

SFP-25G-BX-D-C

Cisco® SFP-25G-BX-D Compatible TAA Compliant 25GBase-BX SFP28 Transceiver (SMF, 1330nmTx/1270nmRx, 10km, LC, DOM)

Features:

- SFF-8402 and SFF-8472 Compliance
- Simplex LC Connector
- Single-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- 25GBase Ethernet
- Access and Enterprise

Product Description

This Cisco® SFP-25G-BX-D compatible SFP28 transceiver provides 25GBase-BX throughput up to 10km over single-mode fiber (SMF) using a wavelength of 1330nmTx/1270nmRx via an LC connector. It is guaranteed to be 100% compatible with the equivalent Cisco® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Regulatory Compliance

- Electromagnetic Interference (EMI) compatible with standards: FCC Part 15 Class B, EN 55022:2010,
 Class B
- Electromagnetic susceptibility (EMS) compatible with standards: EN 55024:2010
- Laser Eye Safety compatible with Class I laser product FDA 21CFR 1040.10 and 1040.11 EN60950, EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Maximum Supply Voltage	Vcc	-0.5	3.6	V
Storage Temperature	TS	-40	85	°C
Operating Case Temperature	Тс	0	70	°C
Operating Humidity (non-condensing)	RH	5	95	%
Receiver Power	R _{MAX}		-12	dBm
Maximum Bitrate	B _{max}		28	Gbps

Electrical Characteristics (TOP=25°C, Vcc=3.3Volts)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes		
Power Supply Voltage	Vcc	3.135	3.30	3.465	V			
Power Supply Current @ 3.3V	Icc			350	mA			
Power Consumption	P _{DISS}			1.5	W			
Transmitter								
Differential data input swing	Vin,pp	180		700	mV			
Transmitter Enable Voltage	VEN	-0.3		0.8	V			
Transmitter Disable Voltage	VD	2.0		Vcc+0.3	V			
Receiver								
Differential data output swing	Vout,pp	450		1050	mV			
LOS Low Voltage	VLout			0.4	V			
LOS High Voltage	VHout	2.0			V			

Optical Characteristics

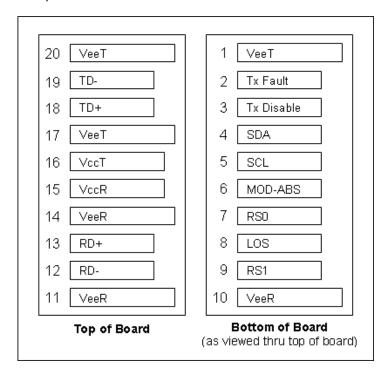
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Transmitter							
Support Data Rate				28	Gbps		
Peak Wavelength	λр	1320	1330	1340	nm		
Spectral Width (-20dB)				1	nm		
Side Mode Suppression Ratio	SMSR	30			dB		
Average Optical Output Power	Ро	-5		2	dBm		
Optical Extinction Ratio	ER	3.5			dB		
Transmitter and Dispersion Penalty	TDP			3	dB		
Output Power with Transmitter Disabled	Poff			-30	dBm		
Optical Return Loss Tolerance				-12	dB		
Output Eye Diagram	Compliant with IEEE 802.3						
Receiver							
Support data rate				28	Gbps		
Operate Wavelength		1260	1270	1280	nm		
Receiver Sensitivity @25Gbps	Sen			-12	dBm	2	
Saturation	Psat	2			dBm	2	
LOS Asserted	T_loss_on	-30			dBm	High	
LOS De-Asserted	T_loss_off			-13	dBm	level:	
LOS Hysteresis	T_loss_Hs	0.5		5.0	dB		

Notes:

- 1. At least 1000 waveforms acquired, with minimum 5% margin against 802.3 mask
- 2. Test at 25.78125Gb/s, PRBS 2³¹-1, BER of 5E-5, NRZ and including back to back

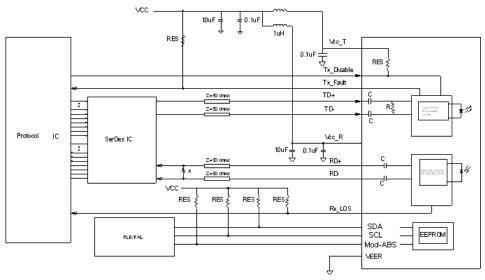
Pin Descriptions

Pin	Symbol	Name/Descriptions	Ref.
1	VeeT	Transmitter Ground	
2	TX Fault	Transmitter Fault Indication	1
3	TX Disable	Transmitter Disable	2, Module disables on high or open
4	SDA	2-wire Serial Interface Data Line (Same as MOD-DEF2 in INF-8074i)	
5	SCL	2 Wire Serial Interface Data Line (Same as MOD-DEF1 as defined in the INF-8074i)	
6	MOD-ABS	Module Absent, Connected to VeeT or VeeR in the module.	3
7	RS0	SFP+ RX Rate Select, optional	Rate Select 0, Not used. 9
8	LOS	Loss of Signal	4
9	RS1	SFP+ TX Rate Select, optional	Rate Select 1, Not used. 9
10	VeeR	Receiver Ground	5
11	VeeR	Receiver Ground	5
12	RD-	Inv. Received Data Out	6
13	RD+	Received Data Out	6
14	VeeR	Receiver Ground	5
15	VccR	Receiver Power	7, 3.3V 5%
16	VccT	Transmitter Power	7, 3.3V 5%
17	VeeT	Transmitter Ground	5
18	TD+	Transmit Data In	8
19	TD-	Inv. Transmit Data In	8
20	VeeT	Transmitter Ground	5


Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

- 1. TX Fault is an open collector/drain output, which should be pulled up with a $4.7K-10K\Omega$ resistor on the host board. Pull up voltage between 2.0V and VccT +0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.4V.
- 2. TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7-10~\text{K}\Omega$ resistor. Its states are:
 - Low (-0.3–0.8V): Transmitter on (>0.8, < 2.0V): Undefined High (2.0–VccT+0.3V): Transmitter Disabled Open: Transmitter Disabled
- 3. Mod-ABS shall be pulled up with a 4. $7K-10K\Omega$ resistor on the host board. The pull -up voltage shall VccT or VccR.
- 4. LOS (Loss of Signal) is an open collector/ drain output, which should be pulled up with a $4.7K-10K\Omega$

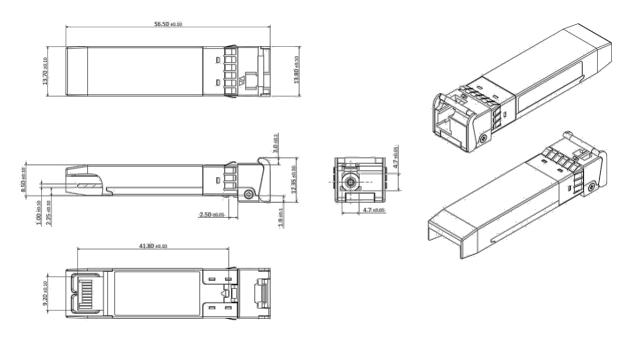

resistor. Pull up voltage between 2.0V and VccR+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.4V.

- 5. VeeR and VeeT may be internally connected within the SFP module.
- 6. RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board.
- 7. VccR and VccT are the receiver and transmitter power supplies. They are de fined as 3.3V 5% at the SFP connector pin. Maximum supply current is 300mA. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1Ω should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply filtering network is used, hot plugging of the SFP transceiver module will result in an inrush current of no more than 30 m A greater than the steady state value. VccR and VccT may be internally connected within the SFP transceiver module.
- 8. TD-/+: These are the differential transmitter inputs. They are AC -coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board.
- 9. Internally pulled down per SFF-8431 Rev 4.1.

Pin-out of connector Block on Host board

Recommended Circuit Schematic

NOTE: 4.7K ohms<RES<10K ohms


Digital Diagnostic Functions

Digital diagnostics monitoring function is available on this module. A 2-wire serial interface provides user to contact with module. It is compliant to SFF-8472 Rev10.2 with internal calibration mode.

Parameter	Symbol	Min.	Max.	Unit	Notes
Temperature monitor absolute error	DMI_Temp	-3	+3		
Supply voltage monitor absolute error	DMI_VCC	-3%	+3%	V	
TX power monitor absolute error	DMI_RX	-3	+3	dB	
RX power monitor absolute error	DMI_RX	-3	+3	dB	
Bias current monitor	DMI_Ibias	-10%	+10%	mA	

Mechanical Specifications

Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP Multi-Sourcing Agreement (MSA).

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600