
AEC-Q200 This component was always RoHS compliant from the first date of manufacture.

RO3156E-3

RoHS

Compliant

868.95 MHz SAW Resonator

• Designed for European 868.95 MHz Transmitters

· Very Low Series Resistance

Quartz Stability

• Complies with Directive 2002/95/EC (RoHS)

• Tape and Reel Standard per ANSI/EIA-481

The RO3156E-3 is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency transmitters operating at 868.95 MHz.This SAW is designed specifically for remote-control and wireless security transmitters operating under ETSI EN 300 220.

Absolute Maximum Ratings

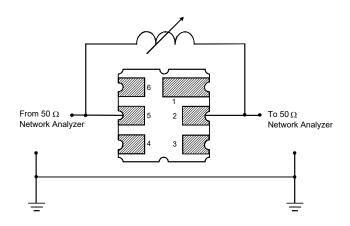
7 to o tiato maximum ratingo				
Rating	Value	Units		
Input Power Level	0	dBm		
DC Voltage	12	VDC		
Operating Temperature Range	-40 to +85	°C		
Soldering Temperature, 10 seconds / 5 cycles maximum	+260	°C		

Electrical Characteristics

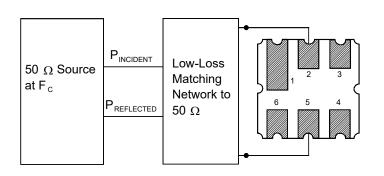
Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Frequency, +25 °C		f _C		868.880		869.020	MHz
Tolerance from 868.95 MHz		Δf_{C}				±70	kHz
Insertion Loss		IL			1.2	2.0	dB
Quality Factor	Unloaded Q	Q _U			6700		
	50 $Ω$ Loaded Q	Q _L			800		
Temperature Stability	Turnover Temperature	T _O		10	25	40	°C
	Turnover Frequency	f _O			f _C		kHz
	Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	fA			<±10		ppm/yr
DC Insulation Resistance be	tween Any Two Terminals			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R_{M}			14.1		Ω
	Motional Inductance	L _M			17.2		μH
	Motional Capacitance	C _M			2.0		fF
	Shunt Static Capacitance	Co			2.3		pF
Test Fixture Shunt Inductano	e	L _{TEST}			14.6		nH
Lid Symbolization			•		949, <u>YWWS</u>		•
Standard Reel Quantity	Reel Size 7 Inch	Reel Size 7 Inch 500 Pieces / Reel					
Reel Size 13 Inch				30	000 Pieces / F	Reel	

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. **NOTES:**

- 1. The design, manufacturing process, and specifications of this device are subject to change.
- 2. US or International patents may apply.
- 3. RoHS compliant from the first date of manufacture.

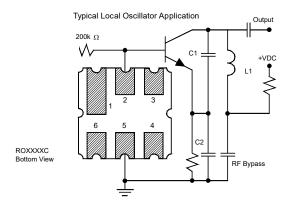

Electrical Connections

The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.

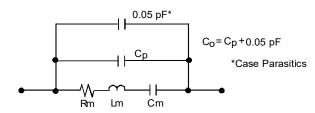

Pin	Connection		
1	NC		
2	Terminal		
3	NC		
4	NC		
5	Terminal		
6	NC		

Typical Test Circuit

The test circuit inductor, L_{TEST} , is tuned to resonate with the static capacitance, C_O , at F_C .

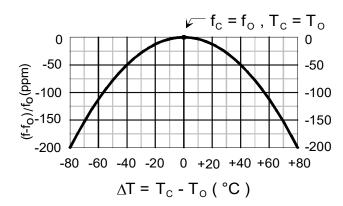


Power Test



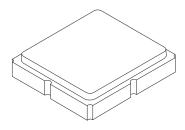
Typical Application Circuits

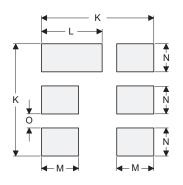
Typical Low-Power Transmitter Application $\begin{array}{c} \text{Modulation} \\ \text{Modulation} \\ \text{Input} \\ \end{array}$



Equivalent LC Model

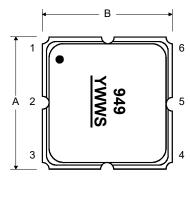
Temperature Characteristics

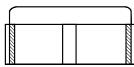

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.



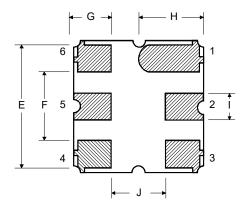
SM3030-6 Case

6-Terminal Ceramic Surface-Mount Case 3.0 X 3.0 mm Nominal Footprint

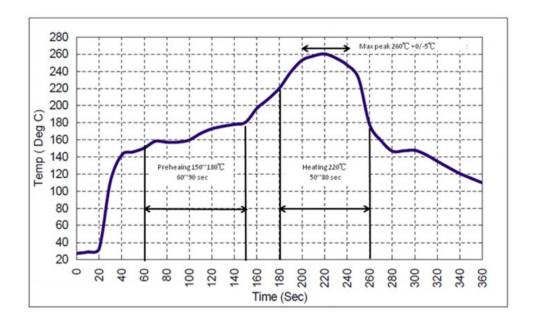

PCB Footprint Top View


Dimension	mm			Inches			
Dimension	Min	Nom	Max	Min	Nom	Max	
Α	2.87	3.00	3.13	0.113	0.118	0.123	
В	2.87	3.00	3.13	0.113	0.118	0.123	
С	1.12	1.25	1.38	0.044	0.049	0.054	
D	0.77	0.90	1.03	0.030	0.035	0.040	
E	2.67	2.80	2.93	0.105	0.110	0.115	
F	1.47	1.60	1.73	0.058	0.063	0.068	
G	0.72	0.85	0.98	0.028	0.033	0.038	
Н	1.37	1.50	1.63	0.054	0.059	0.064	
I	0.47	0.60	0.73	0.019	0.024	0.029	
J	1.17	1.30	1.43	0.046	0.051	0.056	
K		3.20			0.126		
L		1.70			0.067		
M		1.05			0.041		
N		0.81			0.032		
0		0.38			0.015		

Case Materials


Materials		
Solder Pad Plating	0.3 to 1.0 μm Gold over 1.27 to 8.89 μm Nickel	
Lid Plating	2.0 to 3.0 µm Nickel	
Body	Al ₂ O ₃ Ceramic	
Pb Free		

Top View


Bottom View

← D →

Recommended Reflow Profile

- 1. Preheating shall be fixed at 150~180°C for 60~90 seconds.
- 2. Ascending time to preheating temperature 150°C shall be 30 seconds min.
- 3. Heating shall be fixed at 220°C for 50~80 seconds and at 260°C +0/-5°C peak (10 seconds).
- 4. Time: 5 times maximum.

