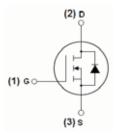


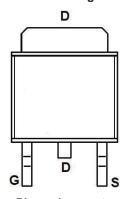
N-Channel Super Trench Power MOSFET

Description

The RM78N100LD uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{DS(ON)}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.


General Features

- V_{DS} =100V,I_D =78A
 - $R_{DS(ON)}$ =7.5m Ω (typical) @ V_{GS}=10V $R_{DS(ON)}$ =10.5m Ω (typical) @ V_{GS}=4.5V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested


Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification
- Halogen-free
- P/N suffix V means AEC-Q101 qualified, e.g:RM78N100LDV

100% UIS TESTED! 100% \(\Delta V ds TESTED! \)

Schematic diagram

Pin assignment

TO-252-2L top view

Package Marking and Ordering Information

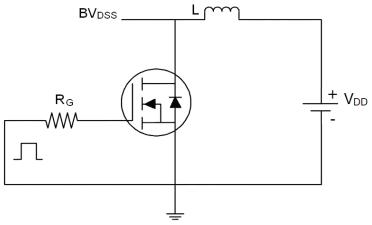
Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
78N100	RM78N100LD	TO-252-2L	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

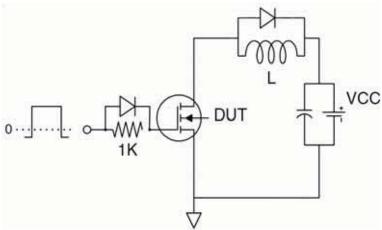
Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	V _G S	±20	V
Continuous Drain Current (T _a =25℃)	I _D	60	Α
Continuous Drain Current (T _a =100℃)	I _D	38	Α
Pulsed Drain Current (1)	I _{DM}	200	А
Single Pulsed Avalanche Energy (2)	Eas	90	mJ
Power Dissipation	P _D	63	W
Thermal Resistance from Junction to Case	Rejc	1.8	°C/W
Junction Temperature	TJ	150	$^{\circ}$
Storage Temperature	T _{STG}	-55~ +150	$^{\circ}$

MOSFET ELECTRICAL CHARACTERISTICS(T_a=25℃ unless otherwise noted)

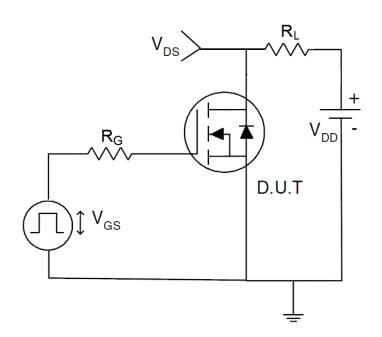
Parameter	Symbol	Test Condition	Min	Туре	Max	Unit	
Static Characteristics							
Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D =250μA	100	_	-	V	
Zero gate voltage drain current	IDSS	V _{DS} =80V, V _{GS} = 0V	-	-	1	μA	
Gate-body leakage current	l _{GSS}	$V_{GS} = \pm 20V$, $V_{DS} = 0V$	-	-	±100	nA	
Gate threshold voltage ⁽³⁾	$V_{GS(th)}$	V _{DS} =V _{GS} , I _D =250μA	1.2	1.8	2.5	V	
Duning 2011 100 100 100 100 100 100 100 100 10	Б	V _{GS} =10V, I _D =20A	-	7.5	9.5	C	
Drain-source on-resistance ⁽³⁾	R _{DS(on)}	V _{GS} =4.5V, I _D =10A	-	10.5	13	mΩ	
Forward Threshold Voltage	G fs	V _{DS} =5V, I _D =20A	-	13.5	-	S	
Gate Resistance	R_g	V _{DS} =V _{GS} =0V, f =1MHz	-	1.94	-	Ω	
Dynamic characteristics			•				
Input Capacitance	Ciss		_	2022	-	pF	
Output Capacitance	Coss	V _{DS} =50V, V _{GS} =0V, f =1MHz	-	580	-		
Reverse Transfer Capacitance	Crss		-	28	-		
Switching characteristics	·						
Turn-on delay time	t _{d(on)}		-	17	-		
Turn-on rise time	tr	V _{DD} =50V, I _D =20A,	-	4	-		
Turn-off delay time	$t_{d(off)}$	V_{GS} =10 V , R_{G} =3 Ω	-	32	-	ns	
Turn-off fall time	t _f		-	8	-		
Total Gate Charge	Qg	\/D0_50\/ ID_004	-	38.5	-	nC	
Gate-Source Charge	Qgs	VDS=50V, ID=20A,	-	8	-		
Gate-Drain Charge	Qgd	VGS=10V	-	9	-		
Reverse Recovery Chrage	Qrr	I _F =20A,di/dt=100A/us		68		nC	
Reverse Recovery Time	Trr	I _F =20A,di/dt=100A/us		50.5		ns	
Source-Drain Diode characteristics							
Diode Forward voltage ⁽³⁾	V _{DS}	V _{GS} =0V, I _S =20A	-	-	1.2	V	
Diode Forward current ⁽⁴⁾	Is		-	-	60	Α	


Notes:

- 1. Repetitive Rating: pulse width limited by maximum junction temperature
- 2. EAS Condition:TJ=25°C,VDD=50V,RG=25 Ω ,L=0.5mH
- 3. Pulse Test: pulse width≤300µs, duty cycle≤2%
- 4. Surface Mounted on FR4 Board,t≤10 sec



Test Circuit


1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

RATING AND CHARACTERISTICS CURVES (RM78N100LD)

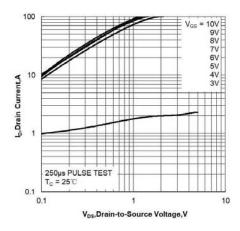


Figure 1. Output Characteristics

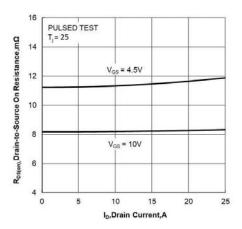


Figure 3. Drain-to-Source On Resistance vs Drain Current

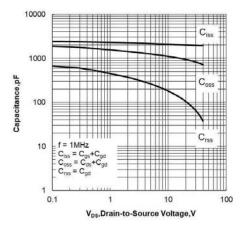


Figure 5. Capacitance Characteristics

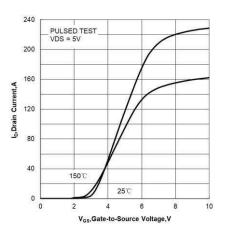


Figure 2. Transfer Characteristics

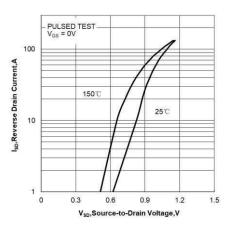


Figure 4. Body Diode Forward Voltage vs Source Current and Temperature

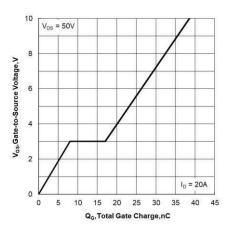


Figure 6. Gate Charge Characteristics

RATING AND CHARACTERISTICS CURVES (RM78N100LD)

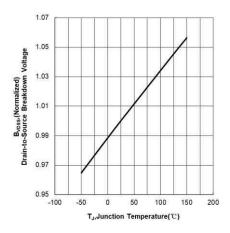


Figure 7. Normalized Breakdown Voltage vs Junction Temperature

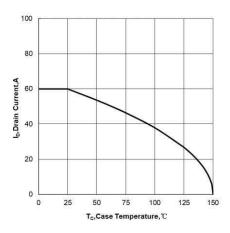


Figure 9. Maximum Continuous Drain Current vs Case Temperature

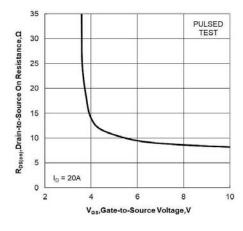


Figure 11. Drain-to-Source On Resistance vs Gate
Voltage and Drain Current

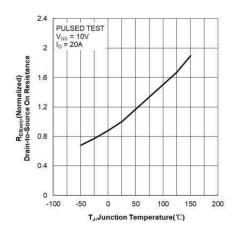


Figure 8. Normalized On Resistance vs

Junction Temperature

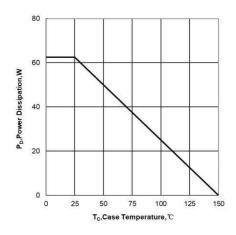


Figure 10. Maximum Power Dissipation vs Case Temperature

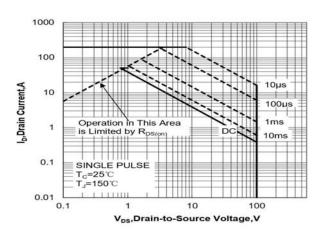


Figure 12. Maximum Safe Operating Area

RATING AND CHARACTERISTICS CURVES (RM78N100LD)

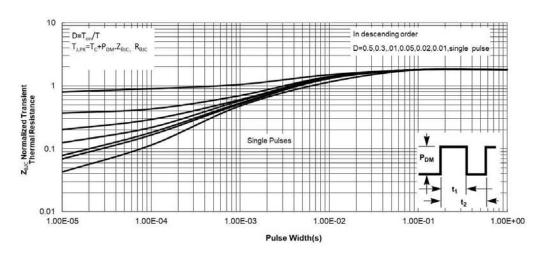
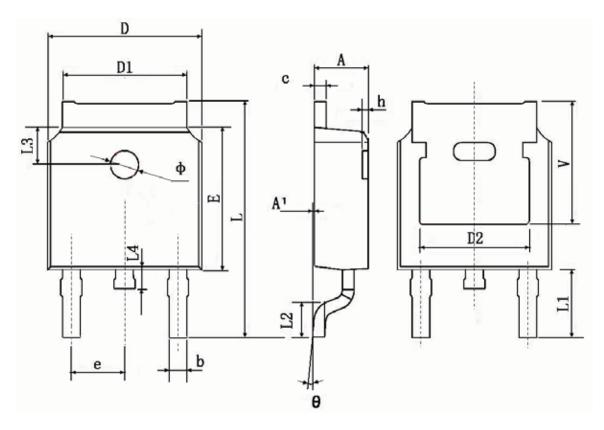



Figure 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

TO-252 Package Information

0	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
A	2.200	2.400	0.087	0.094	
A1	0.000	0.127	0.000	0.005	
b	0.660	0.860	0.026	0.034	
С	0.460	0.580	0.018	0.023	
D	6.500	6.700	0.256	0.264	
D1	5.100	5.460	0.201	0.215	
D2	4.83	TYP.	0.190 TYP.		
E	6.000	6.200	0.236	0.244	
е	2.186	2.386	0.086	0.094	
L	9.800	10.400	0.386	0.409	
L1	2.900 TYP.		0.114 TYP.		
L2	1.400	1.700	0.055	0.067	
L3	1.600 TYP.		0.063 TYP.		
L4	0.600	1.000	0.024	0.039	
Ф	1.100	1.300	0.043	0.051	
θ	0°	8°	0°	8°	
h	0.000	0.300	0.000	0.012	
V	5.350	TYP.	0.211 TYP.		

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures

