MT9P006I12STCUH-GEVB

MT9P006 Evaluation Board **User's Manual**

Evaluation Board Overview

The evaluation boards are designed to demonstrate the features of ON Semiconductor's image sensors products. This headboard is intended to plug directly into the Demo 2X system. Test points and jumpers on the board provide access to clock, I/Os and other miscellaneous signals.

Features

- Clock Input
 - ◆ Default 27 MHz crystal oscillator
 - Optional Demo 2X controlled Mclk
- Two Wire Serial Interface
 - Selectable base address
- Parallel Interface
- Serial LVDS Interface
- ROHS Compliant

ON Semiconductor®

www.onsemi.com

EVAL BOARD USER'S MANUAL

Block Diagram

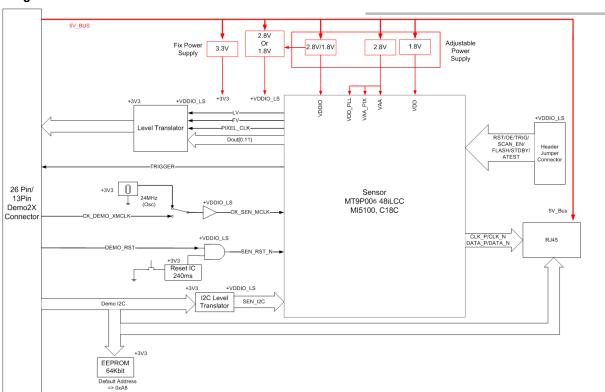


Figure 2. Block Diagram of MT9P006l12STCUH-GEVB

MT9P006l12STCUH-GEVB

Top View

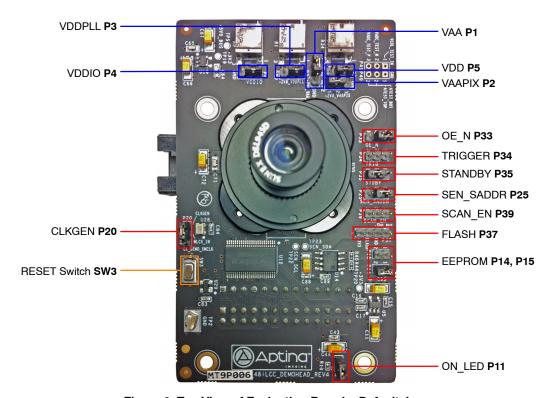


Figure 3. Top View of Evaluation Board - Default Jumpers

Bottom View

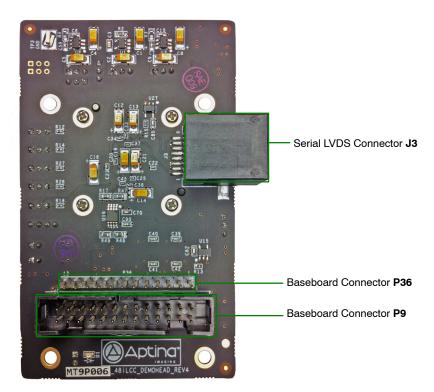


Figure 4. Bottom View of the Evaluation Board - Connector

MT9P006l12STCUH-GEVB

Jumper Pin Locations

The jumpers on headboards start with Pin 1 on the leftmost side of the pin. Grouped jumpers increase in pin size with each jumper added.

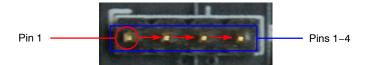


Figure 5. Pin Locations for a Single Jumper.

Pin 1 is Located at the Leftmost Side and Increases as it Moves to the Right

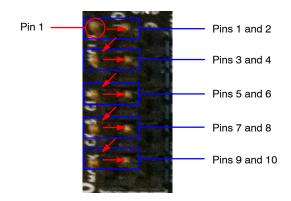


Figure 6. Pin Locations and Assignments of Grouped Jumpers.

Pin 1 is Located at the Top-Left Corner and Increases in a Zigzag Fashion Shown in the Picture

Jumper/Header Functions & Default Positions

Table 1. JUMPERS AND HEADERS

Jumper/Header No.	Jumper/Header Name	Pins	Description
P1	+2V8_VAA	1-2 (Default)	Connects to on-board +2V8_VAA power supply
		2–3	External power supply connection
P2	+2V8_VAAPIX	1-2 (Default)	Connects to on-board +2V8_VAAPIX power supply
		2–3	External power supply connection
P3	+2V8_VDDPLL	1-2 (Default)	Connects to on-board +2V8_VDDPLL power supply
		2–3	External power supply connection
P4	+VDDIO	1-2 (Default)	Connects to on-board +VDDIO power supply
		2-3	External power supply connection
P5	+1V8_VDD	1-2 (Default)	Connects to on-board +1V8_VDD power supply
		2–3	External power supply connection
P11	ON_LED	1-2 (Default)	Connects to on-board LED to indicate "power on"
P14, P15	EEPROM ADDR, Sel	A1 Closed & A2 Open (Default)	EEPROM Address set to 0xA8
		A1 Open & A2 Open	EEPROM Address set to 0xAC
		A1 Open & A2 Closed	EEPROM Address set to 0xA4
		A1 Closed & A2 Closed	EEPROM Address set to 0xA0
P20	MCLK	1-2 (Default)	Master Mode on-board oscillator
		2–3	Master Mode Demo 2X clock

MT9P006I12STCUH-GEVB

Table 1. JUMPERS AND HEADERS (continued)

Jumper/Header No.	Jumper/Header Name	Pins	Description
P25	SEN_SAADR	1-2 (Default)	I ² C Address: 0x90
		2–3	I ² C Address: 0xBA
P33	OE_N	1-2 (Default)	Parallel Interface
		2–3	Non-Parallel Interface
P34	TRIGGER	2	Snapshot Trigger
P35	STANDBY	2-3 (Default)	Normal Mode
		1–2	Standby Mode
P37	FLASH	3	Snapshot Flash
P39	SCAN_EN	2	Snapshot scan enable
SW3	RESET	N/A	When pushed, 240 ms reset signal will be sent to MT9P006

Interfacing to ON Semiconductor Demo 2X Baseboard

The ON Semiconductor Demo 2X baseboard has a similar 26-pin connector and 13-pin connector which mate with P9 and P36 of the headboard. The four mounting holes secure the baseboard and the headboard with spacers and screws.

Shorted Jumpers for Power Measurement

Different supplies to the evaluation board are provided by trace shorted jumper, for any voltage and power measurements. To conduct current for current measurement on a given power rail, cut the trace between the two pins of their respective JP, and insert an ammeter prior to powering up the system. The figure below shows where the trace to cut is located.

Table 2. SHORTED JUMPERS FOR POWER MEASUREMENTS

Jumper	Voltage (V)
P1 (+2V8_VAA)	2.8
P2 (+2V8_VAAPIX)	2.8
P3 (+2V8_VAAPLL)	2.8
P4 (VDDIO)	2.8
P5 (+1V8_VDD)	1.8

Figure 7. Top and Bottom View of Shorted Jumper. The Bottom View Shows the Trace Location to Cut for Current Measurement

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor designed, including compliance with may be provided in ON Semiconductor designed, intended, or authorized experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and e

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative