

FEATURES

- Controlled Baseline
 - One Assembly/Test Site, One Fabrication Site
- Extended Temperature Performance of –55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree (1)
- State-of-the-Art EPIC-IIB[™] BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- (1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

- Typical V_{OLP} (Output Ground Bounce) <1 V at V_{CC} = 5 V, T_A = 25°C
- High-Drive Outputs (–24-mA I_{OH}, 48-mA I_{OL})
- Packaged in Shrink Small-Outline (DB)
 Package

DESCRIPTION

This octal buffer and line driver is designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Together with the SN54ABT240, SN74ABT240A, SN54ABT241, and SN74ABT241A, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical active-low output-enable (\overline{OE}) inputs, and complementary OE and \overline{OE} inputs.

The SN74ABT244A is organized as two 4-bit buffers/line drivers with separate \overline{OE} inputs. When \overline{OE} is low, the device passes noninverted data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

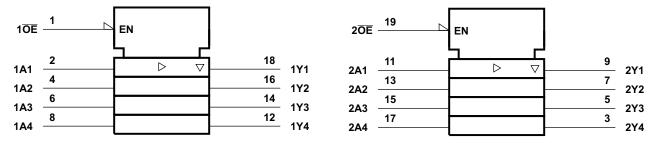
The SN74ABT244 is characterized for operation over the full military temperature range of –55°C to 125°C.

ORDERING INFORMATION

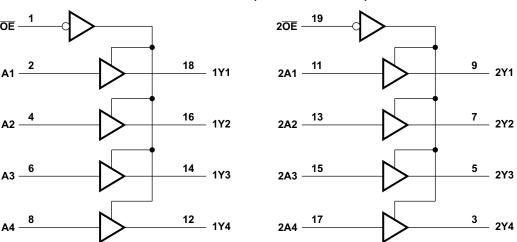
T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
-55°C to 125°C	SSOP - DB	Tape and reel	SN74ABT244AMDBREP	ABT244AMEP	

 Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


EPIC-IIB is a trademark of Texas Intruments.

FUNCTION TABLE (EACH BUFFER)


INPU	INPUTS					
ŌĒ	Α	Y				
L	Н	Н				
L	L	L				
Н	Χ	Z				

LOGIC SYMBOL(1)

(1) This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

LOGIC DIAGRAM (POSITIVE LOGIC)

WITH 3-STATE OUTPUTS
SGBS312A-JULY 2006-REVISED JULY 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

				MIN	MAX	UNIT
V_{CC}	C Supply voltage range				7	V
VI	Input voltage range ⁽²⁾			-0.5	7	V
Vo	Voltage range applied to any output in the high or power-off state				5.5	V
Io	Current into any output in the low state				96	mA
I_{IK}	Input clamp current	V _I < 0			-18	mA
I_{OK}	Output clamp current	V _O < 0			-50	mA
θ_{JA}	Package thermal impedance (3)				115	°C/W
T _{stg}	Storage temperature range			-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

Recommended Operating Conditions(1)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		4.5	5.5	V
V_{IH}	High-level input voltage		2		V
V_{IL}	Low-level input voltage			0.8	V
V_{I}	Input voltage		0	V _{CC}	V
I _{OH}	High-level output current			-24	mA
I _{OL}	Low-level output current			48	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		5	ns/V
T_A	Operating free-air temperature		-55	125	°C

⁽¹⁾ Unused inputs must be held high or low to prevent them from floating.

⁽³⁾ The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero.

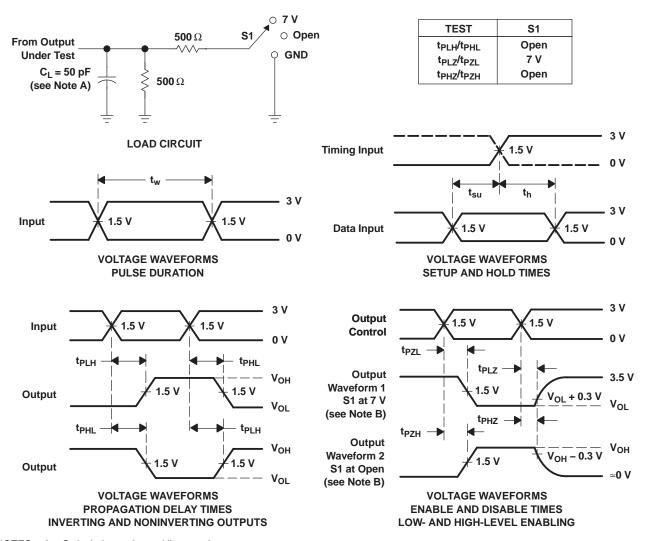
Electrical Characteristics(1)

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONF	1	Γ _A = 25°C		MIN MAX		UNIT	
PA	ARAMETER	TEST COND	DITIONS	MIN	TYP ⁽²⁾	MAX	IVIIN	WAX	UNII
V_{IK}		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2		-1.2	V
		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		
V_{OH}		V _{CC} = 5 V,	$I_{OH} = -3 \text{ mA}$	3			3		V
		$V_{CC} = 4.5 \text{ V},$	I _{OH} = -24 mA	2			2		
V _{OL}		V _{CC} = 4.5 V,	I _{OL} = 48 mA			0.55		0.55	V
V_{hys}					100				mV
I		$V_{CC} = 5.5 \text{ V},$	$V_I = V_{CC}$ or GND			±1		±1	μΑ
I _{OZH}		$V_{CC} = 5.5 \text{ V},$	V _O = 2.7 V			10		10	μΑ
I _{OZL}		$V_{CC} = 5.5 \text{ V},$	V _O = 0.5 V			-10		-10	μΑ
I _{off}		$V_{CC} = 0$,	V_I or $V_O \le 5.5 \text{ V}$			±100			μΑ
I _{CEX}		$V_{CC} = 5.5 \text{ V},$	Outputs high			50		50	μΑ
I _O ⁽³⁾		$V_{CC} = 5.5 \text{ V},$	V _O = 2.5 V	-50	-100	-180	-50	-180	mA
			Outputs high		1	250		250	μΑ
I_{CC}		$V_{CC} = 5.5 \text{ V}, I_{O} = 0,$ $V_{L} = V_{CC} \text{ or GND}$	Outputs low		24	30		30	mA
		V1 = VCC 01 014D	Outputs disabled		0.5	250		250	μΑ
		$V_{CC} = 5.5 \text{ V},$	Outputs enabled			1.5		1.5	
$\Delta I_{CC}^{(4)}$	Data inputs	One input at 3.4 V, Other inputs at V _{CC} or GND	Outputs disabled			0.05		0.05	mA
	Control inputs	V_{CC} = 5.5 V, One input at 3.4 Other inputs at V_{CC} or GND	١٧,			1.5		1.5	
Ci		V _I = 2.5 V or 0.5 V			3.5				pF
Co		$V_0 = 2.5 \text{ V or } 0.5 \text{ V}$			7.5				pF

- (1) On products compliant to MIL-PRF-38535, this parameter does not apply.

- (2) All typical values are at V_{CC} = 5 V.
 (3) Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
 (4) This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.


Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO (OUTPUT)	V _C	V _{CC} = 5 V, T _A = 25°C				UNIT
	(INPUT)	(001701)	MIN	TYP	MAX			
t _{PLH}	Δ.	V	1	2.6	4.1	1	5.3	20
t _{PHL}	A	Ť	1	2.9	4.2	1	5	ns
t _{PZH}	<u> </u>	V	1.1	3.1	4.6	0.8	5.7	20
t _{PZL}	ŌĒ	Y	2.1	4.1	5.6	1.2	7.9	ns
t _{PHZ}	- OE	V	2.1	4.1	5.6	1.2	7.6	20
t _{PLZ}	J	Ť	1.5	3.7	5.6	1	7.9	ns

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74ABT244AMDBREP	ACTIVE	SSOP	DB	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ABT244AMEP	Samples
V62/06667-01XE	ACTIVE	SSOP	DB	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ABT244AMEP	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

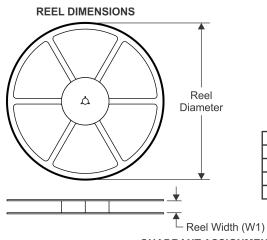
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

10-Dec-2020

OTHER QUALIFIED VERSIONS OF SN74ABT244A-EP:

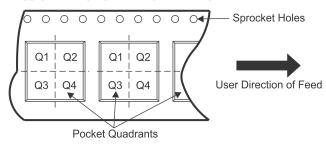
◆ Catalog: SN74ABT244A


NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Dec-2020


TAPE AND REEL INFORMATION

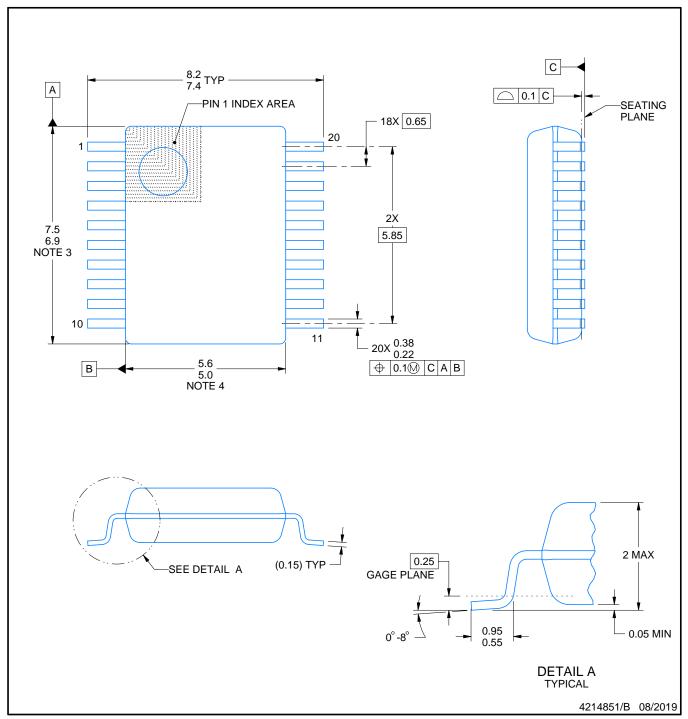
	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ABT244AMDBREP	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1

www.ti.com 17-Dec-2020

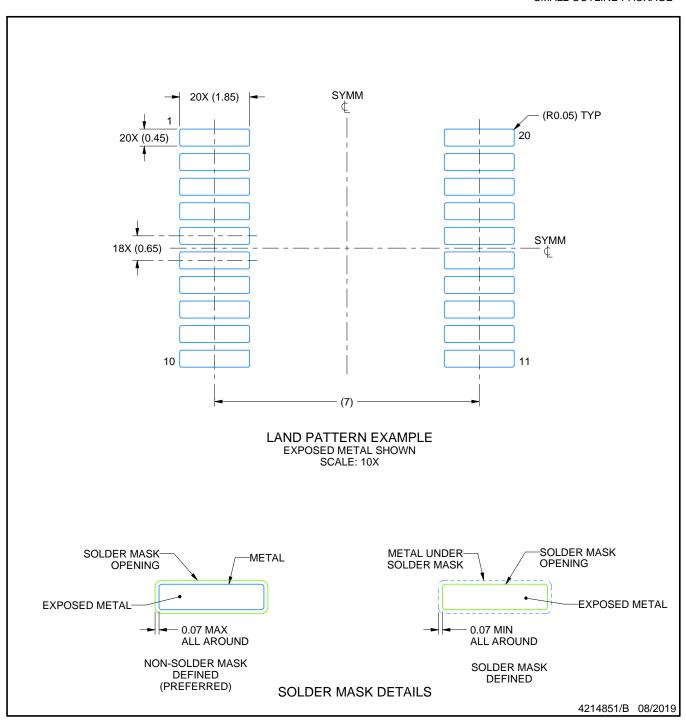


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74ABT244AMDBREP	SSOP	DB	20	2000	853.0	449.0	35.0	

SMALL OUTLINE PACKAGE

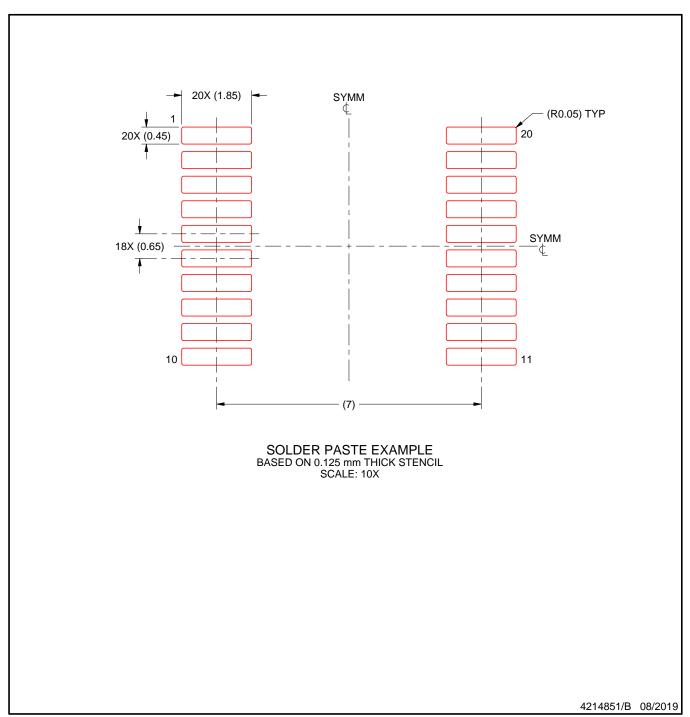
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated