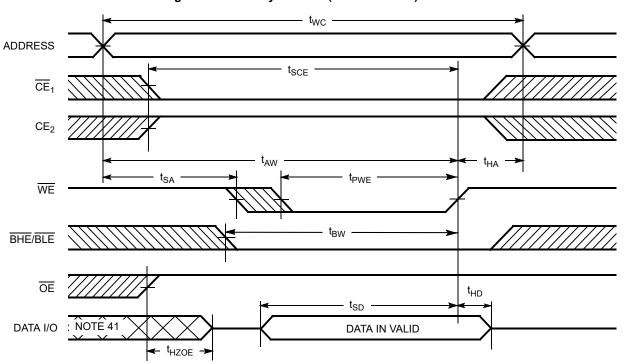


Figure 10. Write Cycle No. 4 ($\overline{\text{WE}}$ Controlled) [38, 39, 40]

Notes

38. The internal write time of the memory is defined by the overlap of \overline{WE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} or \overline{BLE} or $\overline{both} = V_{IL}$, and $CE_2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write. 39. Data I/O is high impedance if $\overline{OE} = V_{IH}$.

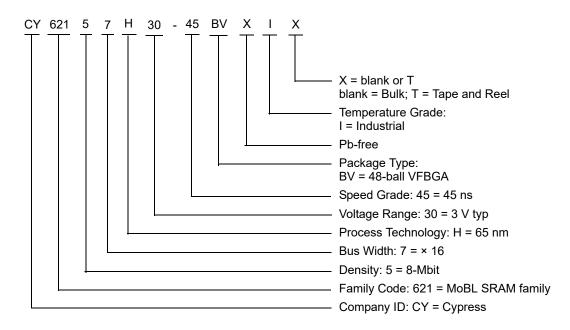
40. If \overline{CE}_1 goes HIGH and CE_2 goes LOW simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high impedance state.

41. During this period the I/Os are in output state. Do not apply input signals.

Truth Table – CY62157H

CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	X ^[42]	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
X ^[42]	L	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
X ^[42]	X ^[42]	Х	Х	Н	Н	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Η	L	Н	L	Data Out (I/O ₀ –I/O ₇); High-Z (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	High Z (I/O ₀ –I/O ₇); Data Out (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Х	L	L	Data In (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); High-Z (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	L	Н	High-Z (I/O ₀ –I/O ₇); Data In (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	Н	L	Х	Х	Data Out (I/O ₀ –I/O ₇)	Read	Active (I _{CC})
L	Н	Н	Н	Х	Х	High-Z	Output disabled	Active (I _{CC})
L	Н	L	Х	Х	Х	Data In (I/O ₀ –I/O ₇)	Write	Active (I _{CC})

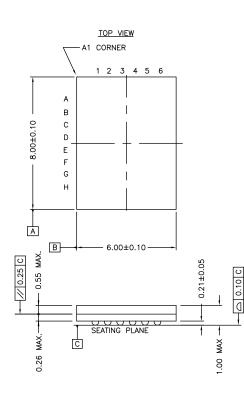
Note

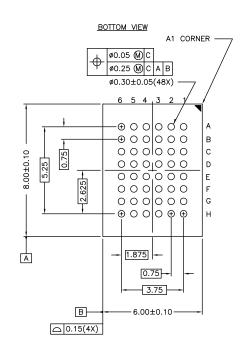

42. The 'X' (Don't care) state for the chip enables refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62157H30-45BVXI		48-ball VFBGA (6 × 8 × 1 mm) (Pb-free),	Industrial
	CY62157H30-45BVXIT		Package Code: BZ48	

Ordering Code Definitions





Package Diagrams

Figure 11. 48-ball VFBGA (6 × 8 × 1.0 mm) Package Outline, 51-85150

NOTE:

PACKAGE WEIGHT: See Cypress Package Material Declaration Datasheet (PMDD) posted on the Cypress web.

51-85150 *H

Package Diagrams (continued)

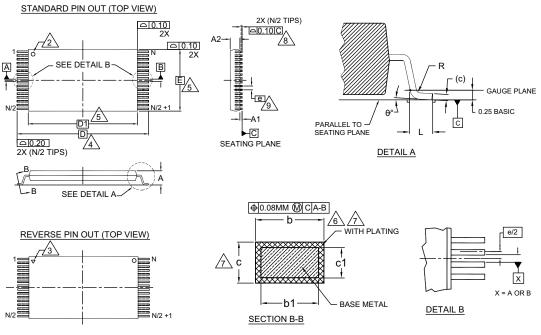


Figure 12. 48-pin TSOP I (12 × 18.4 × 1.0 mm) Package Outline, 51-85183

	DIMENSIONS		
SYMBOL	MIN.	NOM.	MAX
А	-	_	1.20
A1	0.05	—	0.15
A2	0.95	1.00	1.05
b1	0.17	0.20	0.23
b	0.17	0.22	0.27
c1	0.10	_	0.16
С	0.10	—	0.21
D	20	.00 BAS	SIC
D1	18.40 BASIC		
E	12.00 BASIC		
е	0.	50 BAS	IC
L	0.50	0.60	0.70
θ	0°		8
R	0.08	—	0.20
Ν		48	

NOTES:

- DIMENSIONS ARE IN MILLIMETERS (mm).
- 2. PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).
- 3. PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN): INK OR LASER MARK.
- A TO BE DETERMINED AT THE SEATING PLANE C-. THE SEATING PLANE IS DEFINED AS THE PLANE OF CONTACT THAT IS MADE WHEN THE PACKAGE LEADS ARE ALLOWED TO REST FREELY ON A FLAT HORIZONTAL SURFACE.
- DIMENSIONS D1 AND E D0 NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION ON E IS 0.15mm PER SIDE AND ON D1 IS 0.25mm PER SIDE.
- IMMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR

 PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF b DIMENSION AT MAX.

 MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON LOWER RADIUS OR

 THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD

 TO BE 0.07mm .
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- LEAD COPLANARITY SHALL BE WITHIN 0.10mm AS MEASURED FROM THE SEATING PLANE.
- DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.
- 10. JEDEC SPECIFICATION NO. REF: MO-142(D)DD.

51-85183 *F

Acronyms

Acronym	Description
BHE	byte high enable
BLE	byte low enable
CE	chip enable
CMOS	complementary metal oxide semiconductor
I/O	input/output
OE	output enable
SRAM	static random access memory
VFBGA	very fine-pitch ball grid array
WE	write enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	Degrees Celsius
MHz	megahertz
μA	microamperes
μS	microseconds
mA	milliamperes
mm	millimeters
ns	nanoseconds
Ω	ohms
%	percent
pF	picofarads
V	volts
W	watts

Document History Page

Document Title: CY62157H MoBL [®] , 8-Mbit (512K words × 16-bit) Static RAM with Error-Correcting Code (ECC) Document Number: 001-88316					
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change	
*В	4983842	NILE	10/23/2015	Changed status from Preliminary to Final.	
*C	5109716	NILE	01/27/2016	Updated DC Electrical Characteristics: Changed minimum value of V _{OH} parameter from 2.2 V to 2.4 V corresponding to V _{CC} Operating Range "2.7 V to 3.6 V" and Test Condition "V _{CC} = Min, I _{OH} = -1.0 mA".	
*D	5427485	VINI	09/06/2016	Updated Maximum Ratings: Updated Note 4 (Replaced "2 ns" with "20 ns"). Updated DC Electrical Characteristics: Changed minimum value of V _{IH} parameter from 2.0 V to 1.8 V corresponding to the Operating Range "2.2 V to 2.7 V". Updated Ordering Information: Updated part numbers. Updated to new template. Completing Sunset Review.	
*E	6063494	VINI	02/08/2018	Updated Package Diagrams: spec 51-85183 – Changed revision from *D to *F. Updated to new template.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2013-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress paratry or a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-88316 Rev. *E

Revised February 8, 2018

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor Corporation.